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http://vislab.isr.ist.utl.pt
{macl,jasv}@isr.ist.utl.pt

Abstract

We present a strategy whereby a robot follows a developmental pathway to (i) explore its own visuo-
motor capabilities, (ii) understand its surrounding environment, (iii) become aware of people acting in
the environment and finally imitate observed actions. We describe some results of the different devel-
opmental stages, involving perceptual and motor skills, implemented in our humanoid robot, Baltazar.
In addition to the overall system, another important contribution is the use of a two-phase, uncalibrated
algorithm for object grasping. The last phase is driven under closed-loop vision based control, where
the Jacobian is learned online.

1 Introduction

“Friendly” and social interaction between robots and
humans is a grand challenge for robotics. Due to
the diversity of actions/tasks to be performed and the
range of possible interactions with objects and hu-
mans, it would be impractical (if not impossible) to
explicitly pre-program a robot with such capabilities.
Instead, such systems must be able to learn by them-
selves what tasks to execute and how they should be
performed, which requires sophisticated motor, per-
ceptual and cognitive skills.

To address these challenges, we (as well as other
researchers) adopt two fundamental metaphors: (i)
learning by imitation as a powerful means to teach
a complex humanoid-like (social) robot and (ii) a de-
velopmental approach that can balance the complex-
ity of the system at the various levels of functional
performance.

Learning by imitation is likely to become the pri-
mary form of teaching such social, cognitive robots.
Let us consider a system able to learn how to solve
some tasks by imitation, e.g. by observing a human
manipulating a set of objects. This problem of skill
transfer has three major difficulties: (i) how to gather
task-relevant information? (ii) how to convert the
data that are valid for a human for a robot? and (iii)
how to infer the important parts of the demonstration
(e.g. “understand” the task).

Several approaches have been adopted to gather the

Figure 1: Baltazar. A 14 degrees of freedom hu-
manoid torso.

information for imitation. Schaal et al. (2003) use an
exoskeleton to capture kinematic data. Oztop and Ar-
bib (2002) rely on some marks to get visual features
for hand detection and grasping, in the context of im-
itation and modeling of the Mirror neurons. Lopes
and Santos-Victor (2003) exploit task-contextual bias
to modulate the information extraction process. Im-
itation and skill transfer between systems with dif-
ferent bodies (kinematics, dynamics and skills) was
addressed by Nehaniv and Dautenhahn (1998) using
an algebraic formulation (bodies with different skills
were considered). For the case of a humanoid robot,
Nakaoka et al. (2003) introduce adaptation of the tra-
jectories to be able to guarantee the correct balance
during task execution.

Kuniyoshi et al. (1994) proposed one of the first
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works in imitation, a system able to learn how to
imitate an assembly task by extracting a hierarchi-
cal description of the task. Billard et al. (2004) ad-
dress the problem of inferring the important parts of
the task by casting it into an optimization framework.
Zöllner and Dillmann (2003) present a system where
two hand tasks are imitated, using information about
the functionality of each object and handling tempo-
ral task restrictions, in a symbolically manner.

Even if imitation can allow a robot to learn an ex-
tremely large variety of tasks, it is clear that it re-
quires the robot to have several sophisticated motor,
perceptual and cognitive capabilities. Hence, build-
ing such complex skills can become an overwhelm-
ing task in itself. For learning one particular skill,
many other systems may need to be present and their
inter-connections properly established.

The developmental perspective, as proposed by
e.g. Weng (1998), is a new paradigm aiming at
overcoming this complexity problem, of learning and
properly integrating many perceptual, motor or cog-
nitive skills.

The robot should “start” with a minimal subset of
core capabilities (as newborns do) to bootstrap learn-
ing mechanisms that, through self-experimentation
and interaction with the environment and other hu-
mans, would progressively lead to the acquisition of
new skills, adapted to particular contexts, and having
the system integrating all the learning methods inter-
nally. Metta (1999) used a developmental approach
for a robot that successively acquired vergence, sac-
cade and vestibular control, as well as head-arm co-
ordination.

Amongst the capabilities required to interacting
with objects, understand their spatial configuration
and learning by imitation, perception is perhaps the
most fundamental. They allow gathering (task or con-
textually relevant) information and training samples
for all other forms of learning. Then, some motor
capabilities need to be in place before the robot can
start interacting with the world and providing “cali-
bration” information for other modules (e.g. relating
depth information from vergence with arm length).

