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Abstract: This paper addresses the problem of optimal sensor placement for acoustic range-based 
underwater target positioning. In particular, we focus on the experimental set-up whereby target 
positioning is performed by measuring the ranges between the underwater target and a number of surface 
units equipped with acoustic ranging devices and GPS. With the objective of affording the reader a 
concise overview of the main theoretical challenges involved, this paper starts with a survey of previous 
work done in the area, including that of the authors. By casting the problem at hand in the form of a 
classical estimation problem we describe and solve the equivalent mathematical problem of maximizing 
the determinant of a conveniently defined Fisher Information Matrix (FIM). The latter is related to the 
Cramér-Rao Bound, which equals the smallest possible position estimation error variance that can 
possibly be achieved with any unbiased estimator. To further clarify the presentation, the details of 
Monte Carlo simulations in 2D and 3D with a selected target positioning algorithm are included to    
confirm the theoretical results numerically.  
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1. INTRODUCTION 

Navigation plays a key role in marine robotics and is 
currently the subject of intensive research worldwide, 
especially in underwater scenarios. In the latter type of 
missions, autonomous marine vehicles must travel over large 
distances to acquire scientific ocean data at unprecedented 
scales, while being able to geo-reference the data acquired by 
resorting to advanced navigation systems. Navigation, in this 
context, refers to the task of estimating the position of a 
vehicle underwater. Submerged vehicles have no access to 
absolute navigation data. In many operational scenarios the 
only navigation data accessible are those acquired by on-
board resident sensor units. Affordable, classical navigation 
systems that rely solely on these data will necessarily exhibit 
errors that grow with time, and must be complemented with 
external aids. The latter may include acoustic systems 
capable of estimating the position of the vehicle with respect 
to a set of transponders. In what follow, we give a very brief 
overview of range-based positioning systems. 

To estimate the position of an underwater agent by means of 
acoustic range measurements, one needs several objects 
(reference objects or ROs henceforward) equipped with 
sensors capable of measuring these ranges and determining 
their own position with high precision. A possible solution is 
to place the ROs at the surface and use GPS to locate them. A 

system that employs surface buoys as ROs in order to 
estimate the position of an underwater object is referred to as 
GIB (GPS Intelligent Buoys). A modification of the 
commercially available system that relies on the use of an 
Extended Kalman Filter (EKF) is described in detail in 
Alcocer, Oliveira, and Pascoal (2007). The key ideas behind 
the GIB concept were exploited and extended in Glotzbach et 
al. (2012) to develop a system capable of estimating the 
position of a human diver, and where no time 
synchronization is required between the target and the ROs 
(as is the case with the original GIB system). Also, small 
unmanned surface crafts were employed as ROs. This fact 
gave rise to another interesting problem, namely that of 
correct placement of the companion surface vehicles. This 
task is referred to as Optimal Sensor Placement (OSP) and 
can be cast in the form of an Estimation Theoretical Problem 
that involves the computation of the Cramér-Rao-Bounds to 
compute the best positioning performance that can be 
achieved with any unbiased position estimator. Naturally, the 
optimal placement solution is a function of the actual 
measurement setup, the measurement model, and the actual 
position of the target. 

At first inspection this problem may seem to have little 
practical relevance, for it could be argued that if the target 
position were known in advance, then the need to locate it 
would not arise. This argument can be countered by stating 
that, firstly, this research aims to provide a general 



 
 

     

 

understanding of the dependence between target position and 
optimal acoustic sensor positions. For real sea operations, 
where the accuracy of range measuring devices is plagued by 
intermittent failures, outliers, and multipath propagation 
effects, it is important to have an understanding of the best 
sensor geometry in idealized situations. Secondly, 
localization under real conditions may end up being an 
iterative process. In this case, it is reasonable to get a first, 
possibly “rough” estimate of the target position, and then use 
this position to perform Optimal Sensor Placement. Once the 
sensors are placed in a new optimal configuration, the 
position of the target can be re-computed and the 
positioning/estimation cycle continues. Thirdly, to track a 
moving target over a large area, the ROs have to move 
alongside with the target. In this case, again it seems 
reasonable to organize their movement in an optimal way 
with respect to the current position estimate of the target, 
instead of simply letting them move “roughly” in the same 
direction as the target. Finally, the circle of ideas exploited in 
this paper may be extended to deal with the situation where 
prior information about the actual target position is available 
(e.g. in terms of a probability density function, as done by 
Isaacs, Klein, and Hespanha (2009)). 

