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Abstract— In this paper we discuss the use of vision for
underwater vehicles. The work described here has been devel-
oped in the context of the European Research Project NAR-
VAL - Navigation of Autonomous vehicles via Active Envi-
ronmental Perception (ESPRIT-LTR project 30185), aiming
at designing and implementing reliable navigation systems of
limited cost for mobile robots in unstructured environments,
without the use of global positioning methods. In this paper,
we will focus on two main applications of computer vision
in the context of underwater robotics: i) building and using
video mosaics of the sea bottom and ii) vision-based control
for station keeping and docking. We describe our approach
to these tasks and present results obtained during sea exper-
iments.

I. INTRODUCTION

The use of visual information for underwater vehi-
cles has attracted considerable attention in the past few
years. The reasons for this interest are multi-fold. On
one hand, vision is a high-resolution sensing modality
that provides information about the surrounding envi-
ronment at high bandwidth. On the other hand, the
understanding of the multi-view geometry, availability
of robust algorithms and the necessary computational
power have made a number of real-time applications pos-
sible.
Visual control loops and representations can be intro-

duced in order to increase the flexibility and the accu-
racy of underwater vehicles. In this paper, we described
two applications of vision in the context of underwa-
ter vehicles, illustrating both visual representations and
vision-based control approaches. The experiments were
obtained with a Phantom ROV, with an on-board pan-
tilt camera and an off-board personal computer where
all signal processing is done.
A first application consists in building high qual-

ity Video Mosaics of the sea bed from long image se-
quences, and estimating the camera trajectory. The
camera/vehicle motion can be very general, including
loop trajectories, or zig-zag scanning patterns. The
method comprises three major stages. Firstly, the im-
age motion is computed in a sequential manner, with
simple motion models, to create a set of consecutive
image transformations (usually called homographies),

which are cascaded in order to infer the approximate
topology of the camera movement. Secondly, a motion
refinement is performed, by iteratively executing the fol-
lowing two main steps. (1) Point correspondences are
established between non-adjacent pairs of images that
present enough overlap. This is a time consuming opera-
tion, alleviated by the use of prior information about the
location of the image correspondences, computed in the
first stage. (2) The topology is refined, by searching for
the set of homographies that minimizes the overall sum
of distances in the point matches. Finally, a global min-
imization is carried out, using the most general 6-degree
of freedom motion model and a cost function based on
the errors of the point matches between all the images.
The minimization process searches for the best set of
pose parameters (describing the 3D pose of the camera)
and for the best fitting description of the world plane
The second aspect described in the paper is that of au-

tomatic Vision-based Sstation Keeping, relative to some
visual landmark. The vision based station keeping task
is defined locally in the neighborhood of some visual
landmark and consists of stabilizing the vehicle relative
to this landmark, rejecting external disturbances. For
underwater robots, staying fixed at some given position
is not inherent since it is susceptible to significant drift.
Station keeping is therefore an important behavior for
tasks such as underwater inspection and manipulation.
A selected image region is used as a visual landmark,

whose temporal changes, induced by the vehicle’s mo-
tion, are tracked. Our tracking system is both fast and
accurate and thus adequate for real-time implementa-
tion. It determines camera motion from the registration
between the current live image and an initial reference
image. For a camera moving in 3D, the exact image mo-
tion model is a planar projective transformation, which
can be parameterized by 8 parameters and capture all
possible deformations in the image plane. We avoid an
exhaustive search on the parameter space by using a
set of motion models that sample the search space for
expected image deformations. To enhance robustness,
the history of past detected motions is iteratively sub-
stituted in the set of motion models, thus predicting fu-



ture deformations. This also provides a means to mon-
itor and identify the principal displacements of the un-
derwater robot moving in 3D space. In addition, we use
optic flow information to provide the tracker with an ini-
tial estimate of the current transformation parameters.
Finally, the problem of automatic landmark selection is
addressed.
The tracking information is then used to synthesize

the station keeping controller. The control objective is
to drive the ROV back to the desired view under exter-
nal disturbances. The main difficulties are related to the
vehicle’s motion constraints, having a limited number
of controllable degrees of freedom. To add robustness,
an image stabilization technique is applied that auto-
matically controls the camera’s pan and tilt degrees of
freedom so as to keep the visual landmark constantly in
view during maneuvers.

II. BACKGROUND

For both the video mosaicking application and the
visual station keeping task, we assume that the sea bot-
tom can be locally approximated by a planar surface.
With such an approximation we can parameterize the
image motion and design robust estimation methods
that would otherwise be unfeasible. In this section we
will assume the reader to be familiar with the basic con-
cepts and properties of projective geometry [17].

