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Instituto de Sistemas e Robótica
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Abstract—In this paper we describe the design and implemen-
tation of a control system for automatic vision-based station
keeping with an underwater ROV, relative to some visual land-
mark. First, a region-based tracking system is described that
tracks naturally textured landmarks in the image plane, based
upon full planar-projective motion models. The implementation
of the algorithm is such that it allows most of the computation to
be done off-line, resulting in fast and accurate tracking at near
video rate. Robustness is added to the algorithm by integrating
optic flow information and by learning expected image motions.
Furthermore, the problem of automatically selecting promising
landmarks in underwater images is addressed, based upon the
information contained in the texture map. We then turn to the
vision-based control problem that uses the information provided
by the tracker, to station keep an underwater ROV. A decoupled
control design is presented for positioning the vehicle relative to
a visual landmark, while maintaining a fixed depth. Addition-
ally, an image stabilization technique is developed, which aims
to keep the landmark centered in the image plane during station
keeping maneuvers, by using a pan and tilt camera. The sys-
tem was tested under real conditions and results obtained from
station keeping tests at open sea are presented.

I. INTRODUCTION

Visual control loops have been introduced in order to
increase the flexibility and the accuracy of underwater ve-
hicles. In this paper, we use vision to extract information
about the position and orientation of an underwater ROV,
relative to some naturally textured, planar region. The
work presented is integrated in the NARVAL1 project, for
which one of the main goals is the design and implemen-
tation of reliable navigation systems for mobile robots in
unstructured environments. The problem addressed is that
of automatic station keeping based on visual input. The
station keeping task is defined locally in the neighborhood
of some visually observable landmark and consists in sta-
bilizing the vehicle relative to this landmark so as to reject
external disturbances. For underwater robots, staying fixed
at some given position is not inherent since it is susceptible
to significant drift. Station keeping is therefore an impor-
tant behavior for tasks such as underwater inspection and
manipulation.
Several references can be found on automatic station

keeping using vision [5], [7]. In most cases the emphasis
is on the controller design in a visual servoing framework,
assuming the tracking of features in the image plane to
be perfect [3], [4]. However, the performance of the sta-
tion keeping controller strongly depends on the quality of
tracking. Robust tracking of features in submarine images
is hard to accomplish since in general, the images contain

1ESPRIT-LTR Project 30185, NARVAL - Navigation of
Autonomous Robots via Active Environmental Perception,
http://gandalf.isr.ist.utl.pt/narval/index.htm

non-uniform lighting, low contrast, marine snow and lack
of necessary features. Previous approaches that focused on
accurate feature tracking in underwater sequences [6] de-
manded a high computational load, making the method
less suitable for real-time implementation using off-the-
shelf equipment.

In this paper, we describe both the tracking and the con-
trol aspects as part of a ROV-system that was successfully
tested under real conditions, at open sea. A commercially
available Phantom ROV is equipped with an on-board cam-
era and adapted for computer control. A selected image re-
gion is used as a visual landmark, whose temporal changes,
induced by the vehicle ’s motion, are tracked through the
video sequence and used for station keeping.

For tracking, we minimize the sum of squared differences
(SSD) between an image region in the current view and
the desired view, subject to a parameterized deformation
model. We assume that the scene can be locally approxi-
mated by planar regions so that inter-image deformations
are completely described by planar projective transforma-
tions. These are estimated using a set of motion models
that account for expected image deformations over time.
When applied to the reference image, most of the calcula-
tion can be done off-line, resulting in fast tracking, suitable
for real-time implementation. To enhance robustness, the
set of motion models is adapted according to the history
of vehicle/camera motion, thus predicting future deforma-
tions in the image plane. We also use optic flow information
to provide the tracker with an initial estimate of the current
transformation parameters. Furthermore, the problem of
automatic landmark selection is addressed.