This paper should be viewed in part as a survey paper of 
work done in this area, and as such it borrows considerably 
from work done by the authors, see Moreno-Salinas et al. 
(2010), Moreno-Salinas et. al (2011), and the references 
therein. However, it goes one step further in that it includes 
not only results on optimal sensor placement, but also on 
Monte Carlos simulations with a selected target positioning 
algorithm aimed at confirming the theoretical results 
described. The work summarized here and in the two 
mentioned publications sought inspiration from the work of 
Martínez and Bullo (2006) on Optimal Sensor Placement for 
range-based localization of ground robots, where the authors 
placed the emphasis on the task of finding the optimal sensor 
positions for the acoustic ranging devices, the latter being 
allowed to move in a convex domain around the area in 
which the target is known to lie. 

In contrast with the work in Martínez and Bullo (2006), we 
seek to characterize explicitly for both the 2D and 3D cases 
the optimal sensor positions in terms of their distances to the 
target to be located. The results are validated through Monte 
Carlo Simulations using MATLAB.  

2. PROBLEM DESCRIPTION AND BRIEF LITERATURE 
SURVEY 

Consider a stationary underwater target located at position 
q0=[x0 y0 z0]

T and a number of Reference Objects (ROs) at  
the surface, capable of measuring the ranges to the target. As 
discussed above, we assume that the position of the target is 
known in advance in order to find the optimal location of the 
ROs (acoustic sensors). For the sake of simplicity, we assume 
that x0 = y0 = 0, that is, the target is located at the origin of the 
coordinate system for a 2D-scenario or at the depth 
coordinate z0 below the origin for a 3D-scenario. We further 

assume there are n Reference Objects (ROs). Let m
ip ℜ∈ ; 

{ }ni ,...,1∈  be the position of the i th RO, where m is equal to 

2 or 3, for the 2D and 3D scenarios, respectively. Further let  

( ) ( ) iii wpqhqz +−=  (1) 

be the measurement (obtained at the ith RO) of the distance 
between its position pi and the target at position q. Here, the 
function h yields the actual distance between the target and 
each of the ROs, as long as it remains in the measurable 
range of the employed acoustic modems, that is,  
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Note that r i is also the range-coordinate of the reference 
object in a 2D polar coordinate system which will be used 
later. In the 2D case, r i equals di and will be used instead, see 
Fig. 1. We further introduce the column vector H, which 
contains the n ranges between the target and the ROs. 

The term wi in eq. (1) represents a zero mean white noise 
Gaussian process with variance σ2. We also define the vector 
Z that contains the measurement values of all ROs: 
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where R is the covariance matrix, R = σ2 In. 

Equipped with the above definitions, we now seek to find the 
spatial configuration for the ROs that is optimal in a well 
defined sense. We will assume that the ROs will be placed at 
a circle with radius r, with r as the parameter to optimize. 
The rationale for this computational procedure is firmly 
rooted in estimation theory and was described in a vey 
elegant manner in Martínez and Bullo (2006) for the case of 
optimal sensor placement for range-based positioning of 
wheeled robots in 2D. In their work, the authors derived the 
optimal angular distribution between the ROs that maximizes 
the determinant of the Fisher Information Matrix (FIM) 
associated with the particular estimation problem at hand. 
The latter, as is well known, yields (after computing the 
related Cramer-Rao-Bound), relevant information on the best 
possible performance in target positioning that can possibly 
be achieved with any unbiased estimator, where performance 
is evaluated in terms of the variance of the position estimates. 

 
Fig. 1: Positioning system – Set-up and parameter description 
for the 3D case (only one RO is shown).  



 
 

     

 

See for example Taylor (1979) and van Trees (2001) as well 
as Porat and Nehorai (1996) and Ucinski (2004) for lucid 
presentations of the above topics. 

3. OPTIMAL SENSOR PLACEMENT (ANALYTICAL 
COMPUTATIONS) 

Following classical estimation theory, the Fisher Information 
Matrix (FIM) (denoted as JNR for non-random parameters), 
corresponding to the problem of estimating the target position 
q based on measurements Z, can be computed from the 
likelihood function Λ to yield 

( ) ( )[ ]T
qqNR EJ Λ∇⋅Λ∇= loglogˆ  (4) 

where 
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Taking the logarithm of (5), calculating the gradient with 
respect to q, and introducing c as a combination of all 
parameters that do not depend on q), one obtains: 
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Inserting (6) in (4), straightforward computations (see for 
example Alcocer (2009)) imply that 

HRHJ q
T

qNR ∇⋅⋅∇= −1 . (7) 

Following the definitions and computations in Martínez and 
Bullo (2006), we define 
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for { }ni ,...,1∈  and { }ml ,...,1∈ .  

It then follows from above that 
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From the discussions in the previous Section, the problem of 
optimal sensor placement is equivalent to that of computing 

( ) ( )nqn pppp ,...,maxarg,..., 11 0
L= . (10) 

where the cost function Lq0 is defined as 

( ) ( )nNRnq ppqJpp ,...,,det,..., 1010
=L  (11) 

After inserting (9) in (10) it can be shown, using the 
techniques described in Martínez and Bullo (2006) and 
Aranda et al. (2004) that the above cost function can be 
expressed for the 2D case as  
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and for the 3D case as 
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We now describe the most important results on optimal 
sensor placement. 