A. Camera model

The camera model used in this paper is the standard
pin-hole model, which performs a linear projective map-
ping of the 3D world into the image frame. We also
assume that the camera calibration has been performed
beforehand, and that the 3× 3 matrix K containing the
intrinsic parameters has been estimated [32], [25]. With
the pin-hole model, planar image motions cannot be ad-
equately modeled by simple transformations, like affine
or translational. A projective planar transformation is
the exact motion model when a camera rotates about
its eyepoint or if the imaged surface is planar.

B. Planar projective transformations

The 2D projective transformation is represented by a
3× 3 homography, H. This transformation maps image
points, such that x′ = Hx, where x′ and x are the ho-
mogeneous coordinates of the image points (x′, y′) and
(x, y), respectively. This transformation is defined up
to a scale factor and therefore has eight degrees of free-
dom, given by the entries of H. Usually, these transfor-
mations, are parameterized as a function of a vector q.
It follows [14] that this homography can be decomposed
into a hierarchical chain of transformations in the image

plane:

H = HsHaHp =
[
sR t
0T 1

] [
K 0
0T 1

] [
I 0
vT λ

]
(1)

where Hs is a scaled Euclidean transformation, having 4
d.o.f that account for translation, rotation and scaling in
the image plane, Ha affects affine properties with K as
a 2 d.o.f. upper-triangular matrix normalized as detK =
1, containing the shear and aspect ratio parameters, Hp

is a 2 d.o.f. transformation that accounts for projective
distortion, as specified in the parameter vector vT and
λ is a positive scale factor . These degrees of freedom
are illustrated in Fig. 1 and define a more intuitive
parameterization for the transformation rather then the
entries of H. This parameterization is such that a zero
valued parameter vector specifies the identity transform.
The computation of a planar transformation requires at
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Fig. 1. Degrees of freedom of the planar projective transformation

on images: (a) translation along the horizontal image axis,
(b) translation along the vertical image axis, (c) rotation, (d)
scaling, (e) shear, (f) aspect ratio, (g) projective distortion
along the horizontal image axis, (h) projective distortion along
the vertical image axis

least four pairs of corresponding points. In the case
of more than four correspondences, a straight-forward
least-squares linear estimation can be accomplished[21].

C. Image registration

Given a reference image or template T and a target
image I, the image registration problem is defined as
computing a transformation that relates points (x′, y′)
in the template image to points (x, y) in the current
target image. Usually, these transformations, are pa-
rameterized as a function of a vector q, such that
(x′, y′) = Hq (x, y). This transformation is on image co-
ordinates and therefore defines an image warping that
maps pixel intensity values from the template image T
to the current target image I:

W(q, T ) �→ I

Here, W(q, T ) specifies the image warping according to
the transformation parameters q.
To register the current image with the template, the

best possible match can be obtained through the min-
imization of an error function, using an appropriate



norm, such as the sum-of-squared-differences (L2-error
criterion). Writing images as column vectors, the esti-
mate of the current transformation parameters at each
time step is then found as:

q̂ = argmin
q

(1
2
‖ I −W(q, T ) ‖2

)
(2)

When iteratively tracking an image region through a
video sequence, at each time instant, an initial guess of
the current transformation parameters is given by the
parameters of the previous step. This provides a first
step towards the solution so that only small adjustments
remain to be made. In such a scheme, an approximate
error criterion is given by:

∆q̂ = argmin
∆q

(1
2
‖ W−1(q0, I)−W(∆q, T ) ‖2

)
(3)

whereW−1(q0, I) is the image obtained from the inverse
warp that maps the current image I approximately onto
the template T , according to the initial guess q0. Upon
minimizing this criterion, we look for the best residual
warp, W(∆q, T ) that accounts for the observed differ-
ence between the image W−1(q0, I) and the template
T . The current transformation parameters are then up-
dated according to:

q̂ = ∆q̂ ⊗ q0 (4)

where ⊗ stands for the update operator, which in the
case of planar projective transformations corresponds
to matrix multiplications of the corresponding homo-
graphies.

D. Scaled Euclidean reconstruction

Given an inter-image homography, it is possible to
reconstruct the relative displacement of the camera in
3D space, up to a scale factor. This is also known
as scaled Euclidean reconstruction and allows to recon-
struct the relative camera trajectory from image regis-
tering through a monocular video sequence. This de-
composition is described in [18], relating the homogra-
phy matrix H with the camera rotation, translation and
the world plane which induces the homography. The de-
composition is the following

H21 = K

(
R21 + n1

tT

d1

)
K−1 (5)

where R21 and t are, respectively, the 3 × 3 rotation
matrix and the 3× 1 translation vector relating the two
3-D camera frames. The world plane is accounted for
through the unitary vector n1, containing the outward
plane normal expressed in the camera 1 coordinates, and
the distance d1 of the plane to the first camera center,
measured along the optical axis.

