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Abstract. Tracking the Left Ventricle (LV) in ultrasound sequences re-
mains a challenge due to speckle noise, low SNR and lack of contrast.
Therefore, it is usually difficult to obtain accurate estimates of the LV
cavities since feature detectors produce a large number of outliers. This
paper presents an algorithm which combines two main operations: i) a
novel denoising algorithm based on the Lyapounov equation and ii) a
robust tracker, based on an outlier feature model. Experimental results
are provided, showing that the proposed algorithm is computationally
efficient and leads to accurate estimates of the LV.

1 Introduction
The left ventricle (LV) boundary estimation plays an important role in clini-
cal diagnosis since it allows to extract relevant measures of the heart dynamic
behavior, among which the ejection fraction and local wall motion.

Ultrasound imaging is a popular technique to observe the dynamical behavior
of the heart. However, the low signal-to-noise ratio (SNR) and the multiplicative
nature of the noise (speckle) corrupting the ultrasound images, make the LV
segmentation a difficult task.

The major edge detection algorithms fail due to the presence of multiplicative
noise in heart ultrasound imagery. The strongest edges are often not located on
the endocardium. In [1] it is proposed the instantaneous coefficient of variation
(ICOV) providing good segmentation results, but the so called problem of “edge
dropout” still remains (this is typical in the diastole phase). Therefore, noise
reduction must be applied before edge detection. Several techniques have been
proposed to reduce the speckle noise without distorting the relevant clinical
details, e.g., Bayesian methods [2], mixture distribution of the Rician pdf with
the inverse Gaussian as a mixture distribution (RiIG) [3], soft thresholding [4],
wavelet based methods [5], wavelet soft-shrinking [6], median filtering [7], and
anisotropic diffusion [8].

Even though the denoising algorithms significantly reduce the speckle noise,
advanced tracking techniques are needed to segment the LV boundary. Prior
art in segmentation of echocardiographic sequences of the heart includes active
shape models [9], or level set techniques [10].
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In this paper we join a novel edge preserving total variation (TV) based
denoising algorithm and a robust tracker [11]. The denoising algorithm must
process a large number of ultrasound images in an efficient way. This is obtained
by formulating the filtering operation as the solution of a Sylvester/Lyapunov
equation for which there are fast and computationally efficient algorithms de-
scribed in the literature.

The robustness of the tracker is obtained by using feature grouping (line
segments), which are labeled as valid or invalid. Since the labels are unknown
they are replaced by their probabilities computed using a probabilistic model of
the observations. A data association filter is then used to update the contour
parameters under the presence of outliers.

The tracking algorithm proposed in the paper was assessed using a set of
image sequences, segmented by medical doctors. These images, are used as a
ground truth to compute FOM (figures of merit).

The paper is organized as follows: Section 2 describes the overall system.
Sections 3, 4 and 5 describe the pre-processing, feature detection and tracking
steps respectively. Section 6 describes experimental and section 7 concludes the
paper.

2 System Overview
The proposed system aims is to track the boundary of the left ventricle during
the cardiac cycle. The system input is a sequence of ultrasound images sampled
at 25Hz.

The system performs three main operations: i) denoising : to reduce the
speckle noise and enhance the contrast; due to the large amount of data to
be processed a novel algorithm was developed to perform this task, ii) feature
detection : detects intensity transitions along orthogonal lines radiating from the
contour. Transitions are obtained by applying a matched filter to the intensity
profiles and computing the local maxima [12], and iii) tracking : based on a
robust tracking algorithm which fits a deformable curve (quadratic B-spline) to
the points detected in the image. This algorithm must be able to deal with a
large number of outliers and to interpolate the boundary when no features are
detected due to low contrast of the heart boundary. This is specially important
close to the apex and in the presence of sudden motion changes (e.g., in the
mitral valve). A recent tracking algorithm is used in this step.

3 Pre-Processing
The performance of the tracker depends on the SNR of the input images which
have multiplicative noise.

The goal of the pre-processing step is to reduce the noise without losing rele-
vant information. In this paper a MAP criterion is used to estimate the original
images from the noisy ones. This approach is usually slow and computationally
demanding, furthermore, there is a large number of images to process.

A Bayesian framework is used with the MAP criterion, and the optimization
algebraic problem is formulated as Sylvester/Lyapunov equation for which there
are fast em computationally efficient algorithms described in the literature.
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The denoising algorithm estimates the original image, X, by minimizing the
following energy function E(Y, X) = − log [p(Y |X)p(X)] where Y is the noisy
image, p(Y |X) is the observation model and p(X) is the prior distribution of the
unknown image.