3.1  2D Case 

We start by adapting (12) to the scenario described in Section 
2. Equation (2) implies that 
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Similarly for ih2∂ , we obtain 

( ) ( ) 1222222 =+=+= iiiiiiii ryxryrxv . (15) 

Let αij  be the angle between vi and vj. Using the definition of 
the scalar product, it follows that 

( )[ ]jijijiijijjiji rryyxxvvvv +=⇒⋅⋅=⋅ arccoscos αα . (16) 

Furthermore, inserting (15) and (16) in (12) yields 
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From the fact that ( )( ) 21arccossin αα −= , it follows after 
lengthy computations that 
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In preparation for the computation of the optimal sensor 
locations we express their coordinates in polar form. With 
these coordinates, pi is defined by distance r i and angle δi, 
that is, iii rx δcos= , iii ry δsin= . Because 

( )βααββα −=− sincossincossin  , Lq0 can be written as 
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From the above expression two conclusions can be drawn: i) 
the value of the determinant of the Fisher Information Matrix 
does not depend on the ranges of the sensors in a 2D 
scenario, and ii) the determinant depends only on the angles 
of the sensors in a polar coordinate system; namely, on the 
differences between those angles. The reader will find in 
Martínez and Bullo (2006) a proof that the optimal sensor 



 
 

     

 

placement corresponds to having the sensors placed 
symmetrically in a circumference around the target position 

3.2  3D Case 

We use a procedure similar to that discussed in Section 3.1 to 
tackle the 3D case. Expressions (14) and (15) are easily 
generalized by replacing r i with di, for the target depth z0 
must now be considered. From the fact that 
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and the constraint that the norm of vi equals 1, it follows that  
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We now derive different expression for the sin- and the cos- 
factors above. For the sin-factor we can easily adapt the result 
in(16) to obtain 

( )[ ]jijijiij ddzyyxx 2
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Computations similar to those involved in going from (17) to 
(18) allow us to write  
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It is now possible to show that the above equation 
degenerates into 
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For the cos- factor in (21), βij,k is the angle between the cross 
product (vi x vj) and vk. From the definition of the scalar 
product, it follows that 
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Because the above cross product equals 
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the numerator in the expression on the right side of (25) can 
be computed as 
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while the denominator equals 
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Dividing equation (27) by (28), the terms in curly brackets 
are reduced. In the numerator of (28), the signs of the 
elements in the curved brackets can be changed, yielding 
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Finally, we use (24) and (29) in (21), which eliminates the 
terms in curly brackets, thus obtaining 
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We are now interested in computing the optimal range for the 
ROs. We do this again in the 2D polar coordinate system, as 
the reference objects are surface vehicles. By assuming that 
the ranges are the same for all vehicles, using r as common 
range and d as common distance (see Fig. 1), yields 
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We now replace d with (2), sort the terms to separate r- and 
non-r-dependent ones, and introduce a parameter c that 
contains all terms that are constant with respect to r: 
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We now search for that r that maximizes (32). To this effect, 
we compute its gradient and set the result to 0, that is, 
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From the above, considering only the numerator gives 
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Condition (34) is fulfilled for either r or c equal 0. These 
solutions are not feasible and will therefore be discarded. To 

characterize the other solutions divide (34) by 4( )22
0

2 zr + , 
which is greater than 0 for r greater than 0, to obtain 
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We can conclude that the function of the determinant of the 
Fisher Information Matrix, written as a function of r, has 
critical points at 0, 02 z⋅  and 02 z⋅− . Fig. 2 shows a plot of 
the values of the determinant of the Fisher Information 
Matrix calculated for a 3D scenario with three ROs, z0 = 10 
m; and σ2=1 m2, as a function of the common distance r from 
the ROs to the origin. The plot is an interpolation of a 
number of points (identified by marks), computed by using 
(10). As predicted, the maximum value of the determinant is 
obtained for m 142.142 0 == zr . Therefore, the radius of the 



 
 

     

 

sensor formation becomes larger as the depth of the target 
increases. 