Fig. 2. Two sequential frames, illustrating the difficulty of the
matching process for images of very shallow waters, where the
lighting conditions change rapidly.

The problem of recovering the motion parameters
from an homography for an intrinsically calibrated cam-
era is discussed in-depth by Faugeras[18]. In the most
general case there are eight different sets of solutions.
However, only two are feasible if one considers the world
plane to be non-transparent. These two solutions can
conveniently found by means of the SVD decomposition
of M21 = K−1H21K, as presented by Triggs[31].

III. VIDEO MOSAICS OF THE SEA FLOOR

The basic assumptions for mosaic creation are that
the sea bottom is essentially flat, static and without
strong illumination changes. This is seldom the case
in underwater mapping applications, especially in shal-
low waters. However, the use of robust estimation over
point feature matching greatly alleviates these assump-
tions and allows for the correct recovery of image mo-
tion. As an illustrative example, Figure 2 contains two
consecutive frames of an image sequence used in this
work which were successfully matched.
Our method comprises three major stages. Firstly,

the image motion is computed in a sequential manner,
using a simple image motion model, in order to create
a set of consecutive homographies. Secondly, a motion
refinement is performed. Finally, a global minimization
is carried out, using the most general 6-degree of freedom
motion model and a cost function based on the errors of
the point matches between all the images.

A. Initial Motion Estimation

The first part of the algorithm consists on the sequen-
tial estimation of inter-frame homographies.
For each image Ik, a set of point features, correspond-

ing to textured areas, is extracted using the Harris cor-



ner detector[24]. The features are then matched directly
on the following image Ik+1, using correlation-based pro-
cedure, from which two lists of corresponding points are
obtained.
Due to the error prone nature of the matching process,

it is likely that a number of points will be mismatched.
Therefore, a robust estimation technique is required to
filter out matching outliers, and estimate the homogra-
phy Hk,k+1 that relates the coordinate frames of Ik and
Ik+1. In this paper, a variant of LMedS with random
sampling[21] was used for minimizing the median of sum
of the square distances,

argmini

(
med

{
d2((k)xi, Tk,k+1 ·(k+1) xi)

+ d2((k+1)xi, T
−1
k,k+1 · (k)xi)

} ) (6)

where d (·, ·) stands for the point-to-point Euclidean dis-
tance, and (k)xi is the location of the ith feature ex-
tracted from image Ik and matched with (k+1)xi on Ik+1.
The minimizing algorithm works by randomly sampling
sets of points with the minimum number of matches re-
quired for the linear computation of H. The set that
minimizes the cost function is selected and the homog-
raphy is re-estimated using simple least-squares with all
matches whose distance are below a specified error limit.
The image matching is considered successful if the num-
ber of matches used in the final least-squares estimation
is sufficiently high.
In order to speed up the initial matching process, the

computed homography for the current pair of images
is used to restrict the correlation search over the next
pair. If, after the random sampling LMedS, the image
matching is not successful then the process is repeated
with larger correlation areas.
In underwater vision applications it is very common

for the image acquisition rate to be high when compared
to the camera motion. This results in very high overlap-
ping between consecutive frames that convey redundant
information. In the work presented, a selection criteria
was used to selected a subset of frames, thus reducing
the memory and processing requirements for the next
stages. The frames are selected such that their superpo-
sition is the smallest above a given minimum acceptable
overlap percentage. This threshold insures the ability of
the selected images to be correctly matched, and is cho-
sen based on the results of preliminary matching trials.

B. Iterative Motion Refinement

After the initial motion estimation step, every image
in the reduced sequence can be spatially related with
any other image, by appropriately cascading the homo-
graphies. Possible overlap between non-consecutive im-
ages can be predicted, and used for searching new image
matches.

In this stage, the topology is refined by performing
iterative steps of image matching and global optimiza-
tion. The image matching part is conducted over over-
lapping frames, and is similar to what was described
above. If new matches are found, then the topology is
re-estimated by means of a global optimization proce-
dure. This procedure uses a reduced representation for
the camera motion, based on 3 parameters per image
(2D translation and rotation), that implicitly assumes
the camera is facing the ground and keeps a constant dis-
tance. The reason behind the choice of a simpler motion
model for the first two stages of the algorithm, has to do
with the effectiveness of the topology inference. Alter-
natively, one could have resorted to the use of the most
general 8-parameter homographies, as this is the only
model that can cope with general perspective distortion
and allow for fast linear estimation. However, it has
more degrees of freedom than required. Consequently,
small errors in the initial inter-frame motion estimation
tend to quickly accumulate, and make it impossible to
infer the neighboring relations among non-consecutive
frames.
The cost function to be minimized is the sum of dis-

tances between each correctly matched point and its cor-
responding point after being projected onto the same
image frame, i.e.,

