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Abstract. This paper presents a novel approach to the weak classifier
selection based on the GentleBoost framework, based on sharing a set of
features at each round. We explore the use of linear dimensionality reduc-
tion methods to guide the search for features that share some properties,
such as correlations and discriminative properties. We add this feature
set as a new parameter of the decision stump, which turns the single
branch selection of the classic stump into a fuzzy decision that weights
the contribution of both branches. The weights of each branch act as
a confidence measure based on the feature set characteristics, which in-
creases the accuracy and robustness to data perturbations. We propose
an algorithm that consider the similarities between the weights provided
by three linear mapping algorithms: PCA, LDA and MMLMNN [14].
We propose to analyze the row vectors of the linear mapping, grouping
vector components with very similar values. Then, the created groups
are the inputs of the FuzzyBoost algorithm. This search procedure gen-
eralizes the previous temporal FuzzyBoost [I0] to any type of features.
We present results in features with spatial support (images) and spatio-
temporal support (videos), showing the generalization properties of the
FuzzyBoost algorithm in other scenarios.

1 Introduction

Boosting algorithms combine efficiency and robustness in a very simple and suc-
cessful strategy for classification problems. The advantages of this strategy have
led several works to improve the performance of boosting on different problems
by proposing modifications to the key elements of the original AdaBoost algo-
rithm [5]: (i) the procedure to compute the data weights, (ii) the selection of the
base classifier and (iii) the loss function it optimizes.

The focus of this work is the careful selection of the weak (base) classifier.
Since the weak classifier could be any function that performs better than chance,
the choice of the weak classifiers is usually motivated by the particular context
of the problem. When the objective is to find meaningful sets of data samples,
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several dimensions of the original samples are gathered to build augmented base
classifiers. This approach has been followed by the SpatialBoost [2], the Tem-
poralBoost [II] and the temporally consistent learners used in [I0]. A general
drawback of these works is the specificity of the application for which they are
constructed. The aim of this work is to generalize the fuzzy decision function
of [I0] to any type of data, while maintaining its main advantages. The gener-
alized fuzzy decision function selects jointly the usual parameters of a decision
stump and the set of features to use, a procedure that turns the single branch
selection of the decision stump into a linear combination of the branches. Such a
combination of the stump branches is commonly referred to as a fuzzy decision
on [TI6IT2]. Moreover, [8] shows empirically that the fuzzy tree decreases the
variance and consequently improves the classification output.

The generalization of the fuzzy decision function brings a difficult problem
to solve: the selection of the feature set. Exhaustive search is prohibitive, so we
propose an algorithm that extracts the feature sets from (linear) dimensional-
ity reduction techniques. These techniques map the original feature space to a
more meaningful subspace, by the minimization of a cost function. Thus, the lin-
ear mapping contains relevant information about the similarity between feature
dimensions on the original space. We analyze the rows of the linear mapping,
selecting the components with very similar values and disregarding components
with very low values. We consider three dimensionality reduction algorithms:
Principal Components Analysis (PCA), Linear Discriminant Analysis (LDA)
and Multiple Metric Learning for large Margin Nearest Neighbor (MMLMNN)
Classification [14]. We apply the feature set search for fuzzy decision stumps in
two data domains: spatial (face and car detection) and spatio-temporal (moving
people and robots).

2 The FuzzyBoost algorithm

Boosting algorithms provide a framework to sequentially fit additive models in
order to build a final strong classifier, H(z;). The final model is learned by
minimizing, at each round, the weighted squared error

N
J = sz(yz - hm(fi))g, (1)

where w; = e ¥ (#) are the weights and N the number of training samples.
At each round, the optimal weak classifier is then added to the strong classifier
and the data weights adapted, increasing the weight of the misclassified samples
and decreasing correctly classified ones [13].

In the case of GentleBoost it is common to use simple functions such as

decision stumps. They have the form h,,(x;) = ad [mf > 9} +bd {xlf < 9}, where
f is the feature index and ¢ is the indicator function (i.e. §[condition] is one if

condition is true and zero otherwise). Decision stumps can be viewed as decision
trees with only one node, where the indicator function sharply chooses branch a
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or b depending on threshold # and feature value xf . In order to find the stump
at each round, one must find the set of parameters {a,b, f,0} that minimizes .J
w.r.t. h,,. A closed form for the optimal a and b are obtained and the value of
pair {f,0} is found using an exhaustive search [13].