The tracking information is then used to synthesize the
station keeping controller. The control objective is to drive
the ROV back to the desired view under external distur-
bances. The main difficulties are related to the vehicle’s
motion constraints, having a limited number of controllable
degrees of freedom. To add robustness, an image stabiliza-
tion technique is applied that automatically controls the
camera’s pan and tilt degrees of freedom so as to keep the
visual landmark constantly in view during maneuvers.

This paper is divided in two parts. We first describe
the tracking system, detailing all of the aforementioned
aspects and highlighting its performance. We then turn
to the control problem by describing the station keeping
controller and the image stabilization technique. Station
keeping results, obtained from experiments with the ROV-
system at open sea, are finally presented.
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II. TRACKING OF PLANAR IMAGE REGIONS

Given a reference image or template T and a target image
I, the tracking problem is defined as computing a transfor-
mation that relates points (x′, y′) in the template image
to points (x, y) in the current target image. Usually, these
transformations, are parameterized as a function of a vector
q, such that (x′, y′) = Hq (x, y). This transformation is in
image coordinates and therefore defines an image warping
that maps pixel intensity values from the template image
T to the current target image I:

W(q, T ) �→ I

Here, W(q, T ) is the image obtained from warping T ac-
cording to the transformation parameters q.
We assume that the target to track belongs to a planar

surface. For an underwater scenario, this is a reasonable
assumption, since the sea bottom often can be approxi-
mated locally as a planar surface. Planar motions cannot
be adequately modeled by simple image transforms, like
affine or translational. A projective planar transformation
is the exact motion model when a camera rotates about its
focal center or if the imaged surface is planar. The 2D pro-
jective transformation is given by the 3 × 3 homography,
H, such that x′ = Hx, where x′ and x are the homoge-
neous coordinates of (x′, y′) and (x, y), respectively. This
transformation is defined up to a scale factor and there-
fore has eight degrees of freedom, given by the entries of
H. Moreover, this homography can be decomposed into
a hierarchical chain of transformations in the image plane
[14]:

H = HsHaHp =
[
sR t
0T 1

] [
K 0
0T 1

] [
I 0
vT λ

]
(1)

where Hs is a scaled Euclidean transformation, having 4
d.o.f that account for translation, rotation and scaling in
the image plane, Ha affects affine properties with K as a
2 d.o.f. upper-triangular matrix normalized as |K| = 1,
containing the shear and aspect ratio parameters, Hp is a
2 d.o.f. transformation that accounts for projective distor-
tion, as specified in the parameter vector vT and λ is a
positive scale factor . These degrees of freedom are illus-
trated in Fig. 1 and are used for parameterization rather
then the entries of H. This parameterization is such that
a zero valued parameter vector specifies the identity trans-
form.
To register the current image with the template, the best

possible match can be obtained through the minimization
of an error function, using an appropriate norm, such as
the sum-of-squared-differences (L2-error criterion). Writ-
ing images as column vectors, the estimate of the current
transformation parameters at each time step is then found
as:

q̂ = argmin
q

(1
2
‖ I −W(q, T ) ‖2

)
(2)

When iteratively tracking an image region through a
video sequence, at each time instant, an initial guess of the
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Fig. 1. Degrees of freedom of the planar projective transformation

when applied to an image patch: (a) translation along the hori-
zontal image axis, (b) translation along the vertical image axis,
(c) rotation, (d) scaling, (e) shear, (f) aspect ratio, (g) projective
distortion along the horizontal image axis, (h) projective distor-
tion along the vertical image axis

current transformation parameters is given by the parame-
ters of the previous step. This provides a first step towards
the solution so that only small adjustments remain to be
made. In such a scheme, an approximate error criterion is
given by:

∆q̂ = argmin
∆q

(1
2
‖ W−1(q0, I)−W(∆q, T ) ‖2

)
(3)

where W−1(q0, I) is the image obtained from the inverse
warp that maps the current image I approximately onto
the template T , according to the initial guess q0. Upon
minimizing this criterion, we look for the best residual
warp, W(∆q, T ) that accounts for the observed difference
between the image W−1(q0, I) and the template T . The
current transformation parameters are then updated ac-
cording to:

q̂ = ∆q̂ ⊗ q0 (4)

where ⊗ stands for the update operator, which in the case
of planar projective transformations corresponds to matrix
multiplications of the corresponding homographies.