F (X,Θ) =
∑
i,j

Ni,j∑
n=1

[d2
(
xi

n,H(Θi,Θj) · xj
n

)

+ d2
(
xj

n,H
−1(Θi,Θj) · xi

n

)
]

where Ni,j is the number of correct matches between
frame i and j, and H(Θi,Θj) is the homography con-
structed using the motion parameter vectors Θi and Θj .
The minimization is carried out using a non-linear least
squares algorithm[29]. The cycle of matching and topol-
ogy refinement is executed until no new image pairs can
be matched.
In order to speed-up the optimization procedure (and,

thus, the motion refinement cycle time), a sub-mosaic
aggregation scheme was implemented and tested. Un-
der this scheme the complete sequence is initially di-
vided into sets of consecutive images to form small rigid
sub-mosaics. Inside each sub-mosaic the homographies
are considered static and only the inter-mosaic homo-
graphies are taken into account in the optimization al-
gorithm. This reduced parameter scheme significantly
improves the speed of evaluating the cost function and
does not affect the capability of inferring the appropriate
trajectory topology.

C. Trajectory Estimation

The main objective of the final stage of the algorithm
is attaining a highly accurate registration. A more gen-
eral parameterization for the homographies is therefore



required, capable of modelling the warping effects caused
by wave-induced general camera rotation and changes on
the distances to the sea floor. Bearing this in mind, a pa-
rameterization was chosen in which all the camera pose
6 degrees of freedom are explicitly taken into account.
This has also the additional advantage of allowing the
camera path to be recovered during the process.
Furthermore, the estimation of the homographies for

this model does not impose, per se, the condition of a
single world plane from which the homographies are in-
duced. This condition can be imposed by augmenting
the overall estimation problem with additional param-
eters that describe the position and orientation of the
world plane. The world plane description must then be
included on the parameterization of the homographies.
The adopted parameter scheme is the following. One

of the camera frames is chosen (usually the first) as the
origin for the 3-D referential, where the optical axis is
coincident with the referential Z-axis. The world plane
is parameterized with respect to this frame by 2 angu-
lar values that define its normal. As the trajectory and
plane reconstruction can only be attained up to an over-
all scale factor, this ambiguity is removed by setting the
plane distance to 1 metric unit1, measured along the
Z-axis. The homography relating frames i and j is

H(Θp,Θi,Θj) = K · (R (Θi) + n (Θp) · tT (Θi)
) ·

· (R (Θj) + n (Θp) · tT (Θj)
)−1 ·K−1

where Θi and Θj are pose vectors containing 3 rotation
angles and 3 translation values with respect to the ref-
erence frame, R (Θi) and R (Θj) are rotation matrices,
tT (Θi) and tT (Θj) are the translation components, and
n (Θp) is the 3-vector with the outward plane normal.
The pose vector for the reference camera is the null 6-
vector.
The cost function is similar to the one previously used

in the iterative motion refinement, where the distances
between matched points are measure in their respective
image frames, and summed over all pair of correctly
matched images, i.e.,

F (X,Θ) =
∑
i,j

Ni,j∑
n=1

[d2
(
xi

n,H(Θp,Θi,Θj) · xj
n

)

+d2
(
xj

n,H
−1(Θp,Θi,Θj) · xi

n

)
]

For a set of M images, the total number of parameters
to be estimated is (M − 1)× 6 + 2.
The initialization values for the complete parameter

set are computed using Equation (5). As there are two

1If additional information is available on the real distance to
the sea floor (for example, from an altimeter), then it can be
straightforwardly used here.

valid solutions for the decomposition of the homogra-
phies relating each frame with the reference frame, the
solutions are chosen such that the variance of the world
plane normals is minimized. The considered world plane
normal is the average of the selected set.
As before, the cost function is minimized using non-

linear least squares.

D. Mosaic results

Extensive testing was conducted in order to evaluate
the performance of the algorithms. The image sequences
for the results shown in this paper were acquired by a
Phantom ROV during a NARVAL Project sea trial, in
Villefranche-sur-mer in France. The ROV is equipped
with a Sony pan-and-tilt camera, facing the sea floor.
It is mounted in the center of a spherical glass housing
which induces very little image distortion.
The camera calibration was performed under water

using a standard calibration grid and the method de-
scribed by Heikkilä in [25].
The first sequence refers to a flat sandy area, fully

surrounded by algae. During the acquisition, the vehi-
cle was manually driven to follow a zig-zag trajectory
that covered most of the area. The sequence comprises
1000 images, corresponding to 400 seconds of video. Af-
ter the initial matching, a set of 129 images was selected
using the criterion of minimal overlap above 50%, which
resulted in an average overlap of 54.4%. The mosaic
obtained from the last stage of the algorithm, in shown
in Figure 3. It was created by choosing the contribut-

Fig. 3. Final mosaic for the first image sequence. It was created
using 129 images selected from the original set of 1000 and
rendered with the closest operator. The seafloor area covered
is approximately 42 m2.

ing points which were located the closest to the center
of their frames. This rendering method is useful when



Fig. 4. Area detail of the mosaic for the first sequence (left), and one of the original images (right).