Assuming conditional independence of the observations, leads to p(Y |X) =∏N,M
ij p [y(ij)|x(ij)] where p(y|x) = y

xe−y2/2x is the Rayleigh distribution [13].
An edge preserving prior p(X) was chosen to avoid over-smoothing the tran-

sitions. The prior is based on the total variation (TV) function as p(X) =
1
Z e−α

P
i,j g(i,j) where g(i, j) = |∇X(i, j)| is the gradient magnitude of X at

the (i, j) pixel, α is a parameter and Z is a partition function. This gradient
magnitude may be approximated by using the first order differences, g(i, j) =√

δ2
vi,j

+ δ2
hi,j

where δvi,j
= x(i, j)− x(i, j − 1) and δhi,j

= x(i, j)− x(i− 1, j).
The denoised image is obtained by solving the following equation

X̂ = arg min
X

E(Y,X) (1)

where

E(Y,X) =
∑

i,j

[
log

(
y(i, j)
x(i, j)

)
− y2(i, j)

2x(i, j)

]
+ α

∑

i,j

g(i, j) (2)

To find out the minimizer of (2), its stationary points must be computed,
i.e., ∇E(Y, X) = 0, which is equivalent to

x(i, j)− xML(i, j)
x2(i, j)

+
∂

∂x(i, j)

∑

i,j

g(i, j) = 0, 0 ≤ i, j ≤ N − 1,M − 1(3)

where xML(i, j) = y2(i, j)/2 is the maximum likelihood (ML) estimate for the
Rayleigh distribution. The set of equations (3) is non-linear on X and it is
iteratively solved. The fixed point method and the majorize/minimize (MM)
algorithm described in [14] leads too the following recursion equation,

x(i, j)− xML(i, j)
x2

t−1(i, j)
+

∂

∂x(i, j)

∑

i,j

δ2
vi,j

+ δ2
hi,j

wt−1(i, j)
= 0, 0 ≤ i, j ≤ N − 1,M − 1 (4)

where xt−1(i, j) and wt−1(i, j) = 1/gt−1(i, j) are the image and gradient magni-
tude reciprocals, respectively, computed in the (t− 1)-th iteration.

The set of equations (4) can be written in the following matrix notation as
shown in [15]

Xt−1 ~ (X −XML) + 2αG−1
t−1 ~ [φvX + Xφh] = 0 (5)

where φv = θT
v θv, φh = θT

h θh and G−1
t−1(i, j) = 1/|∇Xt−1(i, j)| is the matrix

whose elements are the reciprocals of the gradient magnitudes of Xt−1. The
operator ~ stands for Hadamard product, i.e., element wise product. θv and



4 Authors Suppressed Due to Excessive Length

θh are n × n vertical and m × m horizontal difference operators respectively.
Therefore, equation (5) can be rewritten as follows

ΦvX + XΦh + Qt−1 = 0 (6)

where Φv = βIN/2 + 2αφv, Φh = βIM/2 + 2αφh, Qt−1 = Wt−1 ~ (Xt−1 −
XML)− βXt−1 and Wt−1 = Gt−1 ~ / [Xt−1 ~ Xt−1]. IN and IM are N and M
dimensional identity matrices respectively and β is a conditioner parameter to
improve the stability of the algorithm (typically β = 1).

The equation (6) is the so called Sylvester equation for which there are effi-
cient and fast solver algorithms. Fig.1 shows an example of denoised ultrasound
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Fig. 1. (a) Real image, (b) denoised image using the proposed technique, (c) image
profile of (a), image profile of (b).

image using the pre-processing described above.

4 Feature Detection
Feature detection detects line segments belonging to the boundary of the LV.
This is done in two steps. First we detect intensity transitions along lines or-
thogonal to the predicted contour. This is done by template matching. Feature
detection along the ith direction is performed by computing the local maxima
of the function

J (t0) =
∫

t

|pi(t)− T (t, t0)|2dt (7)

where pi(t) is the image profile taken at the ith direction, t denotes the distance
to the object boundary and T (t, t0) is a template which is obtained off-line. The
template T is obtained as follows: T (t) is equal to the typical intensity of the
object for t ≤ t0 and T (t) is equal to the background intensity for t > t0. In the
second step, feature points detected at consecutive lines are grouped, by mutual
by mutual favorite pairing, forming image line-segments.

5 Tracking
A deformable curve (B-spline) is used to approximate the LV contour. The pa-
rameters of the B-spline at time k, xk ∈ R are estimated from the image features
obtained in the previous step using a tracking algorithm.
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This is not an easy task since there are many invalid features detected in
the ultrasound image and the tracker must able to ignore them and to track
valid features only. The Kalman filter fails in this problem since it is not able to
separate valid features from invalid ones.

In this paper we have used a data association filter which was recently pro-
posed in [11]. This method considers all the hypothesis of valid/invalid features,
Hi, and assigns a probability to each of them (see [11] for the details).

To avoid an exponential growth of hypothesis at different time instants, a
simplifying assumption is adopted: it is assumed that the state distribution given
past observations is Gaussian, i.e.,

p[xk | Y k−1] = N [xk; x̂k|k−1, Pk|k−1] (8)

where x̂k|k−1, Pk|k−1 are the mean and covariance of xk given past observations
Y k−1. This hypothesis was proposed by Bar-Shalom in the context of target
tracking [16].

