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Abstract: This paper addresses the problem of industrial chimney inspection using
autonomous helicopters. The importance of using these platforms is evidenced
by the maintenance cost and risk reduction stemming from the replacement of
the standard procedures and the improved detection of structural defects. The
approach presented relies on the definition of a trajectory-dependent error space to
express the dynamic model of the vehicle, and adopts a Linear Parameter Varying
(LPV) representation with piecewise affine dependence on the parameters to model
the error dynamics over a set of predefined operating regions. The synthesis
problem is stated as a continuous-time H2 control problem, solved using Linear
Matrix Inequalities (LMIs) and implemented within the scope of gain-scheduling
control theory. The effectiveness of the proposed controller is assessed in simulation
using the full nonlinear model of a small-scale helicopter.
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1. INTRODUCTION

In this paper the problem of critical infrastructure
inspection using autonomous helicopters is consid-
ered. Within the scope of Unmanned Aerial Vehi-
cles, autonomous helicopters have been steadily
growing a major topic of research. They have
the potential to perform high precision tasks in
challenging and uncertain operation scenarios as
new sensor technology and increasingly powerful
computational systems are available.
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a Ciência e a Tecnologia (ISR/IST pluriannual funding)
through the POS Conhecimento Program that includes
FEDER funds. The work of B. Guerreiro and D. An-
tunes was supported by PhD Student Grants from the
Portuguese FCT POCTI programme.

As discussed in (CICIND, 2006), industrial chim-
ney inspection can be of crucial importance to the
proper operation of power plants or other indus-
trial facilities. Industrial chimneys are subjected
to high temperatures, chemical attack as well as
the effects of weather exposure, that can lead
to severe structural deterioration. Hence, they
have to be submitted to regular inspection and
maintenance procedures (limited to the accessible
areas), in order to remain safe and fit for continued
service. Otherwise, the consequences widen up
from damage to surrounding buildings and loss
of production to injury or even loss of human life.
The idea of automatic structure inspection is rais-
ing the interest of the maintenance industry, and
autonomous helicopters arise as natural platforms
for this kind of missions, since they can carry mul-
tiple sensors, like multi-spectral camera, sonar,



radar, etc. In the present scenario, the helicopter
is expected to follow complex three-dimensional
trajectories, and if necessary hover at exact lo-
cations, to monitor particular characteristics and
assess maintenance or repair requirements. In this
context, the development of trajectory tracking
control systems constitutes both a challenge and
a fundamental requirement for accomplishing high
performance autonomous flight.

The presented solution relies on the definition of
a trajectory-dependent error space to express the
dynamic model of the vehicle. The error vector,
which the trajectory-tracking controller should
drive to zero, comprises linear and angular veloc-
ities, orientation, and position errors relatively to
the reference trajectory.

Linear Matrix Inequalities (LMIs) used together
with Linear Parameter Varying models (LPVs)
constitute a powerful tool for tackling difficult
nonlinear problems. Several examples in the lit-
erature attest for its level of success (see (Cunha
et al., 2006) and references therein). This pa-
per adopts an LPV representation with piece-
wise affine dependence on the parameters to ac-
curately model the error dynamics over a prede-
fined set of operating regions. By imposing an
affine parameter dependence, a continuous-time
H2 state feedback controller can be derived in
order to guarantee H2 performance over a convex
set of parameters using a finite number of LMIs.
Based on this result, a controller is synthesized
for each of the operating regions and the resulting
controller is implemented within the framework
of gain-scheduling control theory using the D-
methodology (Kaminer et al., 1995).

This paper is organized as follows: Section 2
presents a brief summary of the helicopter dy-
namic model; Section 3 introduces the trajectory-
dependent error space; Section 4 deals with the
control synthesis; implementation issues and the
simulation results are presented in Section 5 and
finally Section 6 summarizes the main ideas of this
paper and discusses directions for future work.

2. HELICOPTER DYNAMIC MODEL

This section summarizes the helicopter dynamic
model. A comprehensive coverage of helicopter
flight dynamics can be found in (Padfield, 1996)
and (Cunha, 2002; Cunha et al., 2005), where this
model is described in more detail.

Consider the helicopter modeled as a rigid body
driven by forces and moments applied to the he-
licopter’s center of mass that include the con-
tribution of the main rotor, tail rotor, fuselage,
horizontal tail plane, vertical tail fin, and gravity.
Define {I} as the inertial frame and {B} as the
Body-fixed frame, with origin at the center of

mass. Let (p,R) ∈ SE(3) , R
3 × SO(3) denote

the configuration of {B} relative to {I} where R
can be parameterized by the Z-Y-X Euler angles

λ =
[

φB θB ψB

]T
, θB ∈] − π

2 ,
π
2 [, φB , ψB ∈ R.

