
Homing a Teleoperated Car using Monocular SLAM

Nuno Ribeiro, Ricardo Ferreira, José Gaspar
http://www.isr.ist.utl.pt

Institute for Systems and Robotics / IST
Lisbon, Portugal

Abstract

Personal, inexpensive, easy-to-use, teleoperated, autonomous, mobile robots
are starting to be a reality and are expected to be widespreadwithin some
few years. Fostering the development of these robots implies testing var-
ious hardware and software technologies. In this work we propose de-
veloping the communications with the robot through an IP wireless cam-
era. The rational is that the required bandwidth for motion commanding
and reporting is much lesser than the one required for video streaming.
Therefore, robot commanding can be embedded non-disruptively within
the video streaming. In this paper we detail the base components form-
ing the robot, show navigation experiments based in MonoSLAM, and
propose a methodology to regulate the accumulation odometry error as-
sociated with map-less MonoSLAM.

1 Introduction

Current home personal robots are starting to have affordable prices. These
robots can be vacuum cleaners such as the iRobot Roomba, can be telep-
resence robots, as the Anybots’ QA, or can be simply Mobile Webcams,
such as the WowWee’s Rovio. Most of these robots have in common the
combination of mobile robotics, video cameras and wirelesscommunica-
tions. Communications are in many aspects the bottleneck ofthe robots.

In this work we propose using the wireless network of surveillance
cameras as a basis to build networked mobile robots. The objectives of
this work are threefold: (i) assembling one Axis 207w cameraand one Ar-
duino Uno; (ii) developing software to make possible the communication
between the user’s pc, the Axis camera and the Arduino; and (iii) Design-
ing a homing strategy which enables the robot to return autonomously to
its initial position.

2 Hardware and Software Setup

A car is assembled based in a network (IP) camera, one ArduinoUno,
one Motor Shield and two DC motors for steering and propulsion (see
fig.1(a)). A Java GUI from [2] is used to control the car in realtime using
a laptop. The camera gives a live feed from the car (robot) point of view
and extract images to be processed on the user’s computer. The camera
has a Linux OS which runs a server with the objective of processing user’s
instructions and sends the corresponding signals to the Arduino board.
Once a complete instruction is received by the Arduino, it will execute the
commands for motors control. The only sensor that the car hasavailable
is the camera. The program on the user’s computer runs in MATLAB, that
calls the Java GUI and runs MonoSLAM [1] in parallel. The hardware
setup is sketched in fig.1(b).

3 Autonomous Homing

We use MonoSLAM [1], so that the camera is the single sensor neces-
sary to compute the pose of the vehicle. Basically, MonoSLAMconsists
of an Extended Kalman Filter (EKF) with Random Sample Consensus
(RANSAC) embedded. The EKF makes a prediction of the vehicle’s pose
using a constant velocity model. The update step is made by using the
most voted hypothesis in RANSAC which generates hypothesisfrom can-
didate features matches. To detect local features in the images a corner
extraction procedure is used. MonoSLAM is initialized assuming that an
a priori probability distribution over the model parameters is known.

MonoSLAM provides an estimation of the pose of the car. One ex-
tracts from the vectorstatethe position of the car

WtC = state(1 : 3) = [x y z]T (1)

and compute its rotation matrix in the world frame

WRC= q2r(state(4 : 7)). (2)

(a)

(b)
Figure 1: (a) Car used in experiments. (b) Basic project design.

whereq2r denotes the conversion for a quaternion to a rotation matrix.
Definingc2 =

√

WRC(1,1)2+WRC(1,2)2, i.e. the cosine of the rotation
angle over thez axis, one has the the robot orientation angle is

θ2= atan2(−WRC(1,3),c2). (3)

MonoSLAM also gives us the inverse depth coordinates of every fea-
ture, from which we can compute the euclidean coordinates inthe world
reference frame.

The program saves the car’s position and orientation in every iteration
in order to backtrack (home) to its initial position by the same way it
reached its actual position. The backtracking is triggeredby the user at
any point he wants.

After the user activates the homing procedure, the car reverses and
the controller actions take place. To calculate the vehicle’s pose in each
iteration of homing, a simulator using the vehicle’s kinematic is being
used where its reference orientation its calculated as

θre f = atan2

(

yre f −yactual

xre f −xactual

)

(4)

This strategy is being used in real-time experiments, once the fea-
tures matching in Mono SLAM running in MATLAB fails with abrupt
movement.

