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SUMMARY

This article introduces a new method for model falsification using set-valued observers, which can be applied
to a class of discrete linear time-invariant dynamic systems with time-varying model uncertainties. In com-
parison with previous results, the main advantages of this approach are as follows: The computation of the
convex hull of the set-valued estimates of the state can be avoided under certain circumstances; to guaran-
tee convergence of the set-valued estimates of the state, the required number of previous steps is at most
as large as the number of states of the nominal plant; and it provides a straightforward nonconservative
method to falsify uncertain models of dynamic systems, including open-loop unstable plants. The results
obtained are illustrated in simulation, emphasizing the advantages and shortcomings of the suggested
method. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of model falsification or model invalidation is relevant in a wide range of applica-
tions, such as fault detection and isolation, multiple-model adaptive control and model identifi-
cation methodologies. In any of these situations, as stressed in [1], the key aspect to take into
account is the fact that a model can never be validated in practice. Indeed, a given dynamic
model being compatible with the input/output data sequence up to time t does not imply that it
is compatible with the measurements at time t C ı, where ı > 0. Therefore, one can only say
that a given model is not falsified (or invalidated) by the current input/output data sequence. On
the other hand, a model is obviously invalidated or falsified once it is not compatible with the
observations.

As a typical framework, one considers the problem of selecting an appropriate model for a given
dynamic system, among a set of predefined eligible models. However, unmodeled and/or unknown
dynamics (present in virtually every physical system) and adverse exogenous disturbances can result
in the invalidation of models that would be valid if such perturbations were taken into account.
Hence, it is imperative that the formulation of the problem takes into account these uncertainty
terms, to avoid undue invalidation of models. As an example, the solution proposed in [1] for
uncertain linear time-invariant (LTI) systems, and later on extended to linear parameter-varying
(LPV) systems [2], assumes that the system is described by an LTI nominal model interconnected
with an LTI or linear time-varying unknown system, which can be used, for instance, to describe
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unmodeled dynamics and parametric uncertainty. However, the methods provided in [1, 2] are not
recursive, which means that, after a given amount of input/output data is obtained, we verify whether
or not the data sequence is compatible with the model of the system. Hence, the complexity of the
algorithms grows with the number of measurements.

A different approach to model falsification can be found in the fault detection and isolation liter-
ature – see, for instance, [3]. The main idea in such architectures stems from the designing of filters
that are more reactive to faults than to disturbances and model uncertainty. This can be achieved, for
instance, by using geometric considerations regarding the plant ([4–7]), or by optimizing a particular
norm minimization objective, such as the H1-norm or `1-norm ([8–12]). The latter approach pro-
vides, in general, important robustness properties, as stressed in [8,13–15], by explicitly accounting
for model uncertainty. After synthesizing the filters, a set of residuals is then generated by comparing
the actual output of the plant with the ones estimated by each filter. A model is thereafter invalidated
if the corresponding residual is greater than a given threshold, which may be time-varying and
that, in general, depends on the model uncertainty and on the amplitude of the disturbances. As a
caveat, these methodologies are typically conservative or can only be applied to a particular class
of systems.

A novel model falsification strategy was proposed in [16–19], which relies on set-valued observers
(SVOs) – see [20–22] and references therein – to invalidate discrete-time LPV models of dynamic
systems. The reasoning behind this approach is similar to that of [1, 2], but a recursive algorithm
is proposed instead, allowing it to run in real time. Because of the properties inherited from the
SVOs, this model falsification method guarantees that valid models of the plant are never invali-
dated. Moreover, under certain distinguishability conditions briefly discussed in the sequel, it can
also be shown that the correct model of the plant is selected. Other set-membership approaches to
model falsification in the literature include [23] and [24], where set-valued estimates of unknown
parameters of the plant are computed.