In addition, let the linear and angular velocities
be given by v and ω, respectively.

Hence, the helicopter state equations, combining
kinematics and dynamics, can be written as















v̇ = −ω × v +
1

m
[f (v,ω,u,vw) + fg (φ, θ)]

ω̇ = −I−1 (ω × I ω) + I−1 n (v,ω,u,vw)
ṗ = R (λ) v

λ̇ = Q (φ, θ) ω

, (1)

where m is the vehicle mass, I is the tensor of
inertia about the frame {B}, u is the input vec-
tor, vw is the wind velocity vector expressed in
{B}, fg represents the gravitational force vector
and f and n denote the remaining external forces
and moments applied to the vehicle. Matrix Q
relates the vehicle angular velocity with the time
derivative of the Euler angles. The input vector
u =

[

θc0
δc1c

δc1s
θc0t

]

comprises the main rotor
collective, longitudinal cyclic and lateral cyclic
blade pitch angle commands and the tail rotor col-
lective blade pitch angle command, respectively.
Note that depending on the complexity of model
considered for the blade flap and pitch motions,
additional state variables may be required.

The disturbance input vw can be modeled as a
random process with a predefined power spectral
density (PSD) such as the von Karman turbu-
lence model, or using the statistical discrete gust
approach (SDG), essentially employed to cater
for more structured disturbances. For in depth
coverage of this topic the reader is referred to
(Padfield, 1996), and references therein.

The force and moment vectors, f and n, can be
further decomposed as f = fmr + ftr + ffus + ftp +
ffn and n = nmr+ntr+nfus+ntp+nfn, where the
subscripts mr, tr, fus, tp and fn stand for main
rotor, tail rotor, fuselage, horizontal tail plane and
vertical tail fin, respectively.

3. GENERALIZED ERROR DYNAMICS

This section introduces the concepts of trimming
trajectories for the helicopter model, presents a
generalized error space to describe the helicopter’s
motion about trimming trajectories, and com-
putes explicitly the helicopter dynamics in the
new error space.

Consider the helicopter equations of motion pre-
sented in (1), and let vc, ωc, pc, λc, and uc denote
the trimming values of the state and input vectors.
At trimming, these vectors satisfy v̇c = 0, and
ω̇c = 0 implying that u̇c = 0, φ̇c = 0, and θ̇c = 0.



Given the dependence of the gravitational terms
on the roll and pitch angles, only the yaw angle
can change without violating the equilibrium con-
dition. However, ψc satisfies





0
0

ψ̇c



 = Q (λc)ωc, (2)

and thus the yaw rate, ψ̇c, is constant. As shown
in (Silvestre, 2000), trimming trajectories corre-
spond to helices that can be described by

λ̇c =





0
0

ψ̇c



, ṗc =





Vc cos(γc) cos(ψ̇ct+ ψ0)

Vc cos(γc) sin(ψ̇ct+ ψ0)
−Vc sin(γc)



,

(3)
where Vc = ‖vc‖ is the linear body speed, γc

the flight-path angle, and ψ0 the helix initial
condition. The helix can thus be described by the
following parametrization

ξ =
[

Vc γc ψ̇c ψ0

]T

. (4)

Therefore, ξ fully parameterizes the set achievable
helicopter trimming trajectories E which corre-
sponds to straight lines and z aligned helices de-
scribed by the vehicle with arbitrary linear speed
and yaw angle.

The generalized error vector defined between the
vehicle state and the commanded trajectory E(ξ)
can be defined using the nonlinear transformation

xe =









ve

ωe

pe

λe









=









v − vc

ω − ωc

R−1 (p − pc)
Q−1 (λ − λc)









. (5)

In addition, let ue = u − uc and vwe
= vw, and

assume that there is no disturbance at trimming,
i.e. vw = 0. It can be shown that in the new error
coordinate system the linearization of the rigid
body dynamics given by (1) along any arbitrary
trajectory in E is time invariant, see (Silvestre,
2000) for further details. The nonlinear error
dynamics can then be expressed as



















v̇e = v̇

ω̇e = ω̇

ṗe = v −R−1
e vc − S(ω)pe

λ̇e = ω −Q−1 Qc ωc −
d

dt
Q−1 Qλe,

(6)

since v̇c = 0 and ω̇c = 0 for any trimming
trajectory, and defining R−1

e = R−1 Rc, Qe =
Q (λe) and S(ω) as the skew symmetric matrix
given by S(ω) = [ω×].