The development of imitation capabilities requires
an appropriate definition of the sequence of learning
steps to reach that goal, as well as adequate perfor-
mance evaluation methods to decide when to switch
to higher developmental levels. In other words, it is
important to define the overall hierarchy of develop-
mental stages and the skills that must be acquired at
each level. Table 1 shows the structure we adopt for
the main developmental stages the robot (or a hu-
man infant Arśenio (2004); Natale (2004)) will go

through: (i) Learning about the self; (ii) Learning
about objects and the world and (iii) Learning about
others and imitation.

For each stage in this “developmental pathway”,
we show the set of skills to be acquired, and the time
line explaining the restrictions governing the system.
We do not distinguish between innate versus learned
behavior in biological systems (“the nature versus
nurture” question). Instead, we just request all the
modules to be present before the system can develop
to the next level.

Table 1: Developmental pathway for the Perceptual
and Motor capabilities (initalic the modules that are
learnt by the robot)

Time line Perceptual/Motor Capabilities

↓ self-awareness

eye vergence
random movements

Arm-headcoordination
near-space mapping

↓ world-awareness

near-space mapping
visually initiated reaching

visual control of grasp

↓ imitation
detection of other’s actions

imitation of tasks

In the first developmental level, the robot acquires
very simple and yet crucial capabilities: vergence
control and object foveation/tracking. Then, by ex-
ecuting random arm movements, in a self exploratory
mode, it begins to coordinate head and arm config-
urations, by creating a arm-head map. This map is
accurate enough to allow for reaching and grasping
objects in easy positions.

In the second developmental stage, the robot builds
a map of the surrounding area (object positions
and identification). Driven by attentional cues, the
robot engages in more challenging grasping tasks, for
which the previously learned arm-head map is not
sufficiently accurate. For that reason we propose a
novel method for visually controlled grasping, which
improves over time and ensures the necessary robust-
ness.

Previous approaches for object grasping were ei-
ther completely visual controlled Kragic et al. (2002),
with problems in guaranteeing the presence of the
hand in the visual field, or completely open-loop Na-
tale (2004) with no capability of error correction. In-
stead, we combine the two modalities, with an open-
loop phase moving the effector to the field of view
followed by a closed-loop method with the precision
necessary to put the effector in contact with the ob-
ject.



At the final developmental stage, the presence of a
demonstrator will elicit a task imitation behavior, that
will decompose the actions and them replicate with a
given metric. For this purpose, the system must be
able to decompose the observed action into the rele-
vant key elementary actions that must be executed for
performing a task.

To conclude, our main contributions are two-fold.
On one hand we present a developmental strategy
for humanoid robots, according to widely accepted
stages in developmental psychology. On the other
hand, we propose a visually guided grasping pro-
cess, where learning is driven by the motivation to
precisely grasp objects, that continuously adapts over
time (open ended learning).

All experiments in the paper were implemented in
our humanoid robot, Baltazar, equipped with a4 dof
binocular head, a6 dof arm and an11 dof (under-
actuated by 4 motors) hand. The robot is shown in
Figure 1 and described in detail in Lopes et al. (2004).

In Section 2 we present the development of self
awareness. Section 3 deals with the understanding of
the world and the interaction with objects. Imitation
learning of tasks is presented in Section 4. Conclu-
sions and future work are drawn in Section 5.

2 Self-Awareness

Humans take a long time before becoming self-
sufficient. Knowing how to walk, how to recognize
objects, understanding how to solve a task, interact-
ing with objects, are very difficult tasks, and only af-
ter several years all mechanism necessary are avail-
able and reliable. Becoming aware of its own body
and then start to coordinate it is the first step to sur-
vival. Infants have several mechanism guiding its de-
velopment.

For the case of the head-eye system, voluntary con-
trol appears very early. Some reflexive movements
are evident from birth (head-righting reflex Payne and
Isaacs (1999)) but voluntary control becomes appar-
ent only at the end of the first month. A five-month
old child already shows a good control. This con-
trol of the head will enable the tuning of the vision
system to start looking at (and understanding) the en-
vironment. In van der Meer et al. (1995) there is a
discussion about the significance of neonate’s, appar-
ently, random arm movements.