In [16, 17, 19], an extension of the SVOs introduced in [25] to LPV uncertain systems is pre-
sented. The proposed solution is able to cope with descriptions of the plant that can be time-varying
and partially unknown. To constrain the number of faces of the set-valued estimate of the state of
the system, an overbound was proposed, which is guaranteed not to grow unbounded, under cer-
tain assumptions on the plant. Nevertheless, a few questions regarding the implementation of these
SVOs were left unresolved. In particular, to guarantee a bounded set-valued estimate of the state,
an arbitrarily large number of previous state estimates was required, possibly leading to excessive
computational requirements. Furthermore, it was assumed that the plant (at least in closed-loop) was
asymptotically stable.

This paper proposes a new SVO-based strategy to invalidate a class of discrete-time dynamic
systems, guaranteeing that the set-valued estimates of the state remain bounded under mild assump-
tions, and requiring at most the n previous state estimates, where n is the number of states of
the model of the system. We stress that this is the main contribution of this work because it
shows that the conservatism added by the suggested SVO-based approach does not lead to the
unbounded growth of the set-valued state estimates of the system. Moreover, the proposed solu-
tion can be applied to a class of dynamic systems described by (possibly unstable) LTI models with
time-varying input and output uncertainties.

The remainder of this paper is organized as follows. We start by introducing the notation used in
this work and describing some of the techniques available in the literature for the design of SVOs in
Section 2. In Section 3, the main results of this article regarding the convergence of the SVOs and
its applicability to a class of dynamic systems are presented. The theory is illustrated by means of
a simulation example in Section 4. Finally, some conclusions regarding this work are discussed in
Section 5.

2. PRELIMINARIES AND NOTATION

2.1. Notation

The set of all integers and the set of all strictly positive integers are denoted by Z and ZC,
respectively. The subspace of all proper and real rational stable transfer matrices is denoted by
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RH1. We represent the elements of v.k/ 2 Rm, for some m, k 2 Z, m > 0, as vi .k/, so that
v.k/D Œv1.k/, v2.k/, � � � , vm.k/�T. The concatenation of vectors v.k/, v.k�1/, � � � , v.k�NC1/,
for N 2 ZC is denoted as

vN D

2
64

v.k/
...

v.k �N C 1/

3
75 .

For the sake of simplicity, v is used instead of vN wheneverN can be inferred from the context. For
a, b 2 Rn, we say that a 6 b if ai 6 bi for all i 2 ¹1, � � � ,nº. For a discrete-time signal, r.�/, we
define jr.�/j WD max

i ,k
jri .k/j. The L2-induced norm of a system G 2 RH1 is denoted by kGk. For

a matrix A, the largest singular value is denoted by jAj WD �max.A/.

2.2. Set-valued observers for linear time-invariant systems

Consider an LTI system described by²
Qx.kC 1/D QA Qx.k/C QB Qu.k/C QL Qd.k/,
Qx.k/ 2 QY .k/,

(1)

with bounded exogenous disturbances, Qd.�/, uncertain initial state, Qx.0/ 2 X.0/, and control input,

Qu.�/. It is also assumed that, without loss of generality,
ˇ̌̌
Qd.�/

ˇ̌̌
6 1. At each time, k, the vector of

states is denoted by Qx.k/, and we define

X.0/ WD Set.M0,m0/,

where

Set.M ,m/ WD ¹q WMq 6mº (2)

represents a convex polytope. Moreover, QY .k/, for each time k, is a measured uncertainty set where
the state, Qx.k/, is contained – see Remark 1. In particular, QY .k/ is assumed to be described as

QY .k/D Set
�
QM.k � 1/, Qm.k � 1/

�
,

for a matrix QM.k � 1/ and a vector Qm.k � 1/ with appropriate dimensions. Furthermore, let
Qx.k/ 2Rnx , Qd.k/ 2Rnd , and Qu.k/ 2Rnu .

Remark 1
In case the following vector measurements are available

Qy.k/D QC Qx.k/C Qn.k/,

with bounded measurement noise Qn.k/, j Qn.�/j6 Nn, and Qy.k/ 2Rny , then one can write

Qx.k/ 2 QY .k/D Set
�
QM.k � 1/, Qm.k � 1/

�
,

with

QM.k � 1/D QM D

�
QC

� QC

�
, Qm.k � 1/D

�
NnC Qy.k/
Nn� Qy.k/

�
.