The linearization of (6) about the zero, or equiva-
lently, the linearization of (1) about the trimming
trajectory Ec can be expressed in the generalized
error space as











δv̇e = Av
v δve +Aω

v δωe +Aλ
v δλe + Bv δue +Bwv δvw

δω̇e = Av
ω δve + Aω

ω δωe + Aλ
ω δλe +Bω δue + Bwω δvw

δṗe = δve − S(ωc) δpe − S(vc) δλe

δλ̇e = δωe − S(ωc) δλe

(7)

where Ay
x = ∂

∂y
fx(.)

∣

∣

∣

c
are constant matrices for

each trimming trajectory, and fx(.) represents
the functions v̇ = fv (v,ω,λ,u,vw) and ω̇ =
fω (v,ω,λ,u,vw). Rewriting (7) in a compact
form gives

{

δẋe = Ae(ξ) δxe +Bwe
(ξ) δvw + B(ξ) δue

ze = Ce(ξ) δxe +De(ξ) δvw + E(ξ) δue.

From this result it follows that there is a linear
time invariant plant (7), associated to each trim-
ming trajectory E(ξ), for which a linear controller
can be designed.

4. CONTROLLER SYNTHESIS

In this section an LMI approach is used to tackle
the continuous-time state feedback H2 synthesis
problem for polytopic LPV systems. Consider a
LPV system of the form

{

ẋ = A(ξ)x +Bw(ξ)w +B(ξ)u
z = C(ξ)x +D(ξ)w + E(ξ)u

(8)

where x is the state, u is the control input, z

denotes the error signal to be controlled, and
w denotes the exogenous input signal. The sys-
tem is parameterized by ξ, which is a possibly
time-varying parameter vector and belongs to the
convex set Ξ = co(Ξ0) where co(.) denotes the
convex hull, Ξ0 is the set of nv vertices defined
by Ξ0 = {ξ ∈ R

np |ξi ∈ {ξ
i
, ξi}, i = 1, . . . , np},

where ξ
i
≤ ξi, and the parameter set is defined

by Ξ = {ξ ∈ R
np |ξi ∈ [ξ

i
, ξi], i = 1, . . . , np} .

Since the synthesis problem involves testing an in-
finite number of LMI’s, several different structures
for the LPV system have been proposed which
reduce the problem to that of solving a finite
number of LMI’s. This paper adopts a polytopic
description, which can be used to model a wide
spectrum of systems and, as shown in the next
section, is an adequate choice for the system at
hand.

Definition 4.1. (Polytopic LPV system). The sys-
tem (8) is said to be a polytopic LPV sys-
tem if, for all ξ ∈ Ξ, the system matrix

S(ξ) =

[

A(ξ) Bw(ξ) B(ξ)
C(ξ) D(ξ) E(ξ)

]

verifies S(ξ) ∈

co (S1, . . . , Sr), where co(.) denotes the convex

hull operator and Si =

[

Ai Bwi
Bi

Ci Di Ei

]

, for all

i = {1, . . . , r}.

The objective is to find a solution to the continuous-
time state feedback H2 synthesis problem. Con-



sider the static state feedback law given by u =
Kx and let Tzw denote the closed loop operator
from w to z. Then, the H2 synthesis problem
can be described as that of finding a control
matrix K that stabilizes the closed-loop system
and minimizes the H2 norm ‖Tzw‖2 of Tzw. Note
that matrix D(ξ) = 0 in order to guarantee that
‖Tzw‖2 is finite for every internally stabilizing
and strictly proper controller. The technique used
for controller design relies on results available in
(Ghaoui and Niculescu, 1999) and (Scherer and
Weiland, 2000), after being rewritten for the case
of polytopic LPV systems. In the following, tr(L)
denote the trace of matrix L.

Result 4.1. A static state feedback controller guar-
antees the α upper-bound for the continuous-time
H2 norm of the closed loop operator Tzw(ξ) with
ξ ∈ Ξ, that is,

‖Tzw(ξ)‖2 < α, ∀ξ ∈ Ξ (9)

if there are real matrices X = XT ≻ 0, Y ≻ 0 and
W such that
[

A(ξ)X +X A(ξ)T +B(ξ)W +WT B(ξ)T Bw(ξ)

Bw(ξ)T
−I

]

≺ 0

[

Y C(ξ)X + E(ξ)W

X C(ξ)T +WT E(ξ)T X

]

≻ 0

tr (Y ) < α2 .

for all ξ ∈ Ξ0. The respective controller gain
matrix is given by K = W X−1.

