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Abstract: This paper addresses the problem of optimal sepkmement for acoustic range-based
underwater target positioning. In particular, wecu® on the experimental set-up whereby target
positioning is performed by measuring the rangewéen the underwater target and a number of surface
units equipped with acoustic ranging devices an®.GRith the objective of affording the reader a
concise overview of the main theoretical challenigeslved, this paper starts with a survey of poergi
work done in the area, including that of the aushd@y casting the problem at hand in the form of a
classical estimation problem we describe and sthigeequivalent mathematical problem of maximizing
the determinant of a conveniently defined Fishdorination Matrix (FIM). The latter is related toeth
Cramér-Rao Bound, which equals the smallest pasgioisition estimation error variance that can
possibly be achieved with any unbiased estimator.further clarify the presentation, the details of
Monte Carlo simulations in 2D and 3D with a seldctarget positioning algorithm are included to

confirm the theoretical results numerically.

Keywords Autonomous Underwater Vehicles, Underwater Naiogat Optimal Sensor Placement,
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1. INTRODUCTION

Navigation plays a key role in marine robotics aisd
currently the subject of intensive research wortthyi
especially in underwater scenarios. In the latigret of
missions, autonomous marine vehicles must travef targe
distances to acquire scientific ocean data at weplented
scales, while being able to geo-reference the atzdaired by
resorting to advanced navigation systems. Navigatiothis
context, refers to the task of estimating the pasitof a
vehicle underwater. Submerged vehicles have nosacte
absolute navigation data. In many operational stendhe
only navigation data accessible are those acquiredn-
board resident sensor units. Affordable, classizaligation
systems that rely solely on these data will necédgsxhibit
errors that grow with time, and must be complenantéh
external aids. The latter may include acoustic esyst
capable of estimating the position of the vehiclthwespect
to a set of transponders. In what follow, we giveeay brief
overview of range-based positioning systems.

To estimate the position of an underwater agennbgns of

system that employs surface buoys as ROs in order t
estimate the position of an underwater objectfesrred to as
GIB (GPS Intelligent Buoys). A modification of the
commercially available system that relies on the af an
Extended Kalman Filter (EKF) is described in detail
Alcocer, Oliveira, and Pascoal (2007). The key sdbehind
the GIB concept were exploited and extended inZblath et
al. (2012) to develop a system capable of estimathe
position of a human diver, and where no time
synchronization is required between the target thedROs
(as is the case with the original GIB system). Alsmall
unmanned surface crafts were employed as ROs. fabis
gave rise to another interesting problem, namebt thf
correct placement of the companion surface vehicléss
task is referred to as Optimal Sensor PlacemenPjG®d
can be cast in the form of an Estimation Theoreftablem
that involves the computation of the Cramér-Rao+Rtzuto
compute the best positioning performance that can b
achieved with any unbiased position estimator. Ndiy the
optimal placement solution is a function of the uatt
measurement setup, the measurement model, ancttine a
position of the target.

acoustic range measurements, one needs severaitsobje . ) )
(reference objectsor ROs henceforward) equipped with At first inspection this problem may seem to haitdel

sensors capable of measuring these ranges andndetey
their own position with high precision. A possilslelution is

practical relevance, for it could be argued thathd target
position were known in advance, then the need taté it

to place the ROs at the surface and use GPS tteltwam. A Wwould not arise. This argument can be counteredtagng

that, firstly, this research aims to provide a gehe



understanding of the dependence between targetguoand
optimal acoustic sensor positions. For real seaabipas,
where the accuracy of range measuring devicesaguptd by
intermittent failures, outliers, and multipath pag@ation
effects, it is important to have an understandifighe best
sensor geometry in idealized situations. Second
localization under real conditions may end up beany
iterative process. In this case, it is reasonablget a first,
possibly “rough” estimate of the target positiondahen use
this position to perform Optimal Sensor Placem@mice the
sensors are placed in a new optimal configuratitrg
position of the target can be re-computed and
positioning/estimation cycle continues. Thirdly, tack a
moving target over a large area, the RIZs/e to move
alongside with the target. In this case, again eenss
reasonable to organize their movement in an optiwey
with respect to the current position estimate & thrget,
instead of simply letting them move “roughly” inettsame
direction as the target. Finally, the circle ofadeexploited in
this paper may be extended to deal with the sdnatvhere
prior information about the actual target positisravailable
(e.g. in terms of a probability density functiors done by
Isaacs, Klein, and Hespanha (2009)).

