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Abstract— The paper describes a novel robust adaptive con-
troller for Dynamic Positioning (DP) of marine vessels. The
proposed Robust Multiple Model Adaptive Dynamic Positioning
(RMMADP) structure consists of a bank of robust controllers
designed using the Mixed-µ methodology and an identification
unit. The latter is composed by a bank of (steady-state) Kalman
filters (KFs) that generate online the output estimation errors
(residuals) that are used to generate appropriate monitoring
signals. At each sampling time, the monitoring signals are
assessed to decide which controller should be selected from
the bank of the controllers. The proposed adaptive structure of
the RMMADP enables the DP system to operate in different
operational conditions and hence, it is a step forward to a
so-called all-year marine DP system. Numerical simulations,
carried out with a high fidelity nonlinear DP simulator, illus-
trate the efficacy of the RMMADP techniques proposed. To
bridge the gap between theory and practice, the results are
experimentally verified by model testing a DP operated ship,
the Cybership III, under different sea conditions in a towing
tank equipped with a hydraulic wave maker.

I. INTRODUCTION

The first generation of DP systems came to existence in the
1960s for offshore drilling applications, due to the need to
drill in deep waters and the realization that Jack-up barges
and anchoring systems could not be used economically at
such depths. The first vessel equipped with a Dynamic Po-
sitioning (DP) system was launched in 1961 [1]. The vessel,
named Eureka, was property of the Shell Oil Company.
Nowadays, DP systems are used with a wide range of vessel
types and in different marine operations such as hydrographic
surveying, marine construction, wreck investigation, under-
water recovery, site surveying, underwater cable and pipe
laying, and inspection and maintenance. In particular, in the
offshore, oil, and gas industries many applications are only
possible with the use of DP systems for service vessels,
drilling rigs and ships, shuttle tankers, cable and pipe layers,
floating production off-loading and storage units (FPSOs),
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crane and heavy lift vessels, geological survey vessels, and
multi-purpose supply and intervention vessels.

Early dynamic positioning systems were implemented
using PID controllers. In order to restrain thruster trembling
caused by the wave-induced motion components, notch fil-
ters in cascade with low pass filters were used with the
controllers. An improvement in performance was achieved
by exploiting more advanced control techniques based on
optimal control and Kalman filter theory, see [2]–[4]. A
simpler set-up based on nonlinear passive observers (to
replace Kalman filters) was introduced in [5]–[7]. Further
developments in recent years have led to the use of nonlinear
control [8], robust control [9], [10], adaptive control [11] and
hybrid control [12] theories in the design of DP systems. The
literature on ship DP is vast and defies a simple summary.
See for example [13], [14] and the references therein for a
short presentation of the subject and its historical evolution.

Most of the current DP systems are designed to operate up
to certain limits of weather conditions. However, in practice
the sea state may undergo large variations and therefore the
controller should adapt to the sea state itself. To meet this
challenge, different techniques have been proposed. Among
them, supervisory control techniques were exploited in [12]
to design a hybrid DP controller. A distinctive feature of the
controller developed was the use of spectral techniques to
estimate the wave spectrum in surge, sway, and yaw from
position and heading measurements. The results were used
to identify the sea state, based on which the appropriate con-
troller was selected from a pre-defined bank of controllers.
However, this approach is sensitive to measurement noise
and may have latency problems because it requires that the
samples acquired be buffered to estimate the Power Density
Spectrum of the measurement time series.

In this paper, availing ourselves of previous results ob-
tained by the authors in [9], [10], [15], [16], we propose
a new type of DP control law that we will henceforth be
referred to as a Robust Multiple Model Adaptive Dynamic
Positioning (RMMADP) system. A bank of individual robust
DP controllers for different sea conditions (calm, moderate,
high and extreme) are designed using mixed-µ techniques
[17]. In the new structure proposed, a bank of Kalman filters
are designed based on a finite number of models of the vessel
when it undergoes operations under different sea conditions.
Multiple model identification tools are used to identify
the sea state and to select the appropriate (locally) robust
DP controller from a pre-defined bank of the controllers.
The main objective of this paper is to integrate a bank
of appropriate robust DP controllers into a state-of-the-art
robust adaptive DP architecture yielding good performance



in varying operational conditions, from calm to extreme seas.
The proposed structure extends the so-called weather window
operational availability of a DP system without the need for
spectral identification techniques (which exhibit latency and
are very sensitive to measurement noise).

