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Abstract

A new methodology is introduced for the design of multi-
rate navigation systems-for underwater vehicles. The de-
sign technique proposed borrows from Kalman filtering
theory and leads naturally to multi-rate complementary
filtering structures, the performance of which can be as-
sessed using a frequency-like domain interpretation. An
example illustrates the application of the new technique
to the design of a multi-rate navigation system for an
autonomous underwater vehicle (AUV).

1 Introduction

Currently, there is considerable interest in the develop-
ment of navigation systems to provide robotic vehicles
with the capability to perform complex missions au-
tonomously. See [1, 6] and the references therein for
in depth presentations of navigation systems for aircraft
and [4, 5, 17] for an overview of similar systems and re-
lated research issues in the underwater robotics area.

Traditionally, navigation system design is done in a
stochastic setting using Kalman-Bucy filtering theory [2].
In the case of nonlinear systems, design solutions are usu-
ally sought by resorting to Extended Kalman filtering
techniques [2]. The stochastic setting requires a com-
plete characterization of process and observation noises,
a task that may be difficult, costly, or not suited to the
problem at hand. This issue is argued at great length in
[3], who points out that in a great number of practical ap-
plications the filter design process is entirely dominated
by constraints that are naturally imposed by the sensor
bandwidths. In this case, a design method that explicitly
addresses the problem of merging information provided
by a given sensor suite over distinct, yet complementary
frequency regions is warranted.

Motivated by these considerations, this paper offers
a new approach to navigation system design that re-
lies on complementary filtering theory [3]. The set-up
adopted leads naturally to the design of linear Kalman
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filters whereby the covariances of process and observa-
tion noises are viewed as tuning knobs that shape the
characteristics of the operators that map measured to
estimated variables.

In the case of attitude estimation, all sensors are sam-
pled at the same rate and the corresponding filter opera-
tors are linear and time-invariant. This leads to a fruitful
interpretation of the filters in the frequency domain. In
the case of linear position and velocity estimation, how-
ever, the characteristics of the sound channel imply that
the position measurements (obtained from a Long Base-
Line system) are available at a rate that is lower than
that of the remaining sensors. To deal with this problem,
this paper proposes a new approach to navigation system
design that relies on multi-rate complementary Kalman
filtering theory. The design methodologies for such types
of multi-rate systems are discussed, and the properties
normally associated with single rate complementary fil-
ters are shown to be preserved. In particular, it is shown
that the multi-rate filters can be viewed as input-output
operators exhibiting ”frequency-like” properties that are
the natural generalization of those obtained for the single
rate case. This is done by quantifying the performance of
the filters in a weighted induced operator norm setting,
and by exploring well known theoretical relationships be-
tween multi-rate and periodic systems. These properties
play a key role in assessing the stability of combined guid-
ance, control, and navigation systems even when multi-
rate sensor systems are present [4].

The organization of the paper is as follows. Section 2
reviews some background material on linear time-varying
systems, induced operator norms, and generalizes the de-
finitions of low and high pass systems to a time-varying
setting. Section 3 sets the motivation for the sections
that follow: a simple filtering problem is formulated and
its solution in terms of standard complementary filter
structures is presented. Section 4 formulates a multi-
rate Kalman filtering problem and describes its solution
by exploring a relationship between multi-rate and peri-
odic systems. Analysis tools are provided to evaluate the
performance of the resulting filters using frequency-like
domain interpretations. Finally, section 5 describes the
navigation problem that is the main subject of this paper
and describes its solution in terms of a complementary
multi-rate filtering structure. The performance of the
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resulting navigation system is assessed in simulation.
Due to space limitations, this paper focuses on the key
ideas that are relevant to the design of multi-rate naviga-
tion systems. The reader is referred to [13] for complete
technical details and a description of the software pack-
age that was developed for navigation system design.

2 Mathematical background. Ba-

sic definitions.