—

This paper should be viewed in part as a surveyempap
work done in this area, and as such it borrows idenzbly
from work done by the authors, see Moreno-Salirtaal.e
(2010), Moreno-Salinas et. al (2011), and the esfees
therein. However, it goes one step further in ihatcludes
not only results on optimal sensor placement, s @n
Monte Carlos simulations with a selected targetitipmsng
algorithm aimed at confirming the theoretical résul
described. The work summarized here and in the t
mentioned publications sought inspiration from tierk of
Martinez and Bullo (2006) on Optimal Sensor Plaganher
range-based localization of ground robots, wheeeatithors
placed the emphasis on the task of finding thenmgdtsensor
positions for the acoustic ranging devices, théetabeing
allowed to move in a convex domain around the amea
which the target is known to lie.

In contrast with the work in Martinez and Bullo (B), we
seek to characterize explicitly for both the 2D & cases
the optimal sensor positions in terms of theiratises to the
target to be located. The results are validateolutiin Monte
Carlo Simulations using MATLAB.

2. PROBLEM DESCRIPTION AND BRIEF LITERATURE
SURVEY

Consider a stationary underwater target locategoaition

Reference Object i at x;/y;/0

Target at 0/0/-z,

Fig. 1: Positioning system — Set-up and paramegscription
for the 3D case (only one RO is shown).

i D{l...,n} be the position of thé" RO, wherem is equal to
2 or 3,for the 2D and 3D scenarios, respectively. Furkiier

z(a)=ha-p])+w (1)

be the measurement (obtained at the ith RO) oflibimnce
between its positiop, and the target at positiap Here, the
function h yields the actual distance between the target and
each of the ROs, as long as it remains in the mabku
range of the employed acoustic modems, that is,

L n=y{xt+y for 2D

hmq_ piH)_di - 2.2_ [y2r 242 ,

V2 +2 =X+ +7 for 3D

Note thatr; is also the range-coordinate of the reference
object in a 2D polar coordinate system which wi#l bsed

later. In the 2D case; equalsd, and will be used instead, see
Fig. 1. We further introduce the column vectdr which

)

ntains then ranges between the target and the ROs.

The termw; in eq. (1) represents a zero mean white noise
Gaussian process with variange We also define the vector
Z that contains the measurement values of all ROs:

o )
A

Z, a- )

whereR is the covariance matri = &° I,

s 3)

1P

R

Equipped with the above definitions, we now seefirtd the
spatial configuration for the ROs that is optimala well
defined sense. We will assume that the ROs wilplaeed at
a circle with radiug, with r as the parameter to optimize.
The rationale for this computational procedure iignify
rooted in estimation theory and was described iveg
elegant manner in Martinez and Bullo (2006) for ¢hse of

4o=[% Yo z]" and a number of Reference Objects (ROs) @jptimal sensor placement for range-based positiprof

the surface, capable of measuring the ranges ttatget. As
discussed above, we assume that the position dhthet is
known in advance in order to find the optimal logatof the
ROs (acoustic sensors). For the sake of simplisieyassume
thatxy, =yo = 0, that is, the target is located at the orafithe

wheeled robots in 2D. In their work, the authorsia=l the
optimal angular distribution between the ROs thakimizes
the determinant of the Fisher Information MatrixINy
associated with the particular estimation probletrhand.
The latter, as is well known, yields (after compgtithe

coordinate system for a 2D-scenario or at the deptblated Cramer-Rao-Bound), relevant informatiortiunbest
coordinatez, below the origin for a 3D-scenario. We furtherpossible performance in target positioning that passibly

assume there anme Reference Objects (ROs). Let O0O™;

be achieved with any unbiased estimator, whereopegnce
is evaluated in terms of the variance of the posi@istimates.