Numerical simulations, carried out in a high fidelity non-
linear DP simulator, illustrate the efficacy of the RMMADP
techniques proposed. To bridge the gap between theory and
practice, the results are experimentally verified by model
testing of a DP operated ship, the Cybership III, under
different simulated sea conditions in a towing tank equipped
with a hydraulic wave maker.

The structure of the paper is as follows. In section II
we present the main issues that arise in the design of the
RMMADP. In Section III we present the results of numerical
Monte-Carlo simulations with stochastic signals, carried out
in the Marine Cybernetics Simulator, that illustrate the per-
formance of developed DP controller in calm to extreme sea
conditions. In section IV, a short description of the model-
test vessel, Cybership III, and experimental results of model-
tests are presented. Conclusions and suggestions for future
research are summarized in Section V.

II. THE ROBUST MULTIPLE-MODEL ADAPTIVE
DYNAMIC POSITIONING

In what follows, the vessel model that is by now standard1

is presented. See for example [6], [8], [18], [19]. The model
admits the realization

ξ̇W = AW (ω0)ξW + EWwW (1)
ηW = R(ψL)CW ξW (2)

ḃ = −T−1b+ Ebwb (3)
η̇L = R(ψL)ν (4)

Mν̇ +Dν = τ +RT (ψtot)b (5)
ηtot = ηL + ηW (6)
ηy = ηtot + v, (7)

where (1) and (2) capture the 1st-order wave induced motions
in surge, sway, and yaw; equation (3) represents the 1st-order
Markov process approximating the unmodelled dynamics
and the slowly varying environmental forces (in surge and
sway) and torques (in yaw) due to waves (2nd order wave
induced loads), wind, and currents. The latter are given in
earth fixed coordinates but expressed in body-axis. In the
above, ηW ∈ R3 is the vessel’s WF motion due to 1st-
order wave-induced disturbances, consisting of WF position
(xW , yW ) and WF heading ψW of the vessel; wW ∈ R3 and
wb ∈ R3 are zero mean Gaussian white noise vectors, and

AW =

[
03×3 I3×3

−Ω3×3 −Λ3×3

]
, EW =

[
03×1

I3×1

]
,

CW =
[
03×3 I3×3

]
,

1The model described by (1)-(6) has minor differences with respect to
the ones normally available in the literature. While in most of the literature
the WF components of motion are modeled in a fixed-earth frame, in this
paper the WF motion is modeled in body-frame. The reader is referred to
[16], [20] for details and improvements of the present model.

with

Ω = diag{ω2
01, ω

2
02, ω

2
03},

Λ = diag{2ζ1ω01, 2ζ2ω02, 2ζ3ω03},

where ω0 = [ω01 ω02 ω03]
T and ζi are the Dominant Wave

Frequency (DWF) and relative damping ratio, respectively.
Matrix T = diag(Tx, Ty, Tψ) is a diagonal matrix of positive
bias time constants and Eb ∈ R3×3 is a diagonal scaling
matrix. Vector ηL ∈ R3 consists of low frequency (LF),
earth-fixed position (xL, yL) and LF heading ψL of the
vessel relative to an earth-fixed frame, ν ∈ R3 represents
the velocities decomposed in a vessel-fixed reference, and
R(ψL) is the standard orthogonal yaw angle rotation matrix
(see [21] for complete details). Equation (5) describes the
vessels’s LF motion at low speed (see [21]), where M ∈
R3×3 is the generalized system inertia matrix including
zero frequency added mass components, D ∈ R3×3 is the
linear damping matrix, and τ ∈ R3 is a control vector
of generalized forces generated by the propulsion system,
that is, the main propellers aft of the ship and thrusters
which can produce surge and sway forces as well as a
yaw moment. Vector ηtot ∈ R3 describes the vessel’s total
motion, consisting of total position (xtot, ytot) and total
heading ψtot of the vessel. Finally, (7) represents the position
and heading measurement equation, with v ∈ R3 a zero-
mean Gaussian white measurement noise.