A. Optic Flow

In our system, we also include optic flow information in
the prediction phase by assuming that the camera observes
a plane and adjusting an affine model to the observed im-
age motion. The affine motion estimate is computed from
the temporal and spatial derivatives in the current and pre-
vious live images [11], [12]. The advantages are two-fold:
(i) by adding information to the initial guess, the residual
transformation parameters are kept small (ii) optic flow
provides a means to keep track of the transformation pa-
rameters when the visual landmark gets out of the image.
Furthermore, it provides a way of monitoring the residual
matching procedure, since this solution should be in the
small neighborhood of the affine flow prediction.

B. Difference Template Matching

To find the best residual warp at each time step, we min-
imize the error function in (3), using a set of m motion vec-
tors {∆qi : i ∈ (1 . . .m)} that sample the parameter space
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for expected image deformations. Each motion model, ∆qi,
transforms the template image T into an image W(∆qi, T )
that contains image deformations expected to be observed
over time. In our implementation, the set is constructed
from sampling into the directions of the individual trans-
form parameters, over varying ranges.
The residual transformation parameters that are looked

for, ∆q, can be expressed as a linear combination of the
various motion models, ∆qi:

∆q =
m∑

i=1

ki∆qi (5)

The image warping operator can now be considered to
be specified by the parameter vector k = [k1 . . . km]T . The
new parameterization is given by:

W(k, T ) = W(
m∑

i=1

ki∆qi, T ) (6)

where W(k, T ) is the image obtained from warping the
template T according to the linear combination of motion
vectors ∆qi. Substituting (6) into the error function (3),
the matching problem can be formulated as finding the lin-
ear combination of motion vectors that best accounts for
the observed difference between the approximately regis-
tered current image and the template:

k = argmin
k

(1
2
‖ W−1(q0, I)−W(k, T ) ‖2

)
(7)

The image W(k, T ) is in general a complex and highly
non-linear function of the transformation parameters and
the texture map defined in the template image. In order
to minimize this error function, we approximate W(k, T )
with a first order Taylor expansion, for small deviations
about k = 0:

W(k, T )
∣∣∣
k=0

≈ T +
m∑

i=1

ki
∂W(k, T )

∂ki

∣∣∣
k=0

where discrete approximations of each partial derivative
can be expressed as:

∂W(k, T )
∂ki

∣∣∣
k=0

= W(qi, T )− T = Bi

In [1], the set of vectors Bi are denoted Difference Tem-
plates and are also used for image registration, but they
are justified in a different form. Computing each difference
image, Bi, according to the motion model qi, and stacking
them into a partial derivatives matrix: B = [B1 . . . Bm],
the image W(k, T ) can then be approximated by:

W(k, T )
∣∣∣
k=0

≈ T +Bk

Substituting this approximation into the error function in
(7), a least square solution can be computed for k:

kLS = (BTB)−1BTD (8)

where we have introduced D =
(W−1(q0, I) − T

)
as the

observed difference between the approximately registered
current image and the template image. After determining
k, the solution for ∆q can be calculated from equation (5).
Most computational requirements are associated with

the computation of the pseudo-inverse, (BTB)−1BT , which
can be calculated off-line since it is constructed from the
set of motion models and the template image. The only on-
line computation is the calculation of the difference image,
D, implying an image warp W−1(q0, I). This makes the
method very well-suited to real time tracking applications.