The main objective of this section is to extend the usual
concepts of low and high pass filters to a linear time-
varying setting, The necessary basic background mater-
ial is briefly summarized below for the continuous-time
case. The extension to the discrete-time case is straight-
forward. See {13, 18] and the references therein for com-
plete details.

2.1 Induced operator norms

The symbol L, denotes the Hilbert space of Lebesgue
measurable functions from R, to RP endowed with the
usual operator norm, while Ly, denotes the correspond-
ing extended space. An input-output system G is iden-
tified with an operator G : Ly, — Lg.. A causal system
G : Ly — Ly is (finite-gain) stable if the Lo induced
operator norm ||G{l2; (abbv. [|G]]) is finite. In what
follows we restrict ourselves to the class of linear time-
varying (LTV) systems G with finite-dimensional state-
space realizations g := {A(t), B(t),C(t)} of bounded,
piece-wise continuous matrix functions of time. Often,
we will use the same symbol G to denote both an LTV
system and its particular realization Xg, as the mean-
ing will become clear from the context. We assume the
reader is familiar with the concept of exponential stabil-
ity of LTV systems. To simplify the exposition, we will
henceforth refer to an exponentially stable system as in-
ternally stable, while a (finite-gain) stable system will be
simply called stable. If G : Ly, — Lo, has an internally
stable realization, then G defines a stable operator from
L2 — Lz.

Let G be a stable linear time invariant (LTI) system
with a minimal realization g := {4,B,C}, and let
G(s) = C(sI — A)~1B denote the corresponding transfer
matrix. Then, the induced operator norm ||G|| equals
the Ho norm of G, denoted ||G|leo, where ||Glloo =
sup{Omaz (GT (—jw)G(jw)) : w € R} and pnaz(.) de-
notes the maximum singular value of a matrix. Efficient
numerical tools are available to compute the induced op-
erator norm of an LTI system [8]. In the general case
of LTV systems, however, its computation is far more
difficult {18]. Interestingly enough, in the case of dis-
crete time periodic systems, the induced operator norm
is easy to compute, as will be explained later. This seem-
ingly simple result plays a key role in the analysis of the
multi-rate systems that will be introduced.

2.2 Low and high pass filters.

The concept of low pass and high pass filters is well un-
derstood in the case of linear time-invariant systems. We
now extend these concepts to the class of linear time-
varying systems. The new concepts will play a major

role in assessing the performance of the linear multi-rate
complementary filters that will be introduced later.

Definition. Low pass property. Let G be a linear,
internally stable time-varying system and let W2 be a
low-pass, linear time-invariant Chebyschev filter of order
n and cutoff frequency w. The system G is said to satisfy
a low pass property with indices (e, n) over [0,w,] if

G -DWE N <e

Definition. Low pass filter with bandwidth w,.
A linear, internally stable time-varying system G is said
to be an (e,n) low pass filter with bandwidth w, if

o lim, .o ||(G — I) W2|| is well defined and equals 0.

o w, = sup{w : |[{G — ) W}|| < €}, i.e. G satisfies

a low pass property with indices (e,n) over [0,w]
for all w € {0,w,) but fails to satisfy that property
whenever w > w,.

e For every ¢ > 0, there exists w* = w*() such that
HGI — W < 6 for w > w*.

Definition. High Pass Filter with break fre-
quency w,. A linear, internally stable time-varying sys-
tem G is said to be an (e,n) high pass filter with break
frequency w. if (I ~ G) is an (e,n) low pass filter with
bandwidth w,.

The conditions in the definition of low pass filters gen-
eralize the following facts that are obvious in the lin-
ear time-invariant case: i) the filter must provide a gain
equal to one at zero frequency, ii) there is a finite band
of frequencies over which the system behaviour replicates
very closely that of an identity operator, and iii) the sys-
tem gain rolls-off to zero at high frequency. Notice the
role played by the weighting operator W7, which was
arbitrarily selected as a Chebyschev filter. In practice,
the order of the filter can be made arbitrarily large so
that the filter will effectively select the ”low frequency
components” of the input signal.