The optimal solution for the continuous-time H2

control problem is approximated through the min-
imization of α subject to the LMIs presented Re-
sult 4.1.

5. IMPLEMENTATION AND RESULTS

To perform accurate structure inspection, an au-
tonomous helicopter is required to cover the se-
lected surfaces of the structure comprehensively in
order to detect cracks, corrosion, etc. Therefore,
in this kind of applications, the required flight
envelope is characterized by low speed, high yaw
maneuverability, good vertical flight capabilities,
and the possibility of describing helices around
the structure. Recalling that the parameter vector
is given by ξ =

[

Vc ψ̇c γc ψ0

]

, in the proposed
case study the error space is partitioned into 225
convex regions, with 24 = 16 vertices each. For
parameters Vc and ψ̇c only one interval is consid-
ered, while parameters γc and ψ0 are partitioned
into the 9 and 15 overlapping intervals presented
in Table 1.

The state space matrices of the continuous-time
systems (8) are approximated by affine functions
of ξ using Least Squares Fitting. To evaluate

Table 1. Operating regions intervals

Param. Intervals Unit

Vc [−3, 3 ] [m/s]

ψ̇c [−0.2, 0.2 ] [rad/s]

[−100,−85] , [−90,−60] ,
γc [−65,−35] , [−40,−10] , [−15, 15] , [deg]

[10, 40] , [35, 65] , [60, 90] , [85, 100]

[−190,−160] , [−165,−135] ,
[−140,−110] , [−115,−85] ,

ψ0 [−90,−60] , [−65,−35] , [deg]
[−40,−10] , [−15, 15] , [10, 40] ,

[35, 65] , [60, 90] , [85, 115] ,
[110, 140] [135, 165] , [160, 190]

ye

P

W4

W2

W3

W1s
I x i

vww

u

x

z

K

G

x i

xd e

x2

x4

xd e

Fig. 1. Synthesis model

the error introduced by this approximation, the
resulting systems were compared with the original
ones for each zone, and the average relative error
on the matrix entries was always less than 6.49%.

5.1 Synthesis Model and Control

The linear state feedback controllers were de-
rived to meet the following design specifications:
i) Achieve zero steady state error for the error
variable ye defined below and ii) Ensure that
the actuators are not driven beyond their natural
actuation bandwidth, that is 10 rad/s.

Consider the feedback system shown in Fig. 1,
where P is the continuous-time linear model of the
helicopter error dynamics, and K is a state feed-
back controller to be designed. The augmented
system G shown within the dashed line is the
synthesis model (that can serve as an interface
between the designer and the H2 controller syn-
thesis algorithm), which is derived from P by
appending the depicted weights, that serve as tun-
ing ’knobs’, used to meet the desired performance
specifications. The variable w denotes a vector of
gaussian white noise with zero mean and unitary
intensity and vw is the wind velocity disturbance.

The integral of ye =
[

pT
e ψe

]T
is included in the

design to guarantee that the closed loop system
has zero steady-state error in response to linear
position and yaw angle commands.

To meet the design requirements the weighting
function W1 is chosen asW1 = 0.1 I4, the dynamic



weight associated with the actuation vector u is
W2(s) = diag ([W2a(s) [1 1 1],W2b(s)]) where

W2a(s) =
13

10

s+ 10

s+ 13
and W2b(s) =

10

7

s+ 7

s+ 10
,

(10)
the state weight is given by W3 = 0.1 I12 and the
dynamic weight associated with the disturbance
generation process is

W4(s) =





W4u(s) 0 0
0 W4v(s) 0
0 0 W4w(s)



 (11)

whereW4(.)(s) represent Von Karman disturbance
model transfer functions (see (Padfield, 1996)
and references therein). In the present case these
transfer functions were set to

W4u(s) =
σu

√

2

π

Lu

V

(

1 + 0.25 Lu

V
s
)

1 + 1.357 Lu

V
s+ 0.199 (Lu

V
s)2

W4v(s) =
σv

√

1

π

Lv

V

(

1 + 2.748 Lv

V
s+ 0.34 (Lv

V
s)2

)

1 + 2.996 Lv

V
s+ 1.975 (Lv

V
s)2 + 0.154 (Lv

V
s)3

W4w(s) =
σw

√

1

π

Lw

V

(

1 + 2.748 Lw

V
s+ 0.34 (Lw

V
s)2

)

1 + 2.996 Lw

V
s+ 1.975 (Lw

V
s)2 + 0.154 (Lw

V
s)3

where σ(.) denote the turbulence intensity of each
component, L(.) are the turbulence scale lengths
and V is the aircraft speed norm.