C. Learning Motion Models

Another advantage of the difference template method is
the ability to customize the set of motion models accord-
ing to the kind and range of expected image deformations.
The choice of the motion models greatly determines the
performance of the algorithm. Ideally, this choice should
be adapted to the camera motion. This idea has been ex-
plored in our implementation of the tracker system, where
we include new motion models according to the history of
past detected, incremental updates of the transform pa-
rameters. In the image plane, these updates point out into
the direction and range of expected incremental deforma-
tions in near future. An additional small subset is added to
the already existing set of motion models and is iteratively
adapted to the camera motion. Maintaining the original
set intact prevents the algorithm from loosing its ability to
sample for deformations in all directions.
When iteratively substituting motion models, new dif-

ference templates need to be included in the partial deriva-
tives matrix, B, implying on-line calculation of its pseudo-
inverse (BTB)−1BT . To avoid this, we take advantage
of the information already stored in the pre-calculated
pseudo-inverse and update it according to the substituted
difference image. This is done by considering (BTB) =[
E F
G H

]
as a block matrix, whose inverse is given by:

[
E F
G H

]−1

=
[
E−1 + E−1FS−1GE−1 −E−1FS−1

−S−1GE−1 S−1

]

Exploiting this property, it follows [8] that the new pseudo-
inverse, containing the substituted difference template, can
be obtained at a negligibly extra computational effort. By
on-line learning of relevant motion models and adapting the
partial derivatives matrix according to them, the tracking
system was able to track image deformations over a much
wider range, thus adding robustness to the algorithm.

D. Optimal Landmark Selection

When selecting an image region as a template for track-
ing, its texture map should contain sufficient information
so that expected image deformations over time can be ob-
served from it. To automatically select a template from
an image, some optimality criterion needs to be evaluated,
that takes the observability with respect to the motion
models into account.
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To do so, we follow the approach in [2], and model the
observed difference, D = W−1(q0, I)−T , as a linear combi-
nation of the pre-calculated difference images, in the pres-
ence of additive noise:

D = Bk+ u (9)

where u is additive noise, k represents the real transfor-
mation parameters that are looked for and B is the partial
derivatives matrix containing all difference images. The
least-square estimate for k is given in (8) and can be rewrit-
ten using (9) as:

kLS = k+
(
(BTB)−1BT

)
u (10)

In order to have kLS as a reliable estimate of k, we would
like to choose a B, such that the uncertainty introduced
by

(
(BTB)−1BT

)
u is minimized. The partial derivative

matrix B is a function of the selected landmark texture
and the set of motion models. For the same set of mo-
tion models, different landmarks result in different values
of uncertainty.
To measure this uncertainty, we take the L2-norm on the

error in the reconstructed signal:

‖k − kLS‖2 = ‖((BTB)−1BT
)
u‖2 (11)

Assuming zero-mean, unit variance white noise for u, we
can take the expected value of (11), which can be computed
as:

E
{‖((BTB)−1BT

)
u‖2

}
= trace

(
(BTB)−1BT

)
(12)

The optimal template is then found by minimizing the ex-
pected value of (12), given the set of motion models.
Fig. (2) shows the most and least informative template

in an underwater image, for a fixed size landmark. These
were found by performing an exhaustive search over the
image space.

(a) (b)

Fig. 2. Automatic landmark selection: (a) most informative image
region , (b) least informative image region.

Apart from selecting the most informative window in an
underwater image, the minimum value of the expected un-
certainty can also be used to set an absolute threshold on
images, which can be evaluated to check for good environ-
mental regions for station keeping.

E. Tracking Performance

With our tracking system, we were able to successfully
track a visual landmark undergoing planar projective trans-
formations. A 15 Hz tracking frequency is reached for
images with a 128 × 192 pixel size, using an off-the-shelf
450Mhz processor. Fig. (3) shows results of tracking an
image region in submarine images. The initially selected
image region is used as a template, whose temporal defor-
mations are tracked over time.