Let X.kC 1/ represent the set of possible states at time kC 1, that is, the state Qx.kC 1/ satisfies
(1) with Qx.k/ 2X.k/ if and only if Qx.kC1/ 2X.kC1/. An SVO aims to findX.kC1/, based upon
(1) and with the additional knowledge that Qx.k/ 2 X.k/, Qx.k � 1/ 2 X.k � 1/, � � � , Qx.k � no/ 2
X.k � no/ for some finite no. Furthermore, we want X.k C 1/ to be the smallest set containing all
the solutions to (1). A procedure for time-varying discrete-time linear systems was introduced in
[25], and a preliminary extension to uncertain plants is presented in [16, 17, 19].
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The computation ofX.kC1/ based uponX.k/ for systems with no model uncertainty can be per-
formed by using the technique described in [25]. Indeed, let the system be described by (1). Then,
as shown in [25], Qx.kC 1/ 2X.kC 1/ if and only if there exist Qx.k/, and Qd.k/, such that

P.k/

2
4 Qx.kC 1/Qx.k/
Qd.k/

3
56

2
6666664

QB Qu.k/

� QB Qu.k/
1
1
Qm.k/

m.k � 1/

3
7777775
DW p.k/ (3)

where the inequality is taken element-wise,

P.k/ WD

2
6666664

I � QA � QL

�I QA QL
0 0 I

0 0 �I
QM.k/ 0 0

0 M.k-1/ 0

3
7777775

,

with M.k � 1/ and m.k � 1/ defined such that

X.k/D Set.M.k � 1/,m.k � 1//.

The inequality in (3) provides a description of a set in R2nxCnd , denoted by

�.kC 1/D Set.P.k/,p.k//.

Therefore, it is straightforward to conclude that

Ox 2X.kC 1/, 9
Qx2Rnx , Qd2Rnd

W

2
4 OxQx
Qd

3
5 2 �.kC 1/

Hence, the set X.k C 1/ can be obtained by projecting �.k C 1/ onto the subspace of the first nx
coordinates, as illustrated in Figure 1.

The projection of �.kC1/ onto Rnx can be performed resorting to the Fourier–Motzkin elimina-
tion method ([25, 26]). Therefore, we obtain a description of all the admissible Qx.k C 1/ that does
not depend upon specific Qx.k/ nor Qd.k/.

The formulation in (3) can be easily extended, in case it is convenient to compute X.k C 1/ not
only based upon X.k/ but also upon X.k�1/, � � � , X.k�no/. Indeed, Qx.kC1/ 2X.kC1/ if and
only if there exist Qx.kC 1/, � � � , Qx.k � noC 1/, Qy.k/, and Qd.k/, � � � , Qd.k � noC 1/, such that,

Pno.k/
�
Qx.kC 1/T QxT

no
QdT
no

�T 6 pno.k/ (4)

Figure 1. Projection of the set �.kC 1/ onto Rnx .
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where

Pno.k/ WD

2
666666666666666666666666666664

I - QA � � � 0 - QL 0 � � � 0

-I QA � � � 0 QL 0 � � � 0

I 0 � � � 0 - QL - QA QL � � � 0

-I 0 � � � 0 QL QA QL � � � 0
...

...
. . .

...
...

... � � �
...

I 0 � � � - QAno - QLk � � � � � � - QAno-1 QL

-I 0 � � � QAno QLk � � � � � � QAno-1 QL
0 � � � � � � 0 I 0 � � � 0

0 � � � � � � 0 -I 0 � � � 0
...

...
...

...
...

...
...

...
0 � � � � � � 0 0 � � � � � � I

0 � � � � � � 0 0 � � � � � � -I
QM.k/ 0 � � � 0 0 � � � � � � 0

0 M.k-1/ � � � 0 0 � � � � � � 0
...

...
. . .

...
...

...
...

...
0 � � � 0 M.k-no/ 0 � � � � � � 0

3
777777777777777777777777777775

and pno.k/ can be inferred from (1).
For plants with uncertainties, the set X.kC 1/ is, in general, nonconvex, even if X.k/ is convex.