Fig. 5. VRML rendition of the camera path and mosaic for the first image sequence. The world referential is illustrated by the system
of axis, which is coincident with the first camera frame. The two views are arranged for crossed eye fusion.

creating the mosaics for navigation and mosaic-based lo-
calization. For the cases where the illumination changes
are not strong, it compares favorably with other com-
monly used rendering methods, such as the average or
the median. This is due to the fact that it better pre-
serves the textures and minimizes the effects of barrel
distortion, which tends to be larger near the image bor-
ders. A small section of the rendered mosaic is displayed
in Figure 4 along with one of the original frames for the
same area. The quality of the registration can be as-
sessed from the fact that the visual features (such as
small algae leaves) are not disrupted along the visible
boundaries of the contributing images. [hbtp]

The second sequence was acquired in very shallow wa-
ters, of less than 2 meters in depth, where the effect of
sunshine refracted from the surface is clearly noticeable.
The vehicle followed a circular trajectory of several turns
around a square shaped rock. The original sequence
contains 895 images from which 85 where selected us-

ing a 60% minimum overlap. The resulting mosaic is
presented in Figure 7.

IV. VISION BASED STATION KEEPING

For vision based station keeping, we start by address-
ing the tracking problem before discussing the use of this
information for visual control purposes.

A. Tracking of image regions

The tracking system for the station keeping controller
aims at tracking a naturally textured landmark in the
image plane, whose positional information is then used
to tune the station keeping controller.
For tracking, we include optic flow information in a

prediction phase by adjusting an affine model to the
observed image motion. The affine motion estimate is
computed from the temporal and spatial derivatives in
the current and previous live images [11], [12]. The ad-
vantages are two-fold: (i) by adding information to the



Fig. 6. VRML rendition of the camera path and mosaic. The world referential is illustrated by the system of axis, which is coincident
with the first camera frame.

Fig. 7. Final mosaic for the second sequence.

initial guess, the residual transformation parameters are
kept small (ii) optic flow provides a means to keep track
of the transformation parameters when the visual land-
mark gets out of the image. Furthermore, it provides
a way of monitoring the residual matching procedure,
since this solution should be in the small neighborhood
of the affine flow prediction.
To find the best residual warp at each time step, we

minimize the error function in (3), using a set of m mo-
tion vectors {∆qi : i ∈ (1 . . .m)} that sample the pa-
rameter space for expected image deformations. Each
motion model, ∆qi, transforms the template image T
into an image W(∆qi, T ) that contains image deforma-
tions expected to be observed over time. In our imple-
mentation, the algorithm samples into the directions of

the individual parameters of the transform parameteri-
zation, over varying ranges.
The residual transformation parameters that are

looked for, ∆q, can be expressed as a linear combination
of the various motion models, ∆qi:

∆q =
m∑

i=1

ki∆qi (7)

The image warping operator can now be considered
to be specified by the parameter vector k = [k1 . . . km]

T .
The new parameterization is given by:

W(k, T ) =W(
m∑

i=1

ki∆qi, T ) (8)

where W(k, T ) is the image obtained from warping the
template T according to the linear combination of mo-
tion vectors ∆qi. Substituting (8) into the error func-
tion (3), the matching problem can be formulated as
finding the linear combination of motion vectors that
best accounts for the observed difference between the ap-
proximately registered current image and the template:

k = argmin
k

(1
2
‖ W−1(q0, I)−W(k, T ) ‖2

)
(9)

The imageW(k, T ) is in general a complex and highly
non-linear function of the transformation parameters
and the texture map defined in the template image. For
small deviation around k = 0, it and can be approxi-
mated by:

W(k, T )
∣∣∣
k=0

≈ T +Bk

Substituting this approximation into the error function
in (9), a least square solution can be computed for k:

kLS = (BTB)−1BTD (10)



where we have introduced D =
(W−1(q0, I) − T

)
as

the observed difference between the approximately reg-
istered current image and the template image. After
determining k, the solution for ∆q can be calculated
from equation (7).
Most computational requirements go out with the

computation of the pseudo-inverse, (BTB)−1BT , which
can be calculated off-line since it is constructed from the
set of motion models and the template image. The only
on-line computation is the calculation of the difference
image, D, implying an image warp W−1(q0, I). This
makes the method very well-suited for real time track-
ing applications.
With this algorithm, we were able to successfully track

a visual landmark undergoing planar projective trans-
formations. A 15 Hz tracking frequency is reached for
images with a 128× 192 pixel size, using an off-the-shelf
450Mhz processor. Fig. (8) shows results of tracking an
image region in submarine images. The initially selected
image region is used as a template, whose temporal de-
formations are tracked over time.