Fig. 3. Tracking an image region in a submarine video sequence.

In order to characterize the maximum range over which
the algorithm is able to accurately estimate inter-image
transformations, image motion is simulated from warping
an image according to a pre-defined trajectory of the trans-
formation parameters, so that ground-truth information is
available. The plot in Fig. (4) shows the results of track-
ing a reference point on the landmark, in the presence of
increasing incremental motion in the image plane, accord-
ing to a smooth trajectory. It follows that upon iteratively
substituting motion models, the algorithm is able to track
over a much wider range.
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Fig. 4. Tracking the position of a corner coordinate of a selected
image patch, in the presence of increasing inter-image motion.

The accuracy of the algorithm is characterized by evalu-
ating the tracking error on images that contain randomly
applied deformations with super-imposed image noise. The
error is defined as the difference between the real and esti-
mated position of image points and is evaluated for a 1000
trials for both the most informative and the least infor-
mative templates from Fig. (2). The results are plotted
in Fig. (5) and show that sub-pixel accuracy is obtained
when tracking good image regions.
We found that the accuracy depends on the size of the

tracked image region. This is illustrated in Fig (6a), where
the tracking error is evaluated for different landmark sizes.
Higher accuracy is obtained for larger patches, since they
contain more information in the texture map. However, the
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Fig. 5. Tracking error for the x-coordinates of the upper-left

landmark corner under randomly generated image deformations.
Maximum inter-image deformations are in the range of 5 pix-
els and images where corrupted with zero mean Gaussian noise
with 10% standard deviation. The error is evaluated over a 1000
trials for both the most informative template (a) and the least
informative template (b).

number of pixels contained in the landmark also influences
the on-line computation time necessary to run the tracking
algorithm. This is illustrated in Fig. (6b). Obviously, some
trade-off has to be made.
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Fig. 6. (a) Tracking error as a function of the landmark size (relative
to the image size). For each size, the error is evaluated over a 1000
trials with images containing randomly generated deformations
and added 0 mean, 10% standard deviation Gaussian noise; (b)
Tracking frequency drop-off as a function of the landmark size.

III. AUTOMATIC STATION KEEPING

For station keeping, we assume that the ROV is hovering
parallel to the ocean floor, having the camera looking ap-
proximately perpendicular to a planar region. A decoupled
control design is adopted, which station keeps the ROV in
the horizontal plane w.r.t the landmark, while maintained
a fixed depth in the vertical plane. Both controllers are for-
mulated in an image based visual servoing framework [10],
[9], so that error signals are defined directly in terms of
image features. Although defined in the image plane, the
task is represented by a particular alignment in 3D-space
between the camera/vehicle and the planar landmark.

A. ROV Description and Modeling

A commercially available Phantom 500SP ROV is used
for demonstration, which is adapted for computer control.
The ROV is illustrated in Fig. (7) and is equipped, among
other sensors, with an on-board pan and tilt camera. The
camera is mounted rigidly to the ROV, such that its optical
axis is aligned with the vertical axis of the ROV reference

frame. The pan and tilt angles can be controlled separately,
resulting in two extra degrees of freedom for the camera.
The ROV is wired to a remote processing unit by a 150m
umbilical. Video signals are sent up to the ground surface
and are acquired at 25 Hz on a Matrox-board, hosted in
a 450 Mhz remote computer, running Windows NT. Here,
control signals are derived and sent down to the ROV via
the umbilical, through a a serial communication link. This
link is also used for sensor readings so that limited band-
width is available. Therefore, the control loop is fixed at
a 10 Hz frequency. The controllable degrees of freedom

Fig. 7. Computer controlled Phantom ROV with an on-board pan-
and tilt-camera.