From (1)-(6), using practical assumptions, a linear model
with parametric uncertainty was obtained in [9] as follows:

ξ̇W = AW (ω0)ξW + EWwW (8)

ηbW = CW ξW (9)

ḃp = −T−1bp + θ1Sb
p + wfb (10)

η̇pL = θ1Sη
p
L + ν + θ2Sν (11)

Mν̇ +Dν = τ + bp (12)

ηfy = ηpL + ηbW + n (13)

where ηbW are WF components of motion on the body-
coordinate axis, wfb and ηfy are a new modified disturbance
and a modified measurement defined by wfb = RT (ψy)Ebwb
and ηfy = RT (ψy)ηtot + n, respectively, n ∈ R3 is the mea-
surement noise, ω0, θ1, and θ2 are parametric uncertainties
given in Table II, and the matrix S is given by

S =

 0 1 0
−1 0 0
0 0 0

 .
The equations describing the kinematics and the dynamics
of the vessel can be represented in the following standard
form for multiple-input-multiple-output (MIMO) linear plant
models:

ẋ(t) = A(ω0, θ1, θ2)x(t) +Bu(t) + Lw(t), (14a)
y(t) = Cx(t) + v(t), (14b)

where x(t) = [ξW
T bpT ηpL

T
νT ]T ∈ R15 denotes the

state of the system, u(t) = M−1τ ∈ R3 its control input,
y(t) = ηfy ∈ R3 its measured noisy output, w(t) =



[wW
Twfb

T
]T ∈ R6 an input plant disturbance that cannot

be measured, and v(t) = n ∈ R3 is the measurement
noise. The equations in (14) are simply a compact way
of presenting equations in (8)-(13); A(ω0, θ1, θ2), B, L
and C are defined in the obvious manner. Vectors w(t)
and v(t) are zero-mean white Gaussian signals, mutually
independent with intensities E{w(t)wT (τ)} = Qδ(t− τ)
and E{v(t)vT (τ)} = Rδ(t− τ). The initial condition x(0)
of (14) is a Gaussian random vector with mean and covari-
ance given by E{x(0)} = 0 and E{x(0)xT (0)} = Σ(0),
respectively. Matrix A(ω0, θ1, θ2) contains unknown constant
parameters indexed by ω0, θ1, and θ2. The parametric
uncertainty interval of θ1 and θ2 is very small1 and the main
parametric uncertainty in the the model given by (14) is the
DWF, ω0. Table I shows the definition of the sea conditions
characterized by the DWF. The sea conditions are associated
with the particular model of offshore supply vessel that is
used in our study. We assume that DWF lies in the interval

TABLE I
DEFINITION OF SEA STATES FROM [22]

Sea States DWF Significant Wave Height
ω0 (rad/s) Hs (m)

Calm Seas > 1.11 < 0.1
Moderate Seas [0.74 1.11] [0.1 1.69]

High Seas [0.53 0.74] [1.69 6.0]
Extreme Seas < 0.53 > 6.0

TABLE II
INTERVAL OF PARAMETRIC UNCERTAINTIES

Sea Status ω0 θ1 θ2
rad/s rad/s2 rad/s

Calm Seas [1.11 1.8] Int∗ [−0.038 0.038]
Moderate Seas [0.74 1.11] Int [−0.04 0.04]

High Seas [0.53 0.74] Int [−0.042 0.042]
Extreme Seas [0.39 0.53] Int [−0.04 0.04]
∗ Int=[−5× 10−4 5× 10−4]

[0.39 1.8]2 that covers calm, moderate, high and extreme sea
conditions.

In the RMMADP deign methodology we divide the
parametric uncertainty region into smaller regions and we
design robust controllers Ki for each subregion, using the
µ-synthesis method [17], [23]. Here, we borrow from the
work in [9], [10] where four (locally) robust DP controllers,
for calm, moderate, high and extreme sea conditions, were
designed and their performance evaluated both through nu-
merical simulations (in the Marine Cybernetics Simulator -
MCSim), and experimentally, performing model test exper-
iments. Moreover, the performance of the designed robust
DP controllers for different sea conditions is compared with
the ones of LQG and PID controllers in [24] showing the
satisfactory performance of robust DP controllers in different

1See [5]–[7] where θ1 and θ2 are ignored in the design process.
2We use the same interval for DWF in surge, sway and yaw.

sea conditions; in particular, superior performance of robust
DP controllers in extreme sea condition is shown in [24].