2.1 Fuzzy weak learners optimization

We propose to include the feature set as an additional parameter of the decision
stump, as follows:

1
Rt (xg) = TE (aFT5[z; >0 +bF 5[z <0)), (2)
where z; € R? and the vector F' € Z5*,m € {1,...,d}, so the non-zero com-

ponents of F' define a feature set. The vector F' chooses a group of original
sample dimensions that follow the indicator function constraints of Eq. in
order to compute the decision stump A}, (x;). Note that by choosing m = 1, Eq.
becomes the classic decision stump and the selection of different m values
induce different decision stump functions. In this work we choose F' € Zg, thus
we do not assume any a priori information about the samples z. Eq. can be
rearranged in order to put a and b in evidence,

FT§[z; > 0] FT§[z; < 0]
+b —. (3)
IE1] |11l

hr(x;) =a

From Eq. [3] it is easier to see that the the selector F' is replacing the indica-
tor function (i.e. a true or false decision) by an average of decisions. The new
functions are:

FTé[xz > 9]
ILF]|

) A,($i797F) = ||[ﬂ]a (4)

A+ (1'i7 9, F) =
and they compute the percentage of features selected by F' that are above and
below the threshold #. The functions A, and A_ =1— A, of Eq. |4 sample the
interval [0 1] according to the number of features selected by F' (i.e. according
to ||F||). For example, if ||F|| = 2 this yields to A € {0, 1/2, 1}, if ||F|| = 3
to A € {0, 1/3, 2/3, 1} and so on. The new weak learners, the fuzzy decision
stumps, are expressed as b} (x;) = aAy +bA_.

We illustrate in Fig. [I] the difference between the classic decision stumps and
our proposed fuzzy stumps. The response of the decision stump is either a or
b according to the feature point xfc , while the fuzzy stump response is a linear
function of A} that weights the contribution of the decisions a and b, thus the
name fuzzy stump.

Replacing the fuzzy stumps of Eq. [3|in the cost function (Eq. , the optimal
decision parameters a and b are obtained by minimization,

A 8
G — (@) G1- — (@)
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Fig. 1. Response of the weak learners: (a) decision stumps and (b) fuzzy stumps.

with 7+ = Zﬁ;wiﬁyisz Vo= Zf]vvwiyiAza
oy =N w AT, on =Y N AT, oy =N w,ATAT.

There is no closed form to compute the optimal # and F, thus exhaustive
search is usually performed. Although finding the optimal 6 is a tractable prob-
lem, the search for the best F' is NP-hard thus generally impossible to perform.
This problem can be viewed as a feature selection problem with the objective of
choosing, at each boosting round, the set of features that minimizes the error.
In order to guide the search and reduce the number of possible combinations we
apply dimensionality reduction algorithms in the original feature space, using

the projection matrix in order to find feature set candidates.

2.2 The search space for the feature set

Linear dimensionality reduction techniques aim to find a subspace where regres-
sion and classification tasks perform better than in the original feature space.
These feature extraction methods aim to find more meaningful and/or discrimi-
native characteristics of the data samples by minimizing task-defined cost func-
tions. Finally, the original features are substituted by the transformed ones in
order to perform classification.

Although the dimensionality reduction methods differ in the way that they
use labeled or unlabeled data to compute the linear transformation of the input,
the projection vectors of all methods code the way that the original feature space
should be combined to create a new dimension. Since the linear mapping contains
relevant information about the correlations between dimensions of the original
feature space, we propose to analyze each projection vector of the mapping
by selecting vector components with similar values. Our rationale follows the
weight similarity approach: if the weight of a dimension in the projection vector
is similar to other dimension(s), this implies some correlation level between those
dimensions. We apply this idea to three projection algorithms: PCA, LDA and
MMLMNN.

The idea behind PCA is to compute a linear transformation z* = Lz that
projects the training inputs into a variance-maximizing subspace. The linear
transformation L is the projection matrix that maximizes the variance of the
projected inputs, and the rows of L are the leading eigenvectors of the input
data covariance matrix.
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LDA uses the labels information to maximize the amount of between-class
variance relative to the amount of within-class variance. The linear transforma-
tion z* = Lx outputted by LDA is also a projection matrix, and the rows of L
are the leading eigenvectors of the matrix computed as the ratio of the between-
class variance matrix and the within-class variance matrix. Unlike PCA, LDA
operates in a supervised setting, restricting the number of linear projections
extracted to the number of classes present in the problem.

The recently proposed MMLMNN method [I4] attempts to learn a linear
transformation z* = Lx of the input space, such that each training input should
share the same labels as its k nearest neighbors (named target neighbors) and
the training inputs with different label (named impostors) should be widely
separated. This two terms are combined into a single loss function that has the
competing effect of attracting target neighbors on one hand, and repel impostors
on the other (see [I4] for details).