Several reflexes allow newborns to look to their
hand. The “Asymmetric Tonic Neck Reflex” can be
elicited when the baby is prone or supine. When the
head is turned to one side or the other, the limbs on
the face side extend while the limbs on the opposite

side flex. This reflex is believed to facilitate the de-
velopment of an awareness of both sides of the body
as well as help develop eye-hand coordination.

The interaction between eyes and hand is very im-
portant. This interaction will allow the newborn to
tune its eyes, distinguish depth and recognize touch-
able objects. For a baby exploring the hand, how it
moves and how it looks will be the most interesting
thing in the first few months. Learning to make it do
what it wants to do, will be a very complex learning
task. In the end the reward will be tremendous: being
able to predict hand movements and to touch objects.

In this section we present the capabilities allowing
the system to be aware of its own body and to learn
how to coordinate it.

2.1 Near-Space perception

The near-space contains the touchable objects and our
own body. Being able to understand what happens
there is fundamental. Bernardino and Santos-Victor
(2002) suggest a method where the disparity between
images is used, together with some neuronal-based
filters, to segment objects at different depths. The
head can be moved to look toward the hand using
disparity as a feedback signal to control it. Figure
3 shows a result of verging on an object. This same
mechanism will later be used to map object positions.

2.2 Arm-Head Coordination

Many tasks need a very fine Arm-head coordination.
Object manipulation is only possible with precise vi-
sual control of the hand. In order to coordinate Arm
positions with Head position, we are going to create
anArm-Head Map. This map is bidirectional. If the
head position is fixed moving the arm to the mapped
position puts the hand in the fovea of the two eyes. If
the arm is fixed, we can visually locate it by moving
the head to the mapped position.

Several approaches can be used to learn this map.
In Lopes and Santos-Victor (2003), a neural network
was used to map from arm feature points to joint
angles. In D’Souza et al. (2001), a very powerful
method is used to learn inverse kinematics of a hu-
manoid. Vijayakumar and Schaal. (2000) created a
method,Locally Weighted Projection Regression, that
will be used for learning the map. This method is lin-
ear with the number of samples and every new sample
can be added easily. As it is not capable of extrapo-
lating, the working space must be well covered in the
training set.

The data set is gathered by self-observation. The
arm is moved around in the space, while the hand is



tracked and foveated. Figure 2 shows the hand being
moved to the front of the eyes by using theHead-
Arm map. The quality of this map is good enough to
guarantee that the hand is always in the image but not
in the fovea. In our experiments, the average error is
about5cm, corresponding to15% of the image.

Figure 2: Head-Hand Coordination

This map will enable the system to reach and, in
special cases, grasp objects. This will be very moti-
vating and in the next level object grasping will de-
velop further.

2.3 Attention Mechanism

When looking around us some objects attract more
our attention than others. This is related to the ur-
gency of each task and to reduce the amount of infor-
mation to process. Context may influence the atten-
tion drawn by some objects, (e.g. food when hungry).
In our approach, the attentional process depends on
the developmental stage. In the beginning, the hand
is the main focus of attention, facilitating the learn-
ing of the Head-Arm Map. Also salient objects in
the scene attract the system’s attention in a bottom-
up process. Later on, in the second stage, Baltazar
will search around him, pay attention to all objects,
one at a time and create a map of the nearby area.
In the final stage, attention will be driven toward the
person doing the demonstration and the manipulated
objects. In these later stages, attention becomes grad-
ually more driven in a top-down, context and task de-
pendent manner.

3 World Awareness

As the robot gains control over its own perceptual and
motor capabilities, it gets more and more interested
in exploring its surrounding world. This exploratory

motivation will call for the development of more ad-
vanced manipulative capabilities as opposed to the
rudimentary skills available during phase one.

For object grasping, it is necessary to have sev-
eral motor programs: the arm must be able to ap-
proach the object (reaching) before finally grasping
it, the hand must be able to have a stable grasp and
pre-shaping can be necessary for faster movements
or moving objects. However at this stage all the robot
can do is to fixate at salient objects and approach
them in a primitive form of grasping. The develop-
ment path will require the following new skills:

1. detect object’s positions in the nearby space and
store this information in some sort of represen-
tation (near space map).

2. learn how to reach objects in a controlled man-
ner, using visual feedback, and grasp them.