In a RMMADP system a bank of KFs are used in
order to select the correct controllers from the bank of
the controllers. Each KF is designed based on a selected
value of the unknown parameter, ω0. The residuals of all
the KFs are analyzed in a block called Monitoring Signal
Evaluator (MSE). The MSE assigns a performance index
(monitoring signal) to each KF (and the corresponding
controller). Then, the monitoring signals µi (to be defined
shortly) are associated with the ith KF (and ith controller,
i.e. Ki, in the bank of the controllers). These monitoring
signals are used to select the best local controller from the
bank of robust DP controllers. Four selected values for ω0

are chosen as {0.48, 0.63, 0.92, 1.18} (rad/s). Each selected
value represents one of the sea states, calm, moderate, high
and extreme. The bank of the Kalman filters is designed
based on the selected nominal values for the dominant wave
frequency (DWF); see [24] for details on the design of a
Kalman filter for DP systems and [25] for details on the
selection of the nominal design models. Each steady state
KF has the following realization [26]:

x̂i(t+ 1) = A(ω0, θ1, θ2)x̂i(t) +Bu(t) +Hθi

(
y(t)− ŷi(t)

)
,

ŷi(t) = Cx̂i(t),

Hθi = A(ω0, θ1, θ2)PiC
T [CPiC

T +R]−1,

where Pi is the solution of the discrete Riccati equation

Pi = A(ω0, θ1, θ2)PiA(ω0, θ1, θ2)
T + LQLT

−A(ω0, θ1, θ2)PiC
T [CPiC

T +R]−1CPiA(ω0, θ1, θ2)
T .

(16)

It is assumed that [A(ω0, θ1, θ2), L] and [A(ω0, θ1, θ2), C]
are controllable and observable, respectively for all admis-
sible values of of ω0, θ1, and θ2. The symmetric positive
definite matrices Q and R were defined before as covariance
matrices of the plant disturbance and measurement noise,
respectively.
The output estimation errors (ỹi(t) = y(t)− ŷi(t)) and error
covariances of all the Kalman filters (Si = CPiC

T +R) are
used to compute a performance signal that can be viewed as
a gaussian maximum likelihood ratio. This signal is called a
“monitoring signal” µi(t), and is defined as

µi(t) :=
1

t

t∑
k=1

1

2
ỹi(k)

TS−1
i ỹi(k)+ ln

(
(2π)

3
2

√
|Si|

)
. (17)

For more details on definition and concept of the monitoring
signals see [15]. The monitoring signals are then used to
select one of the local controllers (the one associated with
Kalman filter with the smallest monitoring signal).

Fig. 1 shows the architecture of the RMMADP system.
The RMMADP, in Fig. 1, consists of: i) the monitoring signal
evaluator, ii) a bank of N KFs, where each local estimator is
designed based on one of the representative parameters, and
iii) a bank of N robust DP controllers which are switched in
the feedback loop based on the values of monitoring signals.
A dwell-time switching policy is used to prevent chattering
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Fig. 1. The RMMADP architecture.

among the controllers, see [15] for details on the structure of
the RMMADP. The stability of the overall system is studied
in [15]. It is shown that in steady state the correct controller
is selected and during the transient all the internal signals
remain bounded. The control action is uσ(t), where σ =
argmin{µi(t)}.3

In DP systems, it is important that the controller adapt
to the sea state that may change during operations. In the
RMMADP methodology, in order to distinguish the sea
state, a multiple model structure is exploited to identify
the sub-interval that the peak frequency of the assumed
wave spectrum model lies in. Based on the results of the
identification, which are carried out at each sampling time
by assessing the monitoring signals, an appropriate controller
(from the bank) is switched in the feedback loop.