are defined by the geometric arrangement of the thrusters.
The ROV was originally designed for joystick-type piloting,
where a forward/backward force and a differential torque
are commanded by two thrusters placed in the back of
the vehicle and an upward/downward force is commanded
through a vertically placed thruster at the vehicle center.
With this arrangement, non-holonomic motion constraints
are specified for the vehicle, requiring complex maneuvers
for controlling the vehicle to a desired view in the image
plane.
In Fig. (8), an open-loop model is presented for the ROV

[13]. The thruster commands result into generated forces
and torques on the vehicle body, as given by the affine
thruster model:

τ = Bu (13)

Where τ is the 6 × 1 forces and torque vector, B is the
thruster model, capturing the relations of the thruster DC-
motors and generated forces from the propellers and u con-
tains the common mode, differential mode and vertical con-
trol inputs. The ROV dynamics is described by resolving
the Newton-Euler equations of motion, which solve for the
vehicle acceleration. Upon integration, the ROV instanta-
neous velocity, v, is obtained and is related to the world
referenced velocity, n, via the Jacobian J .

ROV

u
J 1/s

v
B

τ

dynamics

Body n x

Fig. 8. Open-loop ROV model.
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B. Visual Station Keeping Controller

The image based station keeping task is defined as the
regulation to zero of an image error function e(s) = s− sd,
where s is the image feature parameter vector and sd the
desired value. The centroid of a tracked image region is
used as a feature, whose desired position is at the im-
age center. The image error function is then given by
e = [xc, yc]T − [xd, yd]T and the controller aims at driv-
ing the centroid towards the image center under external
disturbances like currents.
Changes in the image features can be related to changes

in the relative camera pose. This kinematic relationship is
often referred to as the image Jacobian or the interaction
matrix [10], [9]:

ṡ = Lvcam (14)

Where L is the image Jacobian and vcam is the 6×1 camera
velocity screw. The image Jacobian for the centroid is given
by the motion field:[
ẋc

ẏc

]
=

[− 1
Z 0 xc

Z xcyc −(1 + x2
c) yc

0 − 1
Z

yc

Z (1 + y2
c ) −xcyc −xc

]
vcam

(15)
This Jacobian depends both on the image point coordinates
and their depth, Z. An exponential decrease of the error
function is obtained by imposing ė = −λe, with λ some
positive constant. Using (15), we can then solve for the
camera motion that guarantees this convergence:

v∗
cam = −λL(s, Z)+(s− sd) (16)

Where v∗
cam is the resolved camera velocity that drives the

centroid to the image center and L+ is the pseudo-inverse
of the image Jacobian.
The ROV control inputs are in general defined in the

vehicle reference frame, commanding components of the
vehicle velocity vector. It is therefore useful to relate the
controllable components of the vehicle velocities to camera
velocities. This relationship is given by the control input
Jacobian:

vcam = Jrovv̄rov (17)

Where v̄rov contains the controllable velocity components
of the vehicle velocity screw and Jrov is the control in-
put Jacobian. This Jacobian is a function of the cam-
era position and orientation in the vehicle reference frame,
Jrov = f

(
rovRcam, Pcam

)
and can be easily computed from

transforming linear and angular velocity components be-
tween the frames. For station keeping, we consider the
linear and angular velocity of the vehicle in the horizontal
plane, v̄rov = [v, ω]T , which are both controllable from the
two back thrusters. Substituting (17) into (14), an expres-
sion is obtained that relates image point velocities to the
vehicle velocity:

ṡ = LJrovv̄rov (18)

With this expression, we can solve for the ROV velocity
in the horizontal plane, necessary to guarantee the conver-
gence of the image error function:

v̄∗
rov = −λ

(
L(s, Z)Jrov

)+(s− sd) (19)

This expression takes the vehicle motion constraints into
account, resulting into trajectories that are physically ex-
ecutable. In Fig. (9), the overall control system de-
sign is given for station keeping in the horizontal plane.
The desired controls for the left and right back thrusters,

BPID (LJ    )rov

+
−λ
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T
e(s)

I

u

(s−s*)

J 1/s
v

B

Error function

camera

System

Tracking 

planar landmark

H

τ

dynamics

Body n xv*

Fig. 9. Visual control loop for station keeping with the ROV.

uh = [ul,ur]T , can be calculated from combining the rel-
evant entries of the thruster model in (13) with the kine-
matic control law in (19):

uh = −λB−1
h

(
L(s, Z)Jrov

)+(Kpe+Kdė+Ki

∫
edt) (20)

Here we have included a PID control action on the image
error for dynamic compensation.