Computing F' from L Given a linear mapping L computed by PCA, LDA or
MMLMNN, we scale the values of the projection matrix as follows: £;; = m‘:’xz ‘L).
The scaling ensures that 0 < £;; < 1, which allow us to define lower thresholds
(so in Alg. [1) and number of intervals (ns in Alg. [1)) that have the same meaning
for all the linear mappings. The algorithm for generating the feature sets is as

follows:

input : sy lower threshold, n, number of intervals, £ projection matrix
output: F; j=1...n
1 for each projection (row) vector L; do

2 compute Ay = (max(L;) — so)/ns;
3 for j=1...ns do

4 compute s; = so + (j — 1)Ag;
5 Fj:5[5j §£i<8j +jAé],

6 end

7 end

Algorithm 1: Generation of feature sets I’ of Eq. from a scaled linear
mapping L

The lower threshold sg € [0, 1] removes components of £; having low projec-
tion weights, which are the less meaningful dimensions. The number of intervals
ns € N defines the criterion to group dimensions with similar weights (line
of Alg. [1] ), so a high number of intervals will group a few dimensions and a
low number of intervals will generate a larger feature set F;. In order to see the
effect of several choices of sg and ng, we apply the Algorithm [I] using several
pairs (sg,ns) for each linear mapping L.

3 Experimental results

We evaluate the recognition rate difference between the decision stumps and the
fuzzy stumps on two binary problems: (i) face vs. background and (ii) people vs.
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robot discrimination. We use the CBCL MIT face database [I] and the people
vs. robot database introduced in []. Figure [2[ shows some examples of each class
for both datasets.

EAATITEE
%5 3 I 5 I

) CBCL MIT face dataset (b) People vs. robot

Fig. 2. Positive and negative examples of the datasets used in this paper

Parameter selection of the feature search We define a set of pairs (sg, )
for each linear mapping L in order to see the effect of the parameter selection
in the performance of the generated feature sets in the FuzzyBoost algorithm.
We set three low thresholds sg € {0.1,0.2,0.3}, and for each sy we set three
number of intervals, as follows: (i) (0.1,9), (0.1, 18) and (0.1,27) for the first s,
(ii) (0.2,8), (0.2,16) and (0.2, 24) for the second s and (iii) (0.3,7), (0.3,14) and
(0.3,21) for the third so. The rationale behind this choice is to have A, intervals
with the same length across the different sg values, which allows to evaluate
the pairs (sg, ns) fairly. For each pair (s, ns), we apply the Alg. [I] on the three
projection methods in order to generate the feature sets F. Then, F is applied
on the weak learner selection of Eq. in a fixed number of rounds M = 1000.
The quantitative evaluation is the maximum recognition rate attained on the
testing set.

Faces database The feature vector in this problem is constructed with the
raw images (19x19 pixels). This is a high dimensional space, where the linear
mappings are not able to find feature sets that provide a large improve when
compared to GentleBoost. Nevertheless, Figure [3] shows that MMLMNN per-
forms better than GentleBoost for most of the tests and a lot better than its
competitors PCA and LDA.

Robot versus people database We apply two types of features: The weighted
histogram of the Focus Of Attention (FOA) feature [9] and the Motion Boundary
Histogram (MBH) [3] using a polar sampling grid cell. The spatio-temporal
volume is constructed by stacking the feature vector of the current frame with the
vectors of the previous four frames. The FOA feature is a 64d vector per frame,
and the MBH is a 128d feature vector per frame. Thus, the spatio-temporal
feature based on MBH lies in a very high dimensional space. Figs. [] and
show the results of the FOA and MBH features respectively. We notice the same
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Fig. 3. Recognition rate of the FuzzyBoost algorithm for feature sets generated from:
PCA, LDA and MMLMNN

trend of the previous tests, where MMLMNN performs better than the other
dimensional reduction algorithms. Remark also the large gap improvement when
using the FOA feature against the GentleBoost in Fig. [l On the other hand,
little improvement is achieved with the MBH feature. We believe that is more
difficult to find the right spatio-temporal groupings in this feature space and
it looks like the simple stacking of the feature vectors is able to attain good
classification results. On the other hand, the FuzzyBoost is able to improve the
performance of the FOA feature even higher than the GentleBoost with the
stacked MBH features of five frames.
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Fig. 4. Recognition rate of the FuzzyBoost algorithm for feature sets generated from:
PCA, LDA and MMLMNN, FOA weighted histogram over 5 frames

4 Conclusions

We introduce the generation of appropriate feature sets for the FuzzyBoost al-
gorithm. The algorithm for feature set generation analyzes the row vectors of
any linear dimensionality reduction algorithm in order to find feature dimensions
with similar vector components. We generalize the formulation of the fuzzy deci-
sion stump, which now can be applied to any learning problem. We present two
types of domains where the fuzzy decision stump brings robustness and gener-
alization capabilites, namely: face recognition and people vs. robot detection by
their motion patterns.
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Fig. 5. Recognition rate of the FuzzyBoost algorithm for feature sets generated from:
PCA, LDA and MMLMNN, MBH feature over 5 frames
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