Fig. 8. Tracking an image region in a submarine video sequence.

Another advantage of the difference template method
is the ability to customize the set of motion models ac-
cording to the kind and range of expected image de-
formations. The choice of the motion models greatly
determines the performance of the algorithm. Ideally,
this choice should be adapted to the camera motion.
This idea has been explored in our implementation of
the tracker system, where we include new motion mod-
els according to the history of past detected, incremen-
tal updates of the transform parameters. In the image
plane, these updates point out into the direction and
range of expected incremental deformations in near fu-
ture. An additional small subset is added to the already
existing set of motion models and is iteratively adapted
to the camera motion. Maintaining the original set in-
tact prevents the algorithm from loosing its ability to
sample for deformations in all directions.
When iteratively substituting motion models, new dif-

ference templates need to be included into the partial
derivatives matrix, B, implying on-line calculation of
its pseudo-inverse (BTB)−1BT . To avoid this, we take
advantage of the information already stored in the pre-
calculated pseudo-inverse and update it according to the
substituted difference image.

In order to characterize the maximum range over
which the algorithm is able to accurately estimate inter-
image transformations, image motion is simulated from
warping an image according to a pre-defined trajectory
of the transformation parameters, so that ground-truth
information is available. The plot in Fig. (9) shows the
results of tracking a reference point on the landmark,
in the presence of increasing incremental motion in the
image plane, according to a smooth trajectory. It fol-
lows that upon iteratively substituting motion models,
the algorithm is able to track over a much wider range.
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Fig. 9. Tracking the position of a corner coordinate of a selected
image patch, in the presence of increasing inter-image motion.

B. Optimal landmark selection

When selecting an image region as a template for
tracking, its texture map should contain sufficient infor-
mation so that expected image deformations over time
can be observed from it. To automatically select a tem-
plate from an image, some optimality criterion needs to
be evaluated, that takes the observability with respect
to the motion models into account.
To do so, we follow the approach in [2], and model

the observed difference, D =W−1(q0, I)−T , as a linear
combination of the pre-calculated difference images, in
the presence of additive noise:

D = Bk+ u (11)

where u is additive noise, k represents the real transfor-
mation parameters that is looked for and B is the partial
derivatives matrix containing all difference images. The
least-square estimate for k is given in (10) and can be
rewritten using (11) as:

kLS = k+
(
(BTB)−1BT

)
u (12)

In order to have kLS as a reliable estimate of k, we would
like to choose a B, such that the uncertainty introduced
by

(
(BTB)−1BT

)
u is minimized. The partial derivative

matrix B is a function of the selected template texture
and the set of motion models. For the same set of motion



models, different templates result in different values of
uncertainty.
To measure this uncertainty, we take the L2-norm on

the error in the reconstructed signal:

‖k − kLS‖2 = ‖((BTB)−1BT
)
u‖2 (13)

Assuming zero-mean, unit variance white noise for u,
we can take the expected value of (13), which can be
computed as:

E
{‖((BTB)−1BT

)
u‖2

}
= trace

(
(BTB)−1BT

)
(14)

The optimal template is then found by minimizing the
expected value of (14), given the set of motion models.
Fig. (10) shows the most and less informative tem-

plate in an underwater image, for a fixed size landmark.
These were found by performing an exhaustive search
over the image space.

(a) (b)

Fig. 10. Automatic landmark selection: (a) most informative
image region , (b) less informative image region.

Apart from selecting the most informative window in
an underwater image, the minimum value of the ex-
pected uncertainty can also be used to set an absolute
threshold on images, which can be evaluated to verify
whether or not the image contains sufficient information
for tracking.
The selection of informative landmarks has a notice-

able impact on the tracking accuracy. Some test were
performed that evaluated the tracking error on images
that contain randomly applied deformations with super-
imposed image noise. The error is defined as the differ-
ence between the real and estimated position of image
points and is evaluated for a 1000 trials for both the most
informative and the less informative template, as given
in Fig. (10). The results are plotted in Fig. (11) and
show that sub-pixel accuracy is obtained when tracking
informative image regions.