This section describes algorithms that solve all
these steps, allowing a robot to move on to the next
developmental level, where it gains awareness of oth-
ers (humans or robots) and the actions they perform.
In addition to the reaching step based on theHead-
Arm Map presented in Section 2, we propose a new
algorithm to grasp objects based on visual servoing
techniques estimated online.

Figure 3: Verging on an object. Left (4) and right
(+) eye.

3.1 Near-Space (Objects) Mapping

There is neurological evidence of spatial aware neu-
rons that are active when movement or objects are
present near the skin Rizzolatti et al. (1977). It is also
known in developmental psychology that infants be-
came aware of the near and far space very early. It is
very useful to know where an object is and whether
it can be grasped or not. After all the time spent in-
teracting with its own hand, the system can already



distinguish objects at different depths and search for
the desired one.

By this exploratory behaviour, we create a map of
the localization of objects around us - the periper-
sonal map - through various steps:

1. Find an object in the visual space

2. Foveate on this object

3. Memorize the object position in head (proprio-
ceptive) coordinates (ΘHead).

Through exploration, the robot thus creates a men-
tal image of the surrounding space. The position of
the objects are memorized in terms of head (proprio-
ceptive) coordinates. In Figure 4 Baltazar is search-
ing for “fruits” around him where different objects
are assumed to have different colours.

Figure 4: Mapping object positions in head coordi-
nates.

3.2 Object Grasping - a two step ap-
proach

Infants start reaching objects without any visual feed-
back. The movement is only initiated with vision but
not guided throughout the entire action. In case of
failure, the movement restarts from the beginning.

At the first stage of development, the estimated
Arm-Head mapallows the system to (crudely) move
the hand towards an object. Hence, if a simple trajec-
tory is followed, the hand may well succeed in touch-
ing the object. The problem with this (open-loop) ap-
proach is the absence of a mechanism for error cor-
rection. This is the reason why babies in this phase
restart the grasp quite often, instead of correcting it
Payne and Isaacs (1999).

The second stage of object reaching relies on vi-
sual feedback, coping with the problem of error cor-
rection. TheHead-Arm mapis used to move the hand

to the objects vicinity. Then, accurate positioning is
achieved by visual guidance in closed loop. With this
phase, it is possible to grasp objects in a reflex type
manner, the hand closing after touch.

The method presented in D’Souza et al. (2001)
could be used here. Their approach consists in map-
ping motor positions and velocities to image veloci-
ties, using a very strong statistical learning approach,
yielding good results. The disadvantages arise from
the lack of extrapolation capabilities and by not hav-
ing an explicit Jacobian estimation, thus needing
more time to gather the information, and preventing
the use of well studied visual servoing control algo-
rithms.

We adopted a visual servoing perspective, de-
scribed by e.g. Hutchinson et al. (1996). However,
although it is possible to solve the problem with an
algebraic formulation, we adopted a model-less way,
as it allows the system to learn and develop from its
own experience. A particularly useful method for on-
line estimation of visual motor relations is presented
by Jaegersand (1996). The imageJacobian(J) relat-
ing image changes (∆y) caused by motor movements
(∆θ), can be interactively estimated by:

Ĵ(t + 1) = Ĵ(t) + α

(
∆y − Ĵ(t)∆θ

)
∆θT

∆θT ∆θ

whereα denotes the Jacobian update rate. To move
the system to the desired image positiony∗, we apply
the following control law:

∆θ = g
(
J+ (y∗ − y)

)
whereJ+ represents the pseudo-inverse ofJ and the
functiong(.) can be chosen to have a exponential, lin-
ear or any other type of convergence.

In order to deal with a larger workspace and to
incorporate some open-loop movements, we had to
improve the existing algorithm. More details can be
found in the Appendix A. Figure 5 shows the result-
ing behavior of the system while grasping objects.
The hand is closed after sensing the contact with the
object. The capability of pre-shaping the hand will
only develop at a later stage. For small grasping ve-
locities, this type of movements can be sufficient, but
bigger velocities will require learning some form of
pre-shaping and predicting the time of contact with
the object.

At this point in development, the system can not
only control its own body and perceptual abilities but
also perform relatively complex manipulation tasks,
memorize objects spatial configurations, search for
objects, etc. It is then ready to start looking at hu-
mans or other robots and the tasks they perform.