Thus, it cannot be represented by a linear inequality as in (2). The approach suggested in [16] is
to overbound this set by a convex polytope, therefore adding some conservatism to the solution. A
generalization of this result is presented in [18, 19]. An alternative in the literature to the design of
SVOs uses Luenberger observers to provide bounded errors for the estimates of the states – see [27]
and references therein.

2.3. Coprime factorization of linear time-invariant systems

The so-called left-coprime factorization of discrete-time LTI systems will be used in the following
section and is introduced next.

Definition 1
Let M ,N 2 RH1. Then, M and N are left-coprime over RH1 if there exist X ,Y 2 RH1 such
that

�
M N

� �X
Y

�
DMX CNY D I .

Moreover, if P is a proper real-rational matrix, then a left-coprime factorization of P is a
factorization

P DN�1M ,

where N and M are left-coprime over RH1.

The conditions for the existence of a left-coprime factorization are mild, and only the observ-
ability of the pair .A,C/ is required. Indeed, we recover the following result (see, for instance,
[28, p. 554]).

Proposition 1
Let

P.´/ WDDCC.´I �A/�1B WD

�
´I �A B

C D

�
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Figure 2. Block diagram of a class of discrete-time LTI dynamic systems with time-varying uncertainties
and unknown disturbances.

be observable and define

�
N M

�
D

�
´I �ACKC �K B �KD

RC R RD

�
,

where R is any nonsingular matrix and K is such that A�KC is stable. Then,

P DN�1M .

3. MAIN RESULTS

We are now in conditions of stating the main results in this paper. We will start by addressing the
use of the SVOs in the context of model falsification. Thereafter, guarantees of convergence of the
SVOs are provided, and finally, we illustrate how to use these methods to falsify a class of models
with uncertain dynamics.

3.1. Model falsification using set-valued observers

In [16, 18], the main idea was to invalidate dynamic models associated with SVOs whose state esti-
mate, at a given time, is the empty set. Thus, as long as a given SVO provides nonempty set-valued
estimates for the state of the plant, the corresponding dynamic model cannot be discarded. How-
ever, several assumptions – including open-loop stability – are posed regarding the structure of the
dynamic models in [16,18]. Hence, the first part of this subsection is devoted to the development of
a method to invalidate dynamic models with a more general structure, whereas in the second part,
we show how to use this method on a model selection architecture.

The class of discrete-time dynamic systems considered is described by LTI models driven by
unknown but bounded disturbances, connected to time-varying uncertainties, as in [1], and as
depicted in Figure 2.

We assume that M , N , Wd and Wn are LTI dynamic systems and that �d ,�n are uncertain
(possibly) time-varying matrices, with the appropriate dimensions and with j�d j 6 1, j�nj 6 1.
Moreover, the control input, u.�/, and noisy measurements, y.�/, are assumed known, and jd j 6 1,
jnj6 1.

Notice that

y DN�1.u1CWn�nn/

, u1 DNy �Wn�nn,
(5)

and

u1 DMuCWd�dd . (6)

Therefore, u1 can be estimated by using (5) or (6). Because of the uncertainties and to the exoge-
nous disturbances, the value of u1.k/ for each k is also, in general, uncertain. Thus, an SVO as
in [16, 25] and as described in Section 2, referred to as SVOA and depicted in Figure 3(a), can be
designed to generate the set-valued estimates of u1 based upon (5), whereas an SVO, designated
by SVOB and illustrated in Figure 3(b), can be synthesized to obtain the set-valued estimates of u1
based upon (6).

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
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Figure 3. Block diagrams used to compute the set-valued estimates of u1. (a) Block diagram used by SVOA
to obtain u1 based on u and on the bounds onm. (b) Block diagram used by SVOB to obtain u1 based on y

and on the bounds on n.

Figure 4. Architecture for single-model falsification using SVOs, including the interconnection between the
true plant, SVOA and SVOB .

Remark 2
It is straightforward to conclude that system SA (Figure 3(a)) can be described by (1) with the
change of variables

QuD y, Qd D�nn,

and with the appropriate definition of the matrices of the dynamics. Similarly, system SB
(Figure 3(b)) can be described by (1) with the change of variables

QuD u, Qd D�dd .