3 Complementary filters
Complementary filters arise naturally in the context of
signal estimation based on measurements provided by
sensors over distinct, yet complementary regions of fre-
quency. Brown [3] was the first author to stress the im-
portance of complementary filters in navigation system
design. Since then, this subject has been studied in a
number of publication that address theoretical as well as
practical implementation issues; see for example [1, 9]
and the references therein. The key ideas in comple-
mentary filtering are very intuitive, and can be simply
introduced by referring to the example below.

Motivating example: Suppose it is required to de-
termine the position p of a body that is restricted to move
along a straight line, based on measurements p,,, and vn,
of p and v = p respectively, provided by a position and
a velocity sensor. The measurements are corrupted by
disturbances vg and pg. Let p(s) and v(s) denote the
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Laplace Transforms of p and v, respectively. Then, for
every k > 0, p(s) admits the stable decomposition
s+k

Pls) = S22 p() = Talo)pls) + Ta(pls), (1)
where T1(s) = k/(s+k) and T3(s) = s/(s+k) satisfy the
equality 71 (s) 4+ T2(s) = I. Using the relationship v(s) =
sp(s), it follows from the above equations that p(s) =
F,(s)p(s) + F,(s)v(s) where Fp(s) = Ti(s) = k/(s + k)
and F,(s) = 1/(s + k). This suggests a complementary
filter with the structure p = Fppm + Fyvm where F,
and F, are linear time-invariant operators with transfer
functions Fp(s) and F,(s), respectively. Clearly, the filter
admits the state space realization

p=—kp+kpm + v = v + k(P ~ B)
that is represented in figure 1.

Figure 1: Structure of a first order complementary filter.

Let 71 and 75 denote linear time-invariant operators
with transfer functions 71(s) and T5(s), respectively.
Simple computations show that p = (71 + T2)p + Fppa +
F,vgq, that is, the estimate p consists of an undistorted
copy (71 + 72)p = p of the original signal p, together
with corrupting terms that depend on the measurement
disturbances pg and vy. Notice the following important
properties:

e Ty(s) is low-pass: the filter relies on the informa-
tion provided by the position sensor at low frequency
only.

e Th(s) = I — Ti(s) is high-pass: the filter blends the
information provided by the position sensor in the
low frequency band with that available from the ve-
locity sensor in the complementary band.

e the break frequency is simply determined by the
choice of the parameter k.

The frequency decomposition induced by the comple-
mentary filter structure holds the key to its practical
success, since in many cases it mimics the natural fre-
quency decomposition induced by the physical nature of
the sensors themselves: position sensors usually provide
reliable information at low frequency only, whereas ve-
locity sensors often exhibit biases and drift phenomena
in the same frequency band and are therefore useful at
higher frequencies.

Complementary filter design is then reduced to the
computation of the gain k so as to meet a target break
frequency that is entirely dictated by the physical char-
acteristics of the sensors. From this point of view, the
emphasis is shifted from a stochastic framework - that
relies heavily on a correct description of process and mea-
surement noise (3] and the minimization of filter errors

- to a deterministic framework that aims at shaping the
filter closed-transfer functions.

As convincingly argued in [3], the latter approach is
best suited to tackle a large number of practical situa-
tions where the characterization of process and measure-
ment disturbances in a stochastic context does not fit the
problem at hand, the filter design process being entirely
dominated by the constraints imposed by sensor band-
widths. Once this set-up is adopted, however, one is free
to adopt any efficient design method, the design para-
meters being simply viewed as "tuning knobs” to shape
the characteristics of the closed loop operators. In this
context, filter design can be done using Hj or H,, design
techniques [2, 12, 15]. Filter analysis is easily carried out
in the frequency domain using Bode plots.