To summarize, the synthesis model G can be
written as

{

ẋ = A(ξ)x +Bw(ξ)w +B(ξ)u
z = Cx +Dw + Eu

(12)

where x =
[

δxT
e xT

i xT
2 xT

4

]T
∈ R

12+4+4+8 is
the new state vector, w ∈ R

3 is the white noise
disturbance vector, u ∈ R

4 is the actuation vector
and the design matrices are given by

A(ξ) =









Ae(ξ) 0 0 Bwe
(ξ)Cw4

Ce 0 0 DeCw4

0 0 Aw2
0

0 0 0 Aw4









,

Bw(ξ) =









Bwe
(ξ)Dw4

De Dw4

0

Bw4









, B(ξ) =









Be(ξ)
Ee

Bw2

0









,

C =





0 W1 0 0

0 0 Cw2
0

W3 0 0 0



 , E =





0

Dw2

0



 ,

with D = 0 and [Awi
, Bwi

, Cwi
, Dwi

] resulting
from the state space representation of Wi(s).
Figure 2 depicts the controller implementation
scheme based on the D-methodology comprehen-
sively described in (Kaminer et al., 1995). This
methodology moves all integrators to the plant
input, and adds differentiators where they are
needed to preserve the transfer functions and the
stability characteristics of the closed loop system.
The D-methodology implementation has several

yes
I

vw

u

K

xB

xe

Plant

s Error
Space

D-implementation

i
Reference
Trajectory

(s)

Operating
Region

Fig. 2. Implementation setup

important features that are worthwhile emphasiz-
ing: i) auto-trimming property - the controller au-
tomatically generates adequate trimming values
for the actuation signals and for the state variables
that are not required to track reference inputs;
ii) the implementation of anti-windup schemes
is straightforward, due to the placement of the
integrators at the plant input.

5.2 Simulation Results

The simulation results herein presented were ob-
tained using the nonlinear dynamic model Sim-
ModHeli, parameterized for the Vario X-Treme
model-scale helicopter. The specific application
addressed in this paper (industrial chimney in-
spection) motivated the design of a simulation
setup that can effectively be used to evaluate the
performance of the overall closed loop system in
a real mission scenario. In the present case the
inspection of a power plant chimney is consid-
ered, see Figure 4. For that purpose the vehicle
is required to track the following trajectory: (i)
a straight line moving sideways (Vr = 2m/s,
ψc = π/2rad and ψ̇r = γr = 0); (ii) a helix
keeping the camera axis pointing in the direc-
tion of the surface under inspection (Vr = 2m/s,
ψc = π/2rad, ψ̇r = 0.24rad/s and γr = 0.34rad);
and (iii) finally a hover at a prespecified point.
In addition to the noise generated using the Von
Karman disturbance model a discrete wind gust
with amplitude 2.5m/s and rising time of 1s is
applied at time t = 20s.

The trajectory described by the helicopter and
corresponding actuation signals are represented in
Figures 3. As shown in the figure, the transitions
between the different stages of the trajectory dis-
play a smooth behavior. It can be also concluded
that the controller is able to reject the wind distur-
bance induced by the Von Karman model and the
overall vehicle trajectory only deviates from the
reference when discrete wind gusts are applied.

6. CONCLUSIONS

This paper presented the design and performance
evaluation of a 3-D trajectory tracking controller
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Fig. 3. 3-D trajectory following results
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for autonomous helicopters, motivated by the pos-
sible use of these vehicles in inspection of in-
dustrial infrastructures. Resorting to an H2 con-
troller design methodology for affine parameter-
dependent systems, the technique presented ex-

ploited an error vector that naturally describes
the particular dynamic characteristics of the heli-
copter for a suitable flight envelope. For a given
set of operating regions, a nonlinear controller was
synthesized and implemented under the scope of
gain-scheduling control theory, using a piecewise
affine parameter-dependent model representation.
The effectiveness of the proposed control laws was
assessed in the MATLAB/Simulink simulation en-
vironment with a nonlinear model of the heli-
copter in a realistic mission scenario. The quality
of the results obtained clearly indicate that the
methodology presented is well suited to be used
in the proposed application.
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