Therefore, in both cases, the measured variable is the set-valued estimate of u1, provided by the
other SVO.

Using this line of thought, the architecture depicted in Figure 4 is proposed for single-model
falsification using SVOs, as described in the sequel.

The set-valued estimates of u1.k/, generated by SVOA and SVOB , denoted by U1.SVOA/.k/
and U1.SVOB/.k/, respectively, are obtained by driving the SVOs with the (noisy) measurements
output, y.�/, and with the control inputs, u.�/, respectively. If, at a given time k, the set-valued esti-
mate of u1.k/, obtained with SVOA, that is, U1.SVOA/.k/, does not intersect with the set-valued
estimate of u1.k/, obtained with SVOB , that is, U1.SVOB/.k/, the model of the system is not
compatible with the true dynamics. Hence, such a model is falsified (i.e., invalidated).

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
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Figure 5. Multiple-model falsification architecture using SVOs.

Remark 3
The initial set-valued state estimates, as well as the set-valued estimates of U1.SVOA/.0/ and
U1.SVOB/.0/, may, in general, be very conservative, if no information is available a priori regard-
ing these variables. Nevertheless, as illustrated in the example of Section 4, this issue does not
degrade the performance of the algorithm, as the impact of the knowledge regarding those initial
values tends to decrease as time goes on.

In summary, one concludes that

� If 9
ko>0
W U1.SVOA/.ko/

T
U1.SVOB/.ko/D ;, then the model of the plant is not compatible

with the observations and input commands, for k > ko;
� If 8

k6ko
W U1.SVOA/.k/

T
U1.SVOB/.k/ ¤ ;, then the model of the plant is compatible with

the observations and input commands, at least up to k 6 ko.

Therefore, if a set of plausible dynamic models of a given plant is available, then a couple of
SVOs can be designed for each of these models, to invalidate them or not. Thus, the architecture in
Figure 5 is proposed as a model selection approach, where NS denotes the number of considered
dynamic models.

In Figure 5, each model falsification block is composed of the architecture in Figure 4. Once
NS � 1 dynamic models have been invalidated, one concludes that models remaining valid (if any)
are the only ones that are able to describe the observed behavior of the plant.

Remark 4
The architecture in Figure 5 does not guarantee that only a single model is not going to be invali-
dated. Indeed, as shown in [17], this approach only guarantees that the “correct” model of the plant
is not falsified. It does not, however, provide any guarantees in terms of invalidating all the other
plausible models of the plant. These topics are still under research, and some preliminary results are
presented in [29]. The interested reader is further referred to [30–34].

3.2. Guarantees of convergence

As stated in [16], one possible shortcoming of the SVOs is related to the numerical approximations
used during the computation of the set-valued estimates. In other words, because we do not have
infinite precision in the computations that have to be carried out at every sampling time to obtain the
set-valued estimate OX.k/, the actual set where the state can take value, X.k/, need not be entirely
contained inside OX.k/ – see Figure 6. Therefore, it may happen that the true state does not belong
to OX.k/, and hence, we may end up by discarding the ‘correct’ model of the plant.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
DOI: 10.1002/rnc



MODEL FALSIFICATION USING SVOS: A COPRIME FACTORIZATION APPROACH

Figure 6. Overbound of set OX.k/ to include X.k/.

The solution proposed in [16] is to ‘robustify’ the algorithm by slightly enlarging the set OX.k/, as
illustrated in Figure 6. As long as the maximum error in the computation of the set X.k/ is known,
we have, for every time k, a vector �?.k/ such that X.k/� Set.M.k/,m.k/C �?.k//.

Moreover, it may happen that, from time-step to time-step, the number of faces of the polytope
containing the set-valued estimate of the state of the system increases exponentially. Hence, it is use-
ful to overbound, in such circumstances, that polytope by another one, with a constrained number
of faces.

Nonetheless, using an overbound to guarantee that we do not discard valid states of the plant also
has its shortcomings. Besides adding conservatism to the solution, it may be responsible for the
unbounded increase with time of the area of the polytope of the set-valued estimate.