4 Experiments and Results

In order to have an idea of the errors magnitude when the car moves, we
have chosen the hard case where the car has justForward Motion. As
you can see in fig. 2(b) and fig. 2(c), the Mono SLAM acknowledges
that the car is moving straight and the orientation is no different from the
real one. When a considerable number of features moves its position on
the image plan from one frame to the next, the algorithm understands the
movement and realizes if the camera is sliding right, left, up, down, or if it
is actually moving forward or backward. That can be verified on fig. 2(b)
and fig. 2(c). As we can see in fig.2(d), the difference betweenruler and
monoslam position estimate is very large.

In a second experiment the car moves in a straight line and some few
meters later, while still reading the pose from the MonoSLAM, a homing

jag
Text Box
In 19th Portuguese Conference on Pattern Recognition (RecPad 2013)Lisboa, Portugal, November 2013



(a) (b) (c)

(d) (e)
Figure 2: (a) Car at the beginning of straight line trajectory experiment. (b) Car at the half of straight line trajectoryexperiment. (c) Car at the end of
straight line trajectory experiment. (d) Ruler vs Mono SLAMmeasurement at straight line trajectory experiment. (e) Complete Homing system test

real estimated
X (cm) 22 5
Y (cm) -16 -8
θ (o) -55 -41

Table 1: Real and MonoSLAM measurements comparison.

request is issued. The difference between real and ours program pose
estimation is shown in table 4. As you can see in table 4, the results are
considerably different. The final vehicle’s pose is shown infig.2(e).

From the experiments made, we can see that MonoSLAM easily de-
tects changes in direction of motion, but it’s not very accurate at deter-
mining the magnitude of the camera’s forward motion, especially if there
is no significant movement in more directions. The high computational
cost of running MonoSLAM in Matlab makes the job at hand difficult. No
abrupt movements can be done as otherwise the difference between two
consecutive images will lead to no features matches. Using the kinematic
model as the only prediction of pose while homing is possible, but leads
also to a rapid increase of the pose prediction errors.

5 Future Work

As was already expected, visual odometry introduces error accumulation,
even for short trajectories. One possible way to reset erroraccumulation
is by modifying the scenario either by adding landmarks or fixed cam-
eras informing the car location. An alternative way is to reset the error
accumulation by comparing the actual image with the ones stored in an
images-map[3], which is more interesting as the scenario is not required
to be changed.

In an images-mapbased approach we are considering saving just im-
age features that are registered (and 3D-reconstructed) along time. In each
homing iteration we compute the camera matrixP from the 3D points
stored previously and their current images. GivenP, we extract the posi-
tion t and orientationR of the camera with respect to a global coordinate
system [4]. First we apply QR factorization to the first threecolumns ofP,
then transform from the QR to the RQ factorization and correct the sign of
K. In the end we obtainP= K[R | t]. Figure 3 shows a simulated homing
procedure encompassing calibration, pose computation andcontrol.

6 Conclusion

This work started with the integration of the various hardware and soft-
ware components into a mobile robot. This is still an ongoingproject.
Various positive conclusions can be extracted already. Thefirst conclu-
sion is that wireless IP cameras are practical and functional tools to help
building teleoperated robots. Another conclusion is that it is possible and
plausible to use odometry measurement using MonoSLAM but, as ex-
pected, we have considerable error accumulation. Further work is nec-
essary to improve our strategy, from the Mono SLAM robustness to a

(a) Home (b) End point

(c) Returning home (d) Arrived home
Figure 3: (a) Beginning of simulation of homing using cameracalibration
for pose computation. (b) Beginning of homing procedure. (c) Homing
procedure at middle. (d) Final homing position.

better homing procedure. As a general conclusion, we can saythat is al-
ready possible to build a teleoperated vehicle with autonomous features
at a reasonable cost.

Acknowledgments

This work has been partially supported by the FCT project PEst-OE / EEI
/ LA0009 / 2013, by the FCT project PTDC / EEACRO / 105413 / 2008
DCCAL, and by the FCT project EXPL / EEI-AUT / 1560 / 2013 ACDC.

References

[1] J. Civera, O. Grasa, A. Davison, and J. Montiel. 1-point ransac for
ekf filtering. application to real-time structure from motion and visual
odometry.J. Field Robot., 27(5):609–631, 2010.

[2] James Crosetto, Jeremy Ellison, and Seth Schwiethale. Control an
rc car from a computer over a wireless network.https://code.
google.com/p/networkrccar.

[3] J. Gaspar, N. Winters, and J. Santos-Victor. Vision based-navigation
and environmental representations with an omni-directional camera.
IEEE Transactions on Robotics and Automation, 16:890–898, 2000.

[4] N. Leite, A. Del Bue, and J. Gaspar. Calibrating a networkof cameras
based on visual odometry. InProc. of IV Jornadas de Engenharia
Electrónica e Telecomunica cões e de Computadores, Portugal, pages
pp174–179, 2008.

2