See for example Taylor (1979) and van Trees (2@81)ell with v =[o,y o,8 ', g :D(V.,Vj)'
as Porat and Nehorai (1996) and Ucinski (2004)Idicid
presentations of the above topics. and for the 3D case as
3. OPTIMAL SENSOR PLACEMENT (ANALYTICAL

n 2 .
COMPUTATIONS) £, =5 2Nl Il sin a; cos 5, (13)

1
° 60° i\ Tk=1
— T —
Following classical estimation theory, the Fishefiotmation \ith =l o ok g =Olvy, )
Matrix (FIM) (denoted aslyr for non-random parameters), Bix =D(V|’<ervk)

corresponding to the problem of estimating thedappsition
q based on measuremerfs can be computed from the \ye now describe the most important results on caitim

Jye 2 E|(0, log )0, log AT | 4)
3.1 2D Case

where

_ 1 [ A S TN (5) We start by adapting (12) to the scenario describ&ection
Ne—o Z-H)'R*z-H

V2OridetR exr{ 2( JRA )J 2. Equation (2) implies that
Taking the logarithm of (5), calculating the gradiewith _0 [ 2% (14)
i i ot Oy = +y =+

respect toq, and introducingc as a combination of all ax r

parameters that do not dependgpnone obtains: o .
Similarly for d,h , we obtain

O,logA = Dq{c—%(z -H)' Rz - H)j| =0 HT R*(z - H).(G)

H"iH2 =0 /rf+lyi/rf =% +Yi2/fi2 =1. (15)
Inserting (6) in (4), straightforward computatio(@e for | et q; be the angle betweapandv,. Using the definition of
example Alcocer (2009)) imply that the scalar product, it follows that
Jw= DqHT R™ M H - (7) v ;=[] EﬁvJH Tosa; = a; :arcco{{xxj +Y Y )/rirj]- (16)
Following the definitions and computations in Maez and Furthermore, inserting (15) and (16) in (12) yields
Bullo (2006), we define
1 XX MY, a7)
. 0 8) £ =— sin® arccos— L.
o1 (. py- pn)-gfﬂ\‘* pi‘quo' ® &= ;1 ( nr J
for i0{1...,n} and! O{1....m}. From the fact thatsin(arccofa))=+v1-a?, it follows after
lengthy computations that
It then follows from above that . ( )2
L _iz XY ~XYi) | (18)
) 2 2.2
e = ?(DqH);D(DqH)qD 20%im
) (alh)z (01h)(adh) : ®) n preparation for the computation of the optimahsor
iz : : locations we express their coordinates in polamfowith
o 2 these coordinateg; is defined by distance and angled,
(0sn)an) - (@ah) . . -
that is, % =1, C0S3, , i = sing . Because

From the discussions in the previous Section, teelpm of  sinacosp-sinBcosa =sin(a - 8) » £qo Can be written as
optimal sensor placement is equivalent to thabofguting

1 (ri cosdr, sind; —r, coso. r; siné’i)2
(py.....p,) = argmax£, (p,.....p,)- (10) £ =5z I;l J Jrizrjzl J

1 @ rizrf(COSffi sing; - cosd, sindi)2 1

—ﬁismz(fyi ‘51)

T 2074 ror? 20° 4
(19)

From the above expression two conclusions can &erdri)
the value of the determinant of the Fisher InfoioraMatrix
does not depend on the ranges of the sensors iDa 2
scenario, and ii) the determinant depends onlyhenaingles
p = 1 & 2l 1?2 (12) of the sensors in a polar coordinate system; nanoelythe
6~ 5g? ZleuH i sin® a; differences between those angles. The reader inidl in

I Martinez and Bullo (2006) a proof that the optirsehsor

where the cost functiofiy is defined as

£, (py.-... p,) = detd o (a, Pyoonr P,) (11)

After inserting (9) in (10) it can be shown, usithe
techniques described in Martinez and Bullo (20061 a
Aranda et al. (2004) that the above cost functian be
expressed for the 2D case as




placement corresponds to having the sensors plac‘ﬁdwHz ) (y.Zo— yjzo)2+(sz'0_ X}o)2+(>$ Y - % yi)z '
]

symmetrically in a circumference around the tapgedition
3.2 3D Case

We use a procedure similar to that discussed itidde8.1 to
tackle the 3D case. Expressions (14) and (15) asilye
generalized by replacing with d;, for the target deptiz,

must now be considered. From the fact that

0
o ==y =2

(20)
and the constraint that the normwpéquals 1, it follows that

(21)