C. Visual station keeping controller

For station keeping, we assume that the ROV is hover-
ing parallel to the ocean floor, having the camera looking
approximately perpendicular to a planar region. A de-
coupled control design is adopted, which station keeps
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Fig. 11. Tracking error for the x-coordinates of the upper-left

landmark corner under randomly generated image deforma-
tions. Maximum inter-image deformations are in the range of
5 pixels and images where corrupted with zero mean Gaussian
noise with 10% standard deviation. The error is evaluated
over a 1000 trials for both the most informative template (a)
and the less informative template (b).

the ROV in the horizontal plane w.r.t the landmark,
while maintained at a fixed depth in the vertical plane.
Both controllers are formulated in an image based visual
servoing framework [10], [9], so that error signals are
defined directly in terms of image features. Although
defined in the image plane, the task is represented by
a particular alignment in 3D-space between the cam-
era/vehicle and the planar landmark.
The image based station keeping task is defined as

the regulation to zero of an image error function e(s) =
s − sd, where s is the image feature parameter vector
and sd the desired value. The centroid of a tracked
image region is used as a feature, whose desired position
is at the image center. The image error function is then
given by e = [xc, yc]T − [xd, yd]T and the controller aims
at driving the centroid towards the image center under
external disturbances like currents.
Changes in the image features can be related to

changes in the relative camera pose. This kinematic
relationship is often referred to as the image Jacobian
or the interaction matrix [10], [9]:

ṡ = Lvcam (15)

Where L is the image Jacobian and vcam is the 6 ×
1 camera velocity screw. The image Jacobian for the
centroid is given by the motion field:

[
ẋc

ẏc

]
= Lvcam, (16)

where

L =
[− 1

Z 0 xc

Z xcyc −(1 + x2
c) yc

0 − 1
Z

yc

Z (1 + y2
c ) −xcyc −xc

]

(17)

This jacobian depends both on the image point co-
ordinates and their depth, Z. An exponential decrease



of the error function is obtained by imposing ė = −λe,
with λ some positive constant. Using (16), we can then
solve for the camera motion that guarantees this con-
vergence:

v∗
cam = −λL(s, Z)+(s− sd) (18)

Where v∗
cam is the resolved camera velocity that drives

the centroid to the image center and L+ is the pseudo-
inverse of the image Jacobian.
The ROV control inputs are in general defined in the

vehicle reference frame, commanding components of the
vehicle velocity vector. It is therefore useful to relate the
controllable components of the vehicle velocities to cam-
era velocities. This relationship is given by the control
input Jacobian:

vcam = Jrovv̄rov (19)

Where v̄rov contains the controllable velocity compo-
nents of the vehicle velocity screw and Jrov is the control
input jacobian. This jacobian is a function of the camera
position and orientation in the vehicle reference frame,
Jrov = f

(
rovRcam, Pcam

)
and can be easily computed

from transforming linear and angular velocity compo-
nents between the frames. For station keeping, we con-
sider the linear and angular velocity of the vehicle in the
horizontal plane, v̄rov = [v, ω]T , which are both control-
lable from the two back thrusters. Substituting (19) into
(15), an expression is obtained that relates image point
velocities to the vehicle velocity:

ṡ = LJrovv̄rov (20)

With this expression, we can solve for the ROV veloc-
ity in the horizontal plane, necessary to guarantee the
convergence of the image error function:

v̄∗
rov = −λ(L(s, Z)Jrov

)+(Kpe+Kdė+Ki

∫
edt)

(21)

Here we have included a PID control action on the image
error for dynamic compensation. This expression takes
the vehicle motion constraints into account, resulting
into trajectories that are physically executable.

D. Visual auto-depth controller

The controller for the vertical plane aims at maintain-
ing the ROV at a fixed depth during station keeping ma-
neuvers. The controller design is such that it maintains
the appearance of the landmark in the image plane at
the same scale. Having the ROV hovering parallel to a
planar region, the scale in the image plane of some se-
lected landmark has a direct physical interpretation in
terms of relative depth.

To recover the scale in the image plane, we turn to
(1) and rewrite it as:

H =
[
A t
vT λ

]
(22)

Where A is a non-singular matrix given by A = sRK +
tvT . The scale factor can be recovered from A by taking
its determinant:

s =
√
detA (23)

Taking this scale as the control error function, e = s =√
detA, the desired control for the ROV vertical pro-

peller is given by:

v̄∗
rov = Kpe+Kdė+Ki

∫
edt (24)

Where v̄rov in this case is the resolved ROV vertical
speed and a PID design was adopted for dynamic com-
pensation.