In the simple case described here, and in preparation
for the sections that follow, the underlying discretized
process model can be written as

p(k+1) p(k) + h (vm(k) + va(k))
P (k) p(k) + pa(k)

where vg and py play the roles of process and measure-
ment disturbances, respectively. Notice the important
fact that v, (the measured value of v) is an input to
the system. In an Hy setting, vy and pg are viewed as
stochastic, stationary white gaussian processes with zero
mean and covariances ¢ > 0 and r > 0, respectively and
the objective is to minimize the covariance of the esti-
mation error p — p. This leads directly to the position
estimator

Bk + 1) = p(k) + hom (k) + k(pm (k) — p(K)),  (2)

where k is the stationary Kalman filter gain. Clearly,
the cbove filter exhibits a complementary structure. Fur-
thermore, the covariances g and r can be viewed as design
parameters to vary the break frequency of the resulting
filter.

In practice, the simple complementary structure de-
scribed above can be modified to meet additional con-
straints. For example, to achieve steady state rejection
of the velocity sensor bias, the filter must be augmented
with an integrator to obtain a new complementary filter
structure. See [13] for details. In view of the discussion
above, we henceforth adopt a deterministic framework
for complementary filter design and analysis where the
objective is to shape the filter transfer functions to ob-
tain desired bandwidths.

Il

I

4 Multi-rate filters:
synthesis and analysis

This section summarizes basic results on multi-rate filter-
ing and describes the mathematical tools that are used
to assess their performance using frequency-like criteria.
The key results used explore the equivalence between a
very general class of multi-rate systems and the class of
periodic systems [11], as well as the isomorphism between
periodic and time-invariant systems using the concept of
lift operator [10].
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4.1 Synthesis

Following the basic definitions in [11], let G be a discrete
time system with m inputs and p outputs. Let i;h;7 =
1,.,m and o;h;j = 1,..,p be the sampling periods for
the i** input and j** output respectively, where i; and o;
are positive integers, and h is the system’s shortest time
period. Denote by Mh the basic time period, where M =
lem{{i;}721,{0;}5-1}. If G is finite-dimensional, linear,
and causal, then it admits the state space representation

x(k + 1) A(k)x(k) + B(k)u(k)
y(k) C(k)x(k) + D(k)u(k)

where x € R", u € R™, and y € R? denote the state,
input, and output vectors respectively, and the time in-
dex k denotes the instant of time kh. Under very gen-
eral assumptions, the state space representation is easily
seen to be periodic with period M, that is, Axqpr = Ag,
B;ﬁ.M = Bk, Ck+M = Ck and Dk+M = Dk [11] Thus,
the problem of multi-rate filtering can be easily cast and
solved by resorting to periodic filtering theory. In a sto-
chastic setting, this leads to periodic Kalman filters. In
this set-up, one is given a discrete-time periodic system
described by

x(k+1)
y(k)

The state and measurements are corrupted by white,
Gaussian noise w and v respectively, with zero mean and
noise covariance matrices

Elw(k)w(5)"]
E[v(k)v(5)T]

I

)

A(k)x(k) + B(k)u(k) + G(k)w(k),
C(k)yx(k) + D(k)u(k) + v(k). (3)

Il

Q(k — 7)é(k - 5)
R(k —j)(k — j)

I}

where §(k ~ j) is the Kronecker operator. The corre-
sponding periodic Kalman filter is described by the equa-
tions

K41) = AGRI(R)+ BE(R) K (1109 -CR%0)L
where the Kalman gain is defined as
K(k) = P(R)CT (k) (CR)P(R)CT (W) + R(K) " (5)

and the covariance of the error P(k) verifies, at each step,
the Riccati equation with periodic parameters

P(k+1) = A(k)P(k)AT (k) + G(k)Q(k)GT (k)
—A(K)P(k)C (k) (C(k)P(k)C” (k)
+R(k)) ™ C(k)P(k) AT (k)

In general, the solution to the above Riccati equation
is not periodic. However, as in the time-invariant case,
the periodic stationary positive semidefinite solution for
an infinite prediction interval is usually sought. See [16],
and references therein for results on the existence and
uniqueness of solutions of periodic Riccati equations. See
also (13] for a description of different methods for the
off-line computation of periodic stationary solutions to
periodic Riccati equations.