Remark 5
One of the first algorithms developed to compute (ellipsoidal) set-valued estimates of the state of
a system was presented in [20] and [35]. Using ellipsoids to describe the set-valued estimates of
the state is an alternative method to the one discussed in this article, with the advantage of having
less computationally demanding calculations. However, unlike the convex polytope-based approach
presented herein, the ellipsoid-based approach does not guarantee convergence of the set of state
estimates, even if the system at hand is stable.

The solution proposed in this paper to both problems is to use the left-coprime factorization
(Definition 1) of the dynamic model of the system, together with the model falsification architecture
depicted in Figure 4.

Theorem 1
Consider a system described by the observable realization

P.´/ WDDCC.´I �A/�1B WD

�
´I �A B

C D

�
,

with state x.k/ 2 Rnx , actuated by control input u.k/, ju.k/j 6 Nu < 1, with exogenous distur-
bances d.k/, and with measurements y.k/, jy.k/j6 Ny <1, corrupted by additive noise n.k/, such
that jd.�/j6 1 and jn.�/j6 1. Then, there exist M.´/ and N.´/ such that

(i) P.´/DN.´/�1M.´/;
ii) The set-valued estimates of the states of N and M , respectively, O‰.SVOA/.k/ and
O‰.SVOB/.k/, obtained from the overbounding of (4), are bounded, for no > nx , provided

that the maximal numeric error �j .k/ of SVOj , with j 2 ¹A,Bº, satisfies �j .k/6 �?j
ˇ̌̌
x
j
i .k/

ˇ̌̌
,

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
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for some 0 6 �?j < 1 and for every xj .k/ 2 Xj .k/, and where Xj .k/ denotes the set-valued
state estimate of SVOj .

Proof
The first part of the proof comes directly from Proposition 1. In particular, let K in Proposition 1
satisfy

.A�KC/nx D 0.

It should be noticed that the existence of such K is guaranteed, from the existence of a deadbeat
observer for any observable LTI system – see, for instance, Theorem 5.3 in [36]. We now show that
the set-valued estimates of the state of system N.´/ are bounded. For the sake of simplicity, the
index A is omitted in the proof because all the quantities are related to SVOA.

Consider the smallest hypercubes, denoted by O‰.k/, O‰.k C 1/, � � � , O‰.k C no/, that con-
tain the sets OX.k/, OX.k C 1/, � � � , OX.k C no/, respectively, plus the maximal numeric error
at each sampling time, �.k/, with �.k/ 6 �?jxi .k/j, for some 0 6 �? < 1 and for every
x.k/ 2 X.k/. Then, for no > nx , an overly conservative SVO can be synthesized to generate
the sets O‰.k/, O‰.kC 1/, � � � , O‰.kC no/, using the following inequality:

jx.kC no/j6 j.A�KC/nox.k/j C �?jx.k/j C ıno D �?jx.k/j C ıno ,

because .A�KC/no D 0, for no > nx , and where

ıno D max
y.k/,��� ,y.kCno�1/

ˇ̌
.A�KC/no�1Ky.k/C � � � CKy.kC no � 1/

ˇ̌
.

Notice that, because the sequence O‰.k/, O‰.k C 1/, � � � , O‰.k C no/ contains the sequence of set-
valued estimates provided by an SVO as described in Section 2, it now suffices to show that the
former does not grow without bound. However, given that

� �? < 1, by assumption,
� and, because jyj6 Ny <1, there exists Nı such that jıno j6 Nı <1,

we conclude that the sets defined by (4) for system N.´/, with maximal numeric error at each
sampling time, �.k/, are bounded.

A similar result can be obtained for the set-valued estimates of the state of M.´/ (provided by
SVOB ), thus concluding the proof. �

Remark 6
The deadbeat observer was selected to compute the value of K, as it takes the size of the initial
set-valued estimate of the state to zero in nx steps. However, for sufficiently small �?, any other
value of K can be used, as long as j.A�KC/nx j< 1. Indeed, let K be selected such that

jA�KC j D ı,

with ı < 1. By using the approach in the proof of Theorem 1, an SVO with these dynamics is
guaranteed to be stable if

ıC �? < 1.