Figure 5: Several frames in the sequence from the ini-
tial position resulting from theHead-Arm Map, then
the visual guided part and finally the object grasping.

4 Imitation

Figure 6 shows an example of a task being exe-
cuted. It consists of picking up some objects and
moving them around. To imitate this task, the robot
will first need to understand the spatial relations of
objects around the demonstrator (understand the far
space). Then, understanding the near space becomes
fundamental to establish correspondence between the
demonstrator perspective its own (self) viewpoint (i.e.
the blue object is on the left of the demonstrator, but
it is in front of me). After the observation of the
demonstration movements, the important task mo-
ments must be extracted and segmented. Finally the
task is repeated by the robot, using the task descrip-
tion and all the modules previously learned. The fol-
lowing sections will provide details on the different
modules developed at this stage.

Figure 6: Several frames of the task demonstration.

4.1 Far-Space Interpretation

Understanding events and object’s localizations at far
distances (i.e. more than the arm can reach) is differ-
ent from mapping our surrounding space. The frame
of reference will no longer be our own body, instead
we describe object’s positions relative to another per-
son, this is specially useful for imitation learning.
Object’s position will be codified in terms of allo-
coordinates. Some simplifying assumptions can be
made about depth in order to reduce the complexity
of scene reconstruction.



4.2 Task Segmentation

The actions and movements of the demonstrator must
be segmented and codified in a way useful for imita-
tion. We developed a method consisting in a multiple
object tracking and a task point detector. When doing
manipulation our hand will occlude objects very fre-
quently. Grasping and releasing can be very difficult
to detect. Being the hand the only actuator enables
the usage of information to deal with occlusions. Ev-
ery object can have three movement models: static,
moving and being moved. When an object is moving
its velocity profile can be predicted with Newtonian
dynamics, when being moved is has the same veloc-
ity as the hand. The algorithm will mark every point
in the trajectories of the objects that satisfy the fol-
lowing constraints: all object are static, the hand is
not moving and the hand is not occluding any object.

The task is then codified by having objects with
their physical properties (shape and color) and their
spatial relations (A between B and C;A right of B or
A left of B).

The complete sequence shown in Figure 6 has 234
frames, this sequence was processed online and the
task points, shown in Figure 7, were automatically
extracted. We can see that the system succeeds in
detecting what frames are important to describe the
task.

4.3 Imitation

As mentioned in Gergely et al. (2002), imitation goals
are not always very clear. In our case the imitation
task will proceed in order to have the same spatial
relations. In case the demonstrator has made a move-
ment and there is no difference in the ordering of
objects (Figure 7), the robot will mimic the absolute
spatial positions. We can see that all the modules de-
veloped until this point were essential to be able to
replicate the task at hand.

5 Conclusions/Future Work

We have presented a developmental route for a hu-
manoid robot1 to acquire increasingly more complex
skills.

The robot first learns about it’s own body and sur-
rounding environment. All information is gathered by
self-exploration. The quality of the Arm-head coor-
dination achieved in this phase is sufficiently good to
ensure that the hand always remains in the image and

1see http://vislab.isr.ist.utl.pt/baltazar for videos showing the
experiments in this work

that objects can be grasped in simple cases. In a sec-
ond phase, motivated to further interact with objects,
the system develops a closed-loop control behavior
capable of precise grasping. It also creates a map of
the interesting objects in the surrounding space. In
the final developmental phase, people acting in the
environment are the major source of information. The
observed tasks are segmented in special points in or-
der to finally imitate the task.

The developmental pathway allows the robot to ac-
quire new skills on top of the existing (learned) ca-
pabilities. We described results of the various de-
velopmental stages of the system: the vergence and
object tracking system, the learning of the Arm-
head map, the visually initiated object grasping sys-
tem and a new solution to visually guide grasping.
The method consists in two phases: an open-loop
controller putting the hand close to the object, and
a closed-loop vision-based controller for precisely
touching the object. This method does not need cali-
bration and can be learned on-line in a very efficient
way. In the future, we will focus our efforts on the as-
pects of learning the interaction between people and
objects.