C. Visual Auto-depth Controller

The controller for the vertical plane aims at maintaining
the ROV at a fixed depth during station keeping maneu-
vers. The controller design is such that it maintains the
appearance of the landmark in the image plane at the same
scale. Having the ROV hovering parallel to a planar region,
the scale in the image plane of some selected landmark has
a direct physical interpretation in terms of relative depth.
To recover the scale in the image plane, we turn to (1)

and rewrite it as:

H =
[
A t
vT λ

]
(21)

Where A is a non-singular matrix given by A = sRK+tvT .
The scale factor can be recovered from A by taking its
determinant:

s =
√

|A| (22)

Taking this scale as the control error function, the desired
control for the ROV vertical propeller is given by:

uv = −B−1
v (Kpe+Kdė+Ki

∫
edt) (23)

Where Bv is the relevant entry of the thruster model in
(13), corresponding to the vertical thruster and a PID de-
sign was adopted for dynamic compensation. The overall
vertical control system design can be represented by Fig.
(9) by simply substituting the task function , e(s), and the
controller block.
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D. Image Stabilization

The use of kinematic models for visual servoing is not
always realistic for floating vehicles with relative slow dy-
namics. Therefore it is likely that during station keeping
maneuvers, the target gets out of view due to limited band-
width in acceleration. In an attempt to avoid these situa-
tions, an image stabilization technique is used, aiming at
centering the target in the image by controlling the camera
pan and tilt angles.
The pan and tilt unit, installed in the ROV, is modeled

by a Jacobian, that relates the angular pan and tilt veloc-
ities to the resulting camera velocity screw:

vcam = Jpan/tiltw (24)

Where w = [ωpan, ωtilt]T contains the pan and tilt veloc-
ity components and Jpan/tilt is in general a function of the
current pan and tilt angles. For image stabilization, an im-
age based visual servoing strategy is adopted that uses the
same image error function as the station keeping controller,
thus regulating the landmark centroid to the image center.
Combining (24) and (14), the resolved pan and tilt veloc-
ities that guarantee exponential convergence of the image
error function are given by:

w∗ = −λ
(
LJpan/tilt

)+(s− sd) (25)

Where L is the image Jacobian, and s contains the centroid
coordinates.
Since both the station keeping and the image stabiliza-

tion controllers use the same error function, we need to
decouple these tasks when simultaneously executed. This
is done by transforming the station keeping error according
to an homography that maps the measured image points
back to a view which would have been obtained if no pan
and tilt increments were applied. It follows that such a ho-
mography can be obtained from the rigid camera rotation,
according to:

Hpan/tilt = KR(θpan, θtilt)K−1 (26)

Where K contains the camera intrinsic parameters. With
the inverse of Hpan/tilt, it is possible to undo the deforma-
tions in the image plane due to panning and tilting of the
camera. To do so, a measure of the real pan and tilt angle
is necessary.
The overall control design for the station keeping con-

troller with image stabilization is illustrated in Fig. (10).
The same modifications apply for the visual auto-depth
controller.