1 &
L, = 7 .Zk:lsmz a; cos B,
1,] K=

We now derive different expression for the sin- émel cos-
factors above. For the sin-factor we can easilyatle result
in(16) to obtain

(2)

a; =arcconX,- WY +Z§)/didij'

Computations similar to those involved in goingnfrgl7) to
XX+ WY+
dd,

(18) allow us to write
= (b + yy, )+ 2f

X2 +y2+ e+ yi+ )

sin’ a = sinz[arcco

(23)

(28)

i (P
Dividing equation (27) by (28), the terms in cubyackets

are reduced. In the numerator of (28), the signsthef
elements in the curved brackets can be changddinge

(29)

Z06y %y X% xHxy o f

Szﬁi' =
% P allvyz0 - wzoF + (520 - 207 + (5 v~ %, T}

Finally, we use (24) and (29) in (21), which elicties the

terms in curly brackets, thus obtaining

206 =%y, X% = XY+ %y =% v (30
did’d;

We are now interested in computing the optimal eafog the
ROs. We do this again in the 2D polar coordinatdesy, as
the reference objects are surface vehicles. Bynaisguthat
the ranges are the same for all vehicles, using common
range andl as common distance (see Fig. 1), yields

e =L 3 2%t *.(31)
Qo 60.2 i dG

€0sJ, sing, —cos9, sing; +cosJ; sing, -+
++-= €08, Sing, +€osg sing; —cosd; sing,

We now replacal with (2), sort the terms to separateand
non+-dependent ones, and introduce a parametehat
contains all terms that are constant with respect t

4
N, -

We now search for that r that maximizes (32). Tie #ffect,

e

It is now possible to show that the above equatiowne compute its gradient and set the result todl,ith

degenerates into

{bgy =%y P+ (520~ x20f + (92 - 2o}
i

(24)

Sin2 aij =

For the cos- factor in (21)5;« is the angle between the cros
product ¢ x v;) andv,. From the definition of the scalar
product, it follows that

e = o

(V xv.)w 2 (25)
= coS Bk :[ "‘V XJV.H k]
(R
Because the above cross product equals
VXV = ¥~ Y2 X%~ X% XY XY T, (26)
o dd, dd; dd,

the numerator in the expression on the right sfd@®) can

be computed as
e[l b o
j qd,dy qd,dy qd,dy
(603 = %Y; + X% = %Y + % y; — Xy P
{d?dfd

Jz, (27)

:22

while the denominator equals

g _ o0 cOf _iu_u’v—uv":0

ot Tar e gl oy v

. (33)

u=cr*, u =4crd, v:(r2+z§)3, \/:3Eﬂr2+z§)2|]?ﬁr

FFrom the above, considering only the numeratorgyive

acr?{r? + 2f -ert i ? + 22 21 2o0. (34)

Condition (34) is fulfilled for either or ¢ equal 0. These
solutions are not feasible and will therefore becdided. To

characterize the other solutions divide (34) beZ 425)2,
which is greater than O forgreater than 0, to obtain

(35)
(36)

r2+z2-15r2=0
0,5r2!:z§ér!:\/§zo for r greater than 0.

We can conclude that the function of the deterntimdirthe
Fisher Information Matrix, written as a function pf has
critical points at 0421z, and -v2%,. Fig. 2 shows a plot of
the values of the determinant of the Fisher Infdioma
Matrix calculated for a 3D scenario with three R@sz 10
m; andd’=1 nt, as a function of the common distamdieom
the ROs to the origin. The plot is an interpolatioh a
number of points (identified by marks), computed using
(10). As predicted, the maximum value of the deteamt is
obtained forr =+2z, = 14142m. Therefore, the radius of the



HXML:_ le B \/(XI_Xi) _(:y'_Y1) +2° . (38)