A Visual Grasp

In this section we present a generalization of the
method suggested by Jaegersand (1996), to be used
to visually control the arm. The imageJacobian(J)
relating image changes (∆y) caused by motor move-
ments (∆θ), can be iteratively estimated by:

Ĵ(t + 1) = Ĵ(t) + α

(
∆y − Ĵ(t)∆θ

)
∆θT

∆θT ∆θ

whereα is the Jacobian update rate. To move the
system to the desired image positiony∗, we can apply
the following control law:

∆θ = g
(
J+ (y∗ − y)

)
whereJ+ represents the pseudo-inverse ofJ andg(.)
can be chosen to have a exponential, linear or any
other kind of convergence.

When the working volume is very large the Ja-
cobian can no longer be accurately estimated with
only one linear model. To solve this we propose a
new method. With only one linear model the up-
date mechanism must be fast enough to have an ac-
curate model for each region. In the case of open-
loop movements the system can no longer update the
model and a specific model for the new region must
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Figure 7: Segmentation of a task. Notice that from the third to the fourth image there is no difference in the
ordering of the object, just their absolute distances. These relevant points where extract online from a video
sequence with 234 frames.

already be present. The workspace should be parti-
tioned in several regions,Ri, i = 1 . . . N . At each
instant the distancec is measure between the current
position and all the regions, the selected JacobianJ
is the one corresponding to the nearest areaRi. We
use a Mahalanobis distance with covarianceD. The
covariance can be updated online to reduce the num-
ber of regions and to better adjust the linear model to
the non-linear system. Trying to update the regions
center creates problems by overlapping regions and
with region transitions.

The Jacobian update rate (α) should be larger when
the model is inaccurate and then reduced to improve
convergence. One measure to access the model qual-
ity (mq) can be:

mq(t) = mq(t− 1) + γ < ∆y, Jk∆θ >

γ is a decaying factor and< . > represents inter-
nal product.mq is positive when the observed move-
ments has a direction error less than90 degrees.

The regions centersxi may correspond to motor
featuresx = θ, visual featuresx = y or a com-
bination of them. With visual features there is the
possibility of doing planning in visual space but there
are different motor positions that give the same visual
features and should have different linearizations.

Table 2 presents the complete algorithm for doing
the visual controlled grasp.

J+ must be carefully implemented. As some di-
rections are not observed, the Jacobian inversion will
be very unstable. To solve this problem the pseudo

Table 2: Uncalibrated Visual Servoing Algorithm

To move the system to the desired image positiony∗

1. Choose the regionRi corresponding to the ac-
tual statex:

ci = (x− xi)T Di(x− xi)

Ri : min
i

ci

if max ci < C create a new areal with xl = x,
Dl = D andJl = Ji. ChooseRi = Rl.

2. apply the control law:

∆θ = Ki
J+

i (y∗ − y)∥∥J+
i (y∗ − y)

∥∥
3. observe image changes∆y

4. make the update to the modeli corresponding to
positionx with:

Ĵi = Ĵi + αi

(
∆y − Ĵi∆θ

)
∆θT

∆θT ∆θ

5. if |y∗ − y| > E goto1



inverse is implemented with a SVD method and any
singular values less than10% of the larger are treated
as zero.

Chaumette (1998) show some problems present in
Visual servoing methods. Our method solves the
problem of the Jacobian derivation and the calibra-
tion of the robot and cameras. In general these meth-
ods are sensitive to initial positions, being prone to
fall in local minima but, in our approach, the system
always starts near the final position due to theHead-
Arm map, thus making convergence easier.

We made several experiments to access the quality
of the resulting algorithm. Our system measures a
specific dot in the hand with two cameras giving an
image position of the hand(ul, vl) for the left eye and
(ur, vr) for the right eye. The features are calculated
as follows:

y =

 ul+ur

2
vl+vr

2
ul − ur


This gives position and distance information estima-
tion of the hand related to the head. The head was
maintained fixed and four arm joints were used. The
distance between the central point of each zone was
10 degrees. The Jacobian update rate was equal in
all regions and choosen asα = 0.1 while mq < 0
andα = 0.01 while mq > 0.

Figure 5 shows some quantitative results of the
grasp sequence shown in Figure 5 using our proposed
algorithm. The hand was positioned near the object
using theHead-Arm map. The resulting error corre-
sponds to about8 cm. The associated image error is
corrected in the final phase (visually controlled) with
a linear convergence rate.
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