E. Sea-trial Results

Several successful station keeping trials were performed
with our ROV-system at open sea. The system was tested
under various environmental conditions at different loca-
tions, namely in the North Sea near Orkney, Scotland, as
well as in the Mediterranean sea in Villefranche, France.
The results of a station keeping test in the Mediterranean
sea are shown in Fig. (11). In a first stage, the vehicle

BPID (LJ    )rov

+
−λ

���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

planar landmark

PID −λ (LJ          )
+

pan/tilt

H pan/tilt
−1

−1

ω

ROV

u
J 1/s

v
B

τ

dynamics

Body n xv*

station keeping controller

e(s)

I
camera

System

Tracking H

T

image stabilization

ωpan , tilt

Fig. 10. Visual control loop for station keeping with image stabiliza-
tion.

floats uncontrolled when a landmark is selected around the
image center and tracked in the presence of drift. Even
with poor texture, the tracker was able to accurately track
the selected image region. Upon closing the visual feed-
back loop, the landmark is driven back towards the image
center, where it remains oscillating around the desired po-
sition under external disturbances. The evolution of the
error signals are shown in Fig. (12) and show the conver-
gence of the centroid and the scale of the landmark.

(a) (b)

Fig. 11. Station keeping experiment at the Mediterranean: (a) track-
ing a selected image region in the presence of drift, with the ROV
uncontrolled; (b) Controlling the centroid back to the image cen-
ter by servoing the vehicle.

No efforts are made so as to control the landmarks orien-
tation towards a desired value. The main difficulties arise
for lateral offsets of the centroid in the image plane. In
this case, since the vehicle has no lateral controllable de-
grees of freedom, the only solution is to compensate these
errors by rotating the ROV, resulting into complex curved
trajectories of the centroid and the landmark corners in
the image plane. Such trajectories might drive the tracked
region partially out of view, especially when the landmark
is initially selected near to the image borders. With image
stabilization, these situations can be avoided, since both
lateral and frontal offsets can now be compensated by con-
trolling the camera pan- and tilt angles. This results into
trajectories that drive the landmark corners directly to the
image center.
In Fig. (13), the advantages of using image stabilization

are shown. Image point trajectories are such that they
drive the points directly in a straight line to their desired
positions and the amplitude of oscillating around the de-
sired position is kept smaller.
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Fig. 12. Evolution of the error signals during a station keeping

maneuver: (a) x-coordinate of the centroid, (b) y-coordinate of
the centroid, (c) relative scale, (d) centorid trajectory in the
image plane.
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Fig. 13. Trajectory of image points during station keeping at the
Mediterranean with image stabilization.

IV. CONCLUSIONS

In this paper we presented the tracking and control as-
pects for automatic visual station keeping with an under-
water ROV. Tracking of image regions was realized by inte-
grating optic flow information with a correlation based op-
timization method, resulting in sub-pixels accuracy. Pla-
nar projective motion models were considered that cover
the whole range of image deformations that occur when a
camera moves in 3D. For correlation, a set of motion mod-
els was used, sampling for expected image deformations.
The main advantage is that these can be pre-calculated
when applied to the desired view, resulting in high track-
ing frequencies. To enhance robustness, the set of models
was iteratively adapted to the history of detected camera
motion. Also, the importance of landmark selection w.r.t
tracking accuracy was shown and a method was described
for automatically selecting the most informative image re-
gion.
Using the tracker information, visual control loops were

designed to perform station keeping. The station keeping
task was formulated in the image plane and a decoupled
control strategy was adopted. For station keeping, we con-

sidered the regulation of the landmark centroid towards the
image center, while not controlling its orientation towards
a final value at all. The main motivation was that, given
the vehicle motion constraints, lateral offset in the image
plane can only be compensated by rotating the ROV.
With the use of an image stabilization technique, the

overall system gained more robustness. The advantages
were twofold: (i) it prevents the landmark of going out
of view and (ii) observed image transformations are kept
small. To decouple image stabilization from station keep-
ing, error signals needed to be transformed, requiring the
measurement of the camera pan and tilt angles as well as
the camera intrinsic parameters.
This system was successfully tested under real conditions

at open-sea. For future work, we consider to include the ve-
hicle dynamics into the tracking system and the controller
design.
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