4.2 Analysis

In the section that follows, a complementary multi-rate
filter will be designed to estimate the position of an au-
tonomous underwater vehicle given measurements of its
position and velocity. The results presented thus far
show that this problem can be tackled in the framework
of periodic filtering theory. If one is to follow closely
the key ideas in complementary filter design, however,
the process and measurement noise covariances must be
viewed as tuning knobs to ”"match the frequency prop-
erties of the resulting filters to the characteristics of the
sensors used”. At this point, the key concepts of low and
high pass filters introduced in section 2 can be used to
characterize the ”equivalent” bandwidths of multi-rate
filters. Given the equivalence between a general class of
multi-rate systems and periodic systems, the problem is
reduced to that of computing the induced operator norm
of a periodic system. This is done as follows.

Let G be a linear, discrete-time, m— input, p— input,
M — periodic causal system. Then, using the concept of
lift operator introduced in [10], G can be shown to be
equivalent to an nM-input, pM-output linear time in-
variant system G that is usually referred to as the lifted
version of G. The equivalence is norm preserving in the
following sense: if G has finite induced operator norm
[IG||, then the LTI system G has finite induced operator
norm ||G|| = ||G||. The reader will find in [13] a thorough
discussion of this circle of ideas, as well as a description of
the computational procedures that can be used to com-
pute the LTI lifted version of a periodic system and its
induced operator norm.

5 Navigation system design

This section contains a simple example that illustrates
the design of a multi-rate navigation system to esti-
mate the position of an autonomous underwater vehi-
cle. In what follows, {U} is a fixed reference frame
and {B} is a body-fixed coordinate that moves with
the AUV. The vehicle motion is subject to the influ-
ence of a constant, unknown current v,, = (Uy, Vo, ww)T
expressed in {U}. The following notation is required:
p = (z,y,2)T - position of the origin of {B} measured
in {U}; Yv, = (ur,v,,w,)T - relative velocity of the
origin of {B} with respect to v,,, measured in {U}; Zv,
:= (u,v,w)” - relative velocity of the origin of {B} with
respect to v,,, measured in {U} and expressed in {B}
(i.e., body-fixed relative linear velocity); A := (¢, 8,)7
- vector of of roll, pitch, and yaw angles that parame-
trize locally the orientation the attitude of {B} relative
to {U}; YR (A) - rotation matrix from {B} to {U}.

With this notation, the relevant kinematics of the
AUV can be written in compact form as

d
HP= YR (A)Bv, +vy. (6)

In the design example, the AUV is equipped with:
i) a Long BaseLine positioning system that computes
the round-trip travel times (A;. 4) of the acoustic pulses
that are emitted by the vehicle and returned by an ar-
ray of four transponders, and ii) a Doppler sonar that
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provides on-board referenced measurements of the ve-
locity Bv,. of the vehicle with respect to the water. An
attitude reference unit is also available to provide accu-
rate estimates of the vector A of roll, pitch, and yaw
angles. The LBL data are input to the iterative trian-
gulation algorithm described in [13] to provide measure-
ments Pr = (Tm,Ym, 2m) > of p. The Doppler data are
simply converted from the body to the reference coordi-
nate frame using the rotation matrix %R (A) to obtain
measurements (u,_, vy, , Wy, )T of (ur, vy, w,)T (thisis a
simplyfing approach, in view of the existence of Doppler
biases. See [14] for an in depth discussion of this prob-
lem). The interrogation rates for the LBL and Doppler
units are 1Hz and 10H z, respectively. The former is mis-
sion dependent and is naturally imposed by the speed of
sound in the water.

The design specifications for the navigation system re-
quire the development of a multi-rate complementary fil-
ter that will: i) obtain accurate estimates (2,9, 2) and
(B, By Wy ) of the vehicle position and current velocity,
respectively and ii) achieve an approximate bandwidth
of 0.0314rad/ sec for the low pass filter that corresponds
to the operator from position measurements to position
estimates.