X =

500l ) Y=} = (y-ys) + 22

=}
w0

=}
™

We now search for those valuesxgf (referred to as,,_z)
that maximizep(Z|X), that is, the probability of observing the
actual measuremenfs conditioned orX. As is customary in
estimation theory, the above probability is refdrte as the
likelihood functionA, see (5). In practice, it is common to
work with the log-likelihood function, introduced {6), that

=2
By

Determinant of Fisher Information

=2
)

i I i i 1
10 15 20 25 0

05
a

Rangs between ROs and origin [] consists of a parameter which is independent floentarget
position (denoted as in (6)) and a second term that is
Fig. 2: Determinant of Fisher Information as funatof subtracted frone. Therefore, it can be stated that maximizing
common range of the ROs. p(Z|X) is equivalent to minimizing the second term oé th

log-likelihood function as shown in (6), which lesatb the

sensor formation becomes larger as the depth ofattyet .
g P problem of computing

increases.
. (1 T

4. NUMERICAL VERIFICATION Pur = afgm'“(z(z -XJ Rz - X)j' (39)

This problem can now be solved by using any iteeati

optimization algorithms. See for example Alcocedq@) for

the use of a Newton method employing the Armijat tve

For simulation purposes we assume a situation airtol that adopted in the present work.

described in Section 3 and adopt the definitionsleniere.

Three Reference_ Objec;qsl( P2, P3) are plageq at the surface, 3 Rasults of Simulations

(z=0 for 3D), with uniformly spatially distributed gular

distances between them and identical rangegielding the

4.1 Simulation Environment

following coordinates in a polar coordinate system: F_or all _simulations, we used the following procexuFive
simulation runs were performed. For the 2D caseh ean
pr(t)=[r(t) o) of (37)  consisted of 12 simulations, starting with= 5 m and ending
with 5 = 2n(i-1) . with 500 m. In the 3D case, the values ifpwere chosen in
e i0{123 the interval from 5 m to 20 m. In each single siatioi,

10,000 estimations were performed. That means, 000,0
The Reference Objects can measure their distamcébet different measurement value vectors with no&ehave been
target, disturbed by white noise with the variaoée 0.1 m2. created and were stored in a 'central' matrix. Withe same
For both 2D and 3D situations, we will perform fiverun, the same measurement vector was used for each
simulation runs. In each run, different values ffipare used simulation. For each of the simulation, estimatiosg the
which are located around the optimal value accgrdinthe ML-R approach have been performed, always withirthil
discussions in Section 3, and for each differeievadfr,,  positions
several virtual measurements are created. In dauliagion
we estimate the position of the target using théhow of :[X1+X2 yﬁyﬂm{xgxz ity 20] (40)
Maximum Likelihood with Ranges (ML-R) described in 2 2 2 2 2
Alcocer (2009), which is an iterative descent alton,
providing results very close to the Cramér-Rao Rbum
optimal case. It is important to mention that ie #tenarios
considered with 3 ROs in one plane and one targed a

defined depth, any method employed will have twtinoal . . , , .
solutions: one at the correct target depth, theerottne For the 2D scenario, the discussions in Sectioad3td the

directly opposite with a negative depth (fakegedrabove conclusion that the rangg of the Reference Objects has no

the surface). However, by appropriately choosingtaating influence on the quality of the estimation. To prothis
position for the iterative algorithm below the s, the '€Sult. the values used foy covered the ranges from 5 m to
algorithm will converge to the correct solution. 500 m. It can be verified that the variance of éséimation

error is independent of the ragg see Fig. 3. A small
increase is visible for small ranges. The incressethin 1%
of the overall value and results from small nunarerrors.

for the 2D and 3D cases, respectively. For the frmiule,
the values used weee10°, ky,=50, =1, £=0.5, ando=0.1,
according to the definition in Alcocer (2009).

4.2 The Maximum Likelihood with Ranges (ML-R) Atbm

Assume the target is at positiog =[x' y' z’]". Then, the
distances between the target and the Referencect®lgjee
given by

For the 3D scenario, the discussions in Sectiolo8vad us
to conclude that the optimal ranggof the Reference Objects
should be the square root of twice the depth otdinget. As



2D Case, Range independent measurement error variance, ML-R trans|t|0n|ng from the Iaboratory to the real World

—+—Run1 —+—Run2 Run 3 Run4 —+—Run5
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