III. NUMERICAL SIMULATIONS
In what follows we test the performance of our controller

using the Marine Cybernetics Simulator (MCSim), later
on upgraded to the Marine System Simulator (MSS). The
MCSim is a modular multi-disciplinary simulator based on
Matlab/Simulink. It was developed at the department of
marine technology of the Norwegian University of Science
and Technology (NTNU). The MCSim incorporates high
fidelity models, denoted as process plant model or simulation
model in [19], at all levels (plants and actuators). It captures
hydrodynamic effects, generalized coriolis and centripetal
forces, nonlinear damping and current forces, and general-
ized restoring forces. It is composed of different modules
such as environmental module, vessel dynamics module,
thruster and shaft module, and Vessel control module. For
more details on the MCSim see [27], [28].

The results of Monte-Carlo simulations aimed at assessing
the performance of the RMMADP controller are presented
below. In these simulations, the different environment con-
ditions from calm to extreme seas are simulated using the
spectrum of the Joint North Sea Wave Project (JONSWAP)
[29]. Throughout the paper, four different environment con-
ditions from calm to extreme seas are considered. Table I

3In this architecture, the identification module (that relies on monitor-
ing signal evaluator) computes the smallest monitoring signal µi; i ∈
{1, 2, . . . N} and switches the controller Ki associated with that monitoring
signal, after which it dwells on that selection for a predefined time, called
dwell-time. See [15] for details on dwell-time and how to compute it.

shows the definition of the sea condition associated with
a particular model of supply vessel that is used in the
MCSim. The sampling time of Ts = .25 (sec) is used to
implement the RMMADP system throughout the simulation
and experimental tests.

Fig. 2 shows the results of a simple simulation4. In this
experiment we examine the performance of the RMMADP
system in different sea conditions. The first (upper) sub-
figure shows the switching signal in a calm sea condition.
The second sub-figure shows the switching signal in a
moderate sea condition. The switching signal in high sea
condition is shown in the third sub-figure and finally the
switching signal in extreme sea state is depicted in the last
(lowest) sub-figure of Fig. 2.
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Fig. 2. Simulation result: Switching signals in different sea conditions;
from top to bottom: calm, moderate, high, and extreme sea condition.

We stress that the performance of any adaptive system
must be evaluated not only for constant unknown param-
eters but also, for time-varying parameters which undergo
slow or rapid time-variations. In practice, the sea state
may experience large variations and therefore adaptation is
necessary in the dynamic positioning. Fig. 3 shows the results
of the simulation where the sea state changes in time. In
this experiment, during the first 300 seconds the moderate
sea state is simulated and for the next 300 seconds the
sea state changes to high condition. Fig. 3 represents the
time evolution of the switching signal and the position of
the vessel. The first sub-figure shows the switching signal;
clearly RMMADP system follows the sea changes.5 The
remaining sub-figures in Fig. 3 depicts the time evolution
of the position of the vessel.

IV. EXPERIMENTAL RESULTS

The controller designed was tested using the model vessel
Cybership III, at the Marine Cybernetic Laboratory (MCLab)

4All the results in the paper are presented in full scale.
5For the time varying case, 2 monitoring signals are computed for

each observer. The monitoring signals reset every 40 seconds (with a 20
second time difference between the resetting time of the monitoring signals
associated with each observer) and at each time only one of these monitoring
signals (for each observer) goes to the supervisor. This means that when
a monitoring signal, which is fed to supervisor, resets its value, the other
monitoring signal whose value was reset 20 seconds ago and has by now
reached its steady state value, will be fed to the supervisor.
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of the Department of Marine Technology at the Norwegian
University of Science and Technology (NTNU). The per-
formance of the controllers was tested under different sea
conditions produced by a hydraulic wave maker.

A. Overview of the CybershipIII
CyberShip III is a 1:30 scaled model of an offshore vessel

operating in the North Sea. Fig. 4 shows the vessel at
the basin in the MCLab and table III presents the main
parameters of the model and full scale vessel.