E. Image stabilization with a pan- and tilt camera

The use of kinematic models for visual servoing is not
always realistic for floating vehicles with relative slow
dynamics. Therefore it is likely that during station keep-
ing maneuvers, the target gets out of view due to limited
bandwidth in acceleration. In an attempt to avoid these
situations, an image stabilization technique is used, aim-
ing at centering the target in the image by controlling
the camera pan and tilt angles.
The pan and tilt unit, installed in the ROV, is mod-

eled by a jacobian, that relates the angular pan and tilt
velocities to the resulting camera velocity screw:

vcam = Jpan/tiltw (25)

Wherew = [ωpan, ωtilt]T contains the pan and tilt veloc-
ity components and Jpan/tilt is in general a function of
the current pan and tilt angles. For image stabilization,
an image based visual servoing strategy is adopted that
uses the same image error function as the station keep-
ing controller, thus regulating the landmark centroid to
the image center. Combining (25) and (15), the resolved
pan and tilt velocities that guarantee exponential con-
vergence of the image error function are given by:

w∗ = −λ(LJpan/tilt

)+(s− sd) (26)

Where L is the image jacobian, and s contains the cen-
troid coordinates.
Since both the station keeping and the image stabi-

lization controllers use the same error function, we need
to decouple these tasks when simultaneously executed.
This is done by transforming the station keeping error
according to an homography that maps the measured



image points back to a view which would have been ob-
tained if no pan and tilt increments were applied. It
follows that such a homography can be obtained from
the rigid camera rotation, according to:

Hpan/tilt = KR(θpan, θtilt)K−1 (27)

Where K contains the camera intrinsic parameters.
With the inverse of Hpan/tilt, it is possible to undo the
deformations in the image plane due to the camera pan
and tilt. To do so, a measure of the real pan and tilt
angle should be available.

F. Sea-trial results

Several successful station keeping trials were per-
formed with our ROV-system at open sea. The sys-
tem was tested under various environmental conditions
at different locations, namely in the North Sea near
Orkney, Scotland, as well as in the Mediterranean sea
in Villefranche, France. The results of a station keeping
test (without image stabilization) in the Mediterranean
sea are shown in Fig. (12). In a first stage, the vehicle
floats uncontrolled when a landmark is selected around
the image center and tracked in the presence of drift.
Note that even with poor texture, the tracker was able
to accurately track the selected image region. Then the
visual feedback loop is closed and the landmark is driven
back towards the image center, where it remains oscil-
lating around the desired position under external distur-
bances. The evolution of the error signals are shown in
Fig. (13) and show the convergence of the errors for the
station keeping controller and the auto-depth controller.

(a) (b)

Fig. 12. Station keeping experiment at the Mediterranean: (a)
tracking a selected image region in the presence of drift, with
the ROV uncontrolled; (b) Controlling the centroid back to
the image center by servoing the vehicle.

No efforts are made to control the landmarks orienta-
tion towards a desired value. The main difficulties arise
for lateral offsets of the centroid in the image plane. In
this case, since the vehicle has no lateral controllable
degrees of freedom, the only solution is to compensate
these errors by rotating the ROV, resulting into complex
curved trajectories of the centroid and the landmark cor-
ners in the image. Such trajectories might drive the
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Fig. 13. Evolution of the error signals: (a) x-coordinate of the
centroid, (b) y-coordinate of the centroid, (c) relative scale,
(d) centroid trajectory in the image plane.

tracked region partially out of view, especially when the
landmark was initially selected near to the image bor-
ders. With image stabilization, these situations can be
avoided, since both lateral and frontal offsets can now
be compensated by controlling the camera pan- and tilt
angles. This results into trajectories that drive the land-
mark corners directly to the image center.
In Fig. (14), the advantages of using image stabi-

lization are shown. Image point trajectories are such
that they drive the points directly in a straight line to
their desired positions. Also the amplitude of oscillating
around the desired position is kept smaller by compen-
sating with the pan and tilt degrees of freedom.
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Fig. 14. Trajectory of image points during station keeping at the
Mediterranean with image stabilization.

V. CONCLUSIONS

In this paper we have discussed two applications of
computer vision for underwater vehicles. The motiva-
tion for using vision in the underwater scenario is driven
by the high-resolution, high-bandwidth characteristics
of this sensing modality. The applications can be very



general and we have described here two examples: Video
Mosaicking and Station Keeping.
Video mosaics can extend the navigation autonomy

of camera-equipped underwater vehicles, in two main
aspects: (1) By making use of non-consecutive image
overlaps, it provides a precise position and motion es-
timation when compared with other common sensing
modalities such as sonar, compass and gyroscopes. (2)
It enables the creation of high accuracy mosaics that can
be used as maps for posterior localization and servoing.
Station Keeping can be accomplished by tracking fea-

tures in the image and by generating the appropriate
closed-loop controls to maintain the vehicle stationary
with respect to the sea bottom or some observed object.
We have presented results obtained during sea tests.
These two applications show that vision can not only

be useful to build alternative representations of the sea
bottom (which can be useful in itself for mapping or vi-
sualization) but it can also be used directly in closed
loop control. In the future we plan to combine these
two aspects of our work and design methodologies for
mosaic-based navigation, whereby a user could specify a
trajectory to follow directly over the mosaic and the ve-
hicle would later on track this trajectory in closed loop.
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