Therefore, there is no particular optimal value for �?, as long as the aforementioned constraint is sat-
isfied. However, for systems with higher complexity, that is, a larger number of states, the set-valued
estimates are also of higher dimension. Therefore, it is more likely to run into numerical errors in
these situations, which suggests the use of larger values for �?, to avoid erroneous invalidation
of models.

Remark 7
The choice of K does not impact on the invalidation of the dynamic model. Indeed, we have

P.´/DN.´/�1M.´/,

which means that, for eachK, we have a different representation of the same input/output behavior.
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Figure 7. Feedback interconnection between the nominal plant and the uncertainty in A.

Figure 8. Feedback interconnection between the nominal plant and the uncertainty in A, using the left-
coprime decomposition.

3.3. Model uncertainty in the dynamics

Notice that the model in Figure 2 can be used to represent not only dynamic systems with exoge-
nous disturbances and measurement noise but also models with uncertainty in the input and in the
outputs. Moreover, this technique can also be used to model uncertainty in matrix A, if the linear
combination of states multiplying this uncertainty can be obtained by the measured outputs.

To see this, assume that

AD AoC�A1,

where rank.A1/D 1 and with j�j6 1. Hence, there exist vectors e1 and f1 such that

A1 D e1f
T
1 .

Now, suppose that the signal f T
1 x.�/ can be obtained from the outputs of the plant, assuming no

measurement noise‡, that is,

f T
1 x.�/D h

Ty.�/,

for some vector h, with the appropriate length. Also, let H D e1hT. Then, as described in [28], we
can obtain a feedback description of the uncertain plant, where� is interconnected with the nominal
plant, that is, the plant for �D 0 – see Figure 7.

Using the left-coprime decomposition, this interconnection can be transformed into the one
depicted in Figure 8. Hence, we can use the results in the previous subsection to assess whether
or not the model with uncertain A matrix can describe a given input/output sequence.

In comparison with the previous results [16, 19], we are now able of handling uncertainties in
matrix A, without using the convex hull of the set-valued state estimates obtained at the vertices of
the uncertainty parameter sets. Nevertheless, this is only true if the linear combination of the states
that multiplies the uncertainty can be recovered from the outputs of the plant.

4. SIMULATIONS

In this section, some advantages of the methods described in Section 3 are illustrated by means of
an example. We consider a plant with a continuous-time realization²

Px.t/D Ax.t/CBu.t/CLd.t/,
y.t/D Cx.t/C n.t/,

(7)

‡The measurement noise will impact the estimate of the state by the SVO as a bounded disturbance. Therefore, it can be
considered as such during the design of the SVO.
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where x.t/ 2 R5 denotes the state of the system, y.t/ 2 R is the measured output, corrupted by
noise n.t/, u.t/ is the control input and d.t/ is an exogenous disturbance. Moreover, we have that

AD

2
6664

0 0 1 0 0

0 0 0 1 0

�2 2 �0.2 0.2 0

2 �2.15 0.2 �0.3 1

0 0 0 0 �10

3
7775 , B D

2
6664

0

0

1

0

0

3
7775 , LD

2
6664

0

0

0

0

�10

3
7775 ,

C D
�
0 1 0 0 0

�
.

There are several real life applications that share the dynamics of the aforementioned equation,
for instance in seismic and vibration models [37], automotive suspension systems [38] and flexible
space structures [39], among others. In particular, these dynamics have been used in our previous
studies, to describe a double mass-spring-dashpot plant, where the control input is noncollocated
with the measured output – see, for example, [40, 41]. In this case, the output of the plant is the
position of mass m2, whereas the control input is the force applied to mass m1.

The system in (7) was discretized using a sampling period of T D 300 ms. Moreover, the distur-
bances and measurement noise are assumed to follow a uniform distribution, with zero mean, and
maximum absolute values of Nd WD 1 N and Nn WD 0.001 m, respectively. For the sake of simplicity,
the control signal is defined as

u.k