4. NUMERICAL VERIFICATION 

4.1  Simulation Environment 

For simulation purposes we assume a situation similar to that 
described in Section 3 and adopt the definitions made there. 
Three Reference Objects (p1, p2, p3) are placed at the surface 
(zi=0 for 3D), with uniformly spatially distributed angular 
distances between them and identical ranges r0, yielding the 
following coordinates in a polar coordinate system: 
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The Reference Objects can measure their distances to the 
target, disturbed by white noise with the variance σ2= 0.1 m². 
For both 2D and 3D situations, we will perform five 
simulation runs. In each run, different values for r0 are used 
which are located around the optimal value according to the 
discussions in Section 3, and for each different value of r0, 
several virtual measurements are created. In each simulation 
we estimate the position of the target using the method of 
Maximum Likelihood with Ranges (ML-R) described in 
Alcocer (2009), which is an iterative descent algorithm, 
providing results very close to the Cramér-Rao Bound in 
optimal case. It is important to mention that in the scenarios 
considered with 3 ROs in one plane and one target at a 
defined depth, any method employed will have two optimal 
solutions: one at the correct target depth, the other one 
directly opposite with a negative depth ('fake' target above 
the surface). However, by appropriately choosing a starting 
position for the iterative algorithm below the surface, the 
algorithm will converge to the correct solution. 

4.2  The Maximum Likelihood with Ranges (ML-R) Algorithm 

Assume the target is at position xML=[x’ y’ z’]T. Then, the 
distances between the target and the Reference Objects are 
given by 
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We now search for those values of xML (referred to as RMLp −ˆ ) 
that maximize p(Z|X), that is, the probability of observing the 
actual measurements Z, conditioned on X. As is customary in 
estimation theory, the above probability is referred to as the 
likelihood function Λ, see (5). In practice, it is common to 
work with the log-likelihood function, introduced in (6), that 
consists of a parameter which is independent from the target 
position (denoted as c in (6)) and a second term that is 
subtracted from c. Therefore, it can be stated that maximizing 
p(Z|X) is equivalent to minimizing the second term of the 
log-likelihood function as shown in (6), which leads to the 
problem of computing 
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This problem can now be solved by using any iterative 
optimization algorithms. See for example Alcocer (2009) for 
the use of a Newton method employing the Armijo that we 
adopted in the present work. 

4.3  Results of Simulations 

For all simulations, we used the following procedure: Five 
simulation runs were performed. For the 2D case, each run 
consisted of 12 simulations, starting with r0 = 5 m and ending 
with 500 m. In the 3D case, the values for r0 were chosen in 
the interval from 5 m to 20 m. In each single simulation, 
10,000 estimations were performed. That means, 10,000 
different measurement value vectors with noise, Z, have been 
created and were stored in a 'central' matrix. Within the same 
run, the same measurement vector was used for each 
simulation. For each of the simulation, estimations using the 
ML-R approach have been performed, always with the initial 
positions 
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for the 2D and 3D cases, respectively. For the Armijo Rule, 
the values used were ε=10-5, kmax=50, s=1, β=0.5, and σ=0.1, 
according to the definition in Alcocer (2009). 

For the 2D scenario, the discussions in Section 3 led to the 
conclusion that the range r0 of the Reference Objects has no 
influence on the quality of the estimation. To prove this 
result, the values used for r0 covered the ranges from 5 m to 
500 m. It can be verified that the variance of the estimation 
error is independent of the rage r0, see Fig. 3. A small 
increase is visible for small ranges. The increase is within 1% 
of the overall value and results from small numerical errors.  

For the 3D scenario, the discussions in Section 3 allowed us 
to conclude that the optimal range r0 of the Reference Objects 
should be the square root of twice the depth of the target. As 

 

Fig. 2: Determinant of Fisher Information as function of 
common range r of the ROs. 



 
 

     

 

the target is at a depth of 10 m, a range of 14.1 m should 
yield the best result for the estimation error variance. To 
prove this result, five simulation runs have been performed to 
cover the ranges from 5 m to 20 m. The results are displayed 
in Fig. 4. It can be observed that the minimum of the variance 
is exactly at the predicted range. 

5. CONCLUSIONS  

The work described in this paper is a contribution to the area 
of Optimal Sensor Placement for the localization of 
underwater targets in realistic marine scenarios.  The paper  
started by affording the reviewer an overview of relevant 
principles, methods, and results available in the literature in 
the area, as well as of the practical motivation for this 
challenging topic of research. After a brief literature survey, a 
method was described to solve the problem of optimal sensor 
placement for range-based target positioning in 2D and 3D 
environments. In the latter case the target is submerged and 
the sensors are at the surface. The theoretical results derived 
were confirmed by means of Monte Carlo Simulations. 
Namely, it was confirmed in the 2D case, where the sensors 
are located on a circumference centered at the target and 
uniformly distributed along it, that the radius of he 
circumference does not have any influence on the accuracy of 
the target estimation. In contrast, in the 3D case the optimal 
range is a function of the target depth. Future work will 
address the problem of optimal sensor placement for  single 
and multiple non-stationary target positioning, as well as 

transitioning from the laboratory to the real world. 
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Fig. 3: Estimation Error Variance for the 2D case  

 
Fig. 4: Estimation Error Variance for the 3D case 