Figure 2: Position estimation: filter design model.

Following the guidelines introduced in section 3, the
design model for the complementary navigation filter
is easily obtained from the kinematic equations of the
AUV, leading to three sets of decoupled equations that
correspond to the three linear coordinates z,y, and z.
See Figure 2 for the design model that captures the mo-
tion of the AUV along the coordinate z. The output
integrator captures the relationship ¢ = u, + u,. The
middle integrator was inserted to estimate the current
bias. Finally, the input integrator was included to pro-
vide "faster roll-off” of the filter. Adopting a sampling
period A = 0.1s, the corresponding discretized design
model is given by

x(k+1)
y(k)
where x = (z1,%3,23)7, u = u,, , and w and v are

white, gaussian, stochastic state and output noises, re-
spectively. Furthermore,

I

Ax(k) + Bu(k) + w(k)
C(k)x(k) + v(k)

1 0 0 0
A= }{12 1 0], B:(O)

&5 h 1. h
ad L _[(0,01) if kMODM=0
*=1 (0,0,0) if kMOD M #0.

where M = 10 is the basic time period period and the
output of the operator (JMOD() is defined as the re-
mainder of the division of the first argument

Frequency lradisec]

Figure 3: Induced weighted operator norm - position
measurement to position estimate.

by the second one. Clearly, the matrix Cy is peri-
odic. Based on the filter requirements, the noise covari-
ances were selected as E[w(k)w(j)T) = Qd(x—j) mop m>
Q = diag(0.1,1077,107*) and E[v(k)v(j)T] =
Ré(k—j) mop i B = 10° to arrive at a (0.6,4) low pass
multi-rate filter Gz, (from position measurement z,,
to position estimate ) with a bandwidth of 0.03rad/s.
The corresponding Kalman gain is

( 2.012 x 1074 )
_ 1.996 x 1072 if kMODM =0
K(k) = 9.90 x 1077

(0,0,0)T if kMODM #0

Figure 3 shows the evolution of the corresponding in-
duced weighted operator norm ||(Gs,z,, — I) W2 || as
a function of the cutoff frequency w. of the weighing
Chebyschev filter. Notice how the norm approaches
zero as the cutoff frequency tends do zero. For w =
0.03rad/sec, the norm is equal to 0.6.

The performance of the navigation system was evalu-
ated in simulation with a nonlinear model of the vehicle
under closed loop control, subject to the influence of a
constant current of 0.5m/sec in the positive y direction.
See [4] for a description of the vehicle model and the set-
up available for simulation. The reference command for
linear position is an U/ - shaped trajectory that descends
smoothly along the depth coordinate z. Its projection on
the horizontal plane consists of two straight lines joined
by a semi-circumference with a radius of 60 m. The pro-
jection on the vertical plane consists roughly of two hor-
izontal lines, at the beginning and end of the maneuver,
and two straight lines with a slope of-—10%. In the sim-
ulation, the LBL system used four transponders located
at positions {-40,0,160},{130,0, 150}, {—40,190, 170}
and {140,190,135}. The reference and "real” trajecto-
ries are depicted in figure 4. The solid line in Figure 5
(top part) shows the vehicle position along the y direc-
tion, during the period from 220 — 280s. The dotted line
shows the estimated position that is obtained from the
multirate complementary filter. The dashed line shows
the outputs of the LBL triangulation algorithm. Notice
that in spite of the LBL data being available only every
second, the estimated position is updated every 0.1s. Fi-
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Figure 4: Commanded (-) and real (-) trajectory - hori-
zontal and vertical planes.

nally, the bottom part of Figure 5 shows the evolution of
the estimated value of the current velocity along the y—
direction.

Conclusions

The paper introduced a new methodology for the design
of multirate navigation systems for underwater vehicles.
Its key contribution was the extension of the concept of
complementary filters to a multi-rate setting. The effi-
ciency of the method was shown with a design example
that brings forth the multirate characteristics of realistic
navigation problems.
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