TABLE III
MODEL MAIN PARAMETERS

Model Full Scale
Overall Length 2.275 m 68.28 m
Length between
perpendiculars 1.971 m 59.13 m

Breadth 0.437 m 13.11 m
Breadth at water line 0.437 m 13.11 m

Draught 0.153 m 4.59 m
Draught front perpendicular 0.153 m 4.59 m
Draught aft. perpendicular 0.153 m 4.59 m

Depth to main deck 0.203 m 6.10 m
Weight (hull) 17.5 kg Unknown

Weight (normal load) 74,2 kg 22.62 tons
Longitudal center of gravity 100 cm 30 m

Vertical center of gravity 19.56 cm 5.87 m
Propulsion motors max

shaft power (6% gear loss) 81 W 3200 HP
Tunnel thruster max

shaft power (6% gear loss) 27 W 550 HP
Maximum Speed Unknown 11 knots

Fig. 4. Cybership III.

Cybership III is equipped with two pods located at the aft.
A tunnel thruster and an azimuth thruster are installed in the

bow.6 It has a mass of m = 75 (kg), length of L = 2.27 (m)
and breadth of B = 0.4 (m). Main parameters of the model is
presented in Table III. The internal hardware architecture is
controlled by an onboard computer which can communicate
with onshore PC through a WLAN. The PC onboard the
ship uses QNX real-time operating system (target PC). The
control system is developed on a PC in the control room (host
PC) under Simulink/Opal and downloaded to the target PC
using automatic C-code generation and wireless Ethernet.
The motion capture unit (MCU), installed in the MCLab,
provides Earth-fixed position and heading of the vessel. The
MCU consists of 3 onshore cameras mounted on the towing
carriage and a marker mounted on the vessel. The cameras
emit infrared light and receive the light reflected from the
marker.

To simulate the different sea conditions, a hydraulic wave
maker system was used. It consists of a single flap covering
the whole breadth of the basin, and a computer controlled
motor moving the flap. It can produce regular and irregular
waves with different spectrums. We have used the JONSWAP
spectrum to simulate the different sea conditions for our
experiment.

Fig. 5 shows the results of the experiment where the
wave maker system simulates different sea state conditions.
Since the robust DP controllers are designed for a linearized
system, a simple PI controller is used as an initializer to
bring the vessel to the desired point (the origin) in the basin.
The first (upper) sub-figure shows the wave elevation profile
recorded by a probe installed five meters away from the wave
maker. The second sub-figure shows the switching signal.
As in the case of simulations, the RMMADP system keeps
track of the sea state. However, we should stress that we have
tuned the RMMADP during a few tests and Fig. 5 shows the
final tuned system. We also should highlight that the wave
profiles generated by the wave maker for high and extreme
seas were not very different due to the limited capacity of
the wave maker. Therefore, identifying the high and extreme
sea conditions proved to be more difficult than identifying the
other conditions. The remaining sub-figures in Fig. 5 shows
the time evolution of the position and heading of the vessel.

V. CONCLUSIONS AND FUTURE RESEARCH
A Robust Multiple Model Adaptive Dynamic Positioning

(RMMADP) system was described. The RMMADP system
can operate in time-varying operational conditions, from
calm to extreme seas, thus making it a good candidate for
all-year operations. Furthermore, the system dispenses with
the need for spectral identification techniques (which exhibit
delays and are very sensitive to measurement noise). The
proposed RMMADP design built upon recent developments
on robust adaptive techniques using a multiple model struc-
ture. The RMMADP consists of a bank of robust controllers
designed using Mixed-µ methodology and an identification
unit. The identification unit uses a bank of (steady-state)
Kalman filters (KFs) that generates online appropriate moni-
toring signals. At each sampling time, the monitoring signals

6For technical reasons in this experiment the tunnel thruster was deacti-
vated.
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Fig. 5. Experimental results: evolution of the wave profile, the switching
signal and the position of the vessel in time varying scenario (data is scaled
from model to full scale).

are processed to select which controller should be selected
from the bank of controllers. Numerical simulations, carried
out with a high fidelity nonlinear DP simulator illustrated
the efficacy of the RMMADP techniques proposed. The
results were experimentally verified by model testing a DP
operated ship, the Cybership III, under different simulated
sea conditions in a towing tank with a hydraulic wave maker.
The experimental data confirms that the method developed
holds promise for practical applications.
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