The computation of the state estimate (state mean) given current and past
observations is done considering all the hypothesis

x̂k|k = x̂k|k−1 +
mk∑

i=1

αi kKi kνi k (9)

This resembles the Kalman filter. In (9) x̂k|k is the estimate of the state vec-
tor, Ki k, νi k are the Kalman gain and the innovation respectively, and αi k ,
p(Hi k | Y k) is the a posteriori probability of the i-th hypothesis Hi k. The in-
terpretation of equation (9) suggests that we have a bank of Kalman filters each
one specialized to each ith data hypothesis.

A recursive equation can also be derived for the covariance matrix (see details
in [11])

6 Experimental Results
This section shows experimental results obtained with the proposed method. A
echocardiographic sequence of the left ventricle is used in this study. The length
of the sequence has 490 frames comprising 27 cardiac cycles and each image has
320× 240 pixels.

The experiments involve three main steps: i) the LV boundary is manually
defined by an expert (ground-truth) in several images; ii) the sequence is auto-
matically processed by the tracker; iii) metrics between automatic and manual
boundaries are computed for the sequence. The tests are performed under three
options: i) without, ii) median, iii) and Lyapounov pre-processing.

6.1 Ground Truth
To obtain the ground truth, an observer provides a hand-labeled contours for
the sequence. Four images in each cardiac cycle are selected for hand labeling:
two images in the systole phase and two images in the diastole phase. A total
number of 108 contours were manually generated (54 in each phase). The tracker-
generated boundaries are compared to the ground truth resulting in an error
measurement in each image.
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(a) (b) (c)

Fig. 2. Features (dots) detected in three situations: without pre-processing (a), median
filtering (b), proposed algorithm (c).

6.2 Error Metrics
Three error metrics are used to compare the tracker-generated boundaries against
the boundaries outlined by the observer.

The two curves are represented as sets of points X = {x1,x2, . . . ,xNx}, and
Y = {y1,y2, . . . ,yNy

}, where Ny > Nx. Each xi and yi is a pair of coordinates
of the point in the image plane.

The distance from a point xi to the curve Y is

d(xi,Y) = min
j
||yj − xi|| (10)

The average distance from the contour model X to the ground truth bound-
ary Y (ideal contour) is

dav =
1

Nx

Nx∑

i=1

d(xi,Y) (11)

The Hausdorff distance between the two curves is defined as the maximum
distance from a point to the other curve

dmax(X ,Y) = max
(
max

i
{d(xi,Y)}, max

j
{d(yj ,X )}

)
(12)

The third metric is the Hammoude [17] measure proposed in the context of
ultrasound images and given by

dH =
]
(
(X ∪ Y )− (X ∩ Y )

)

](X ∪ Y )
(13)

where X, Y are binary images such that all pixels inside the curves have label 1
and remaining pixels have label 0. This metric computes the normalized number
of pixels which receive different labels.

Fig. 3 shows the evolution of the metrics for the sequence. The first measure
(Fig. 3 (a)) belongs to the interval [0, 1], the remaining ones are expressed in
terms of pixels. The dashed line refers to the results obtained by using a median
filter in the pre-processing step. The solid line represents the values obtained
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by the proposed method, (we do not show the results obtained without pre-
processing since they are much worse). Fig. 3 shows the results at specific frames.
These frames correspond to the time instants when the cardiac phase switch from
systole to the diastole and vice-versa. This figure also shows the situation when
the tracker has difficulties to represent the apex of the ventricle.

Fig. 3 shows that the denoising technique proposed herein has a much better
performance compared with the median filter (the solid line is under the dashed
line). The first and second order statistics of the contour metrics are shown in
Table 1. Here, it is shown the average computation time associated to the tracker
in seconds. We conclude that the proposed pre-processing method is twofold: i)
the mean and variance error of the shape estimates is smaller than in the other
cases; ii) it allows a faster tracking since less outlier features are detected in the
image. See Fig. 2 where it is clearly shown that the number of outliers decrease
from (a) (without pre-processing) through (c) (proposed algorithm), the latter
preserving the contour.
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Fig. 3. Metric statistics for the heart sequence, (a) dH , (b) dav, (c) dmax, (d) number
of outliers without pre-processing and with the proposed technique. Median filtering
(dashed line), proposed method (solid line).

Table 1. Mean and variance values for the metrics shown in the Fig. 3 and the com-
putation time (average per frame) for the three different cases.

Hammoude metric-dH Average Distance-dav Hausdorff Distance-dmax

without Median Denoising without Median Denoising without Median Denoising

E[.] 0.29 0.28 0.26 6.1 5.7 5.2 14.2 13.7 11.7

var[.] 0.01 0.01 0.008 5.5 4.6 4.0 38.0 26.5 22.9

without Median Denoising

Timeav 0.87 0.86 0.76

7 Conclusions
This paper proposes a system for tracking the left ventricle using two key opera-
tions. The first is a novel denoising algorithm based on the Lyapounov equation.
The second is a robust tracker used to estimate the evolution of the LV con-
tour. The robustness is achieved by using data-association within the detected
line-segments.
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It is concluded from the experimental results that the proposed algorithm
manages to accurately track the heart motion in images with a low contrast
between the heart cavity and the miocardium. It is also concluded that the
denoising algorithm plays an important role and significantly reduces the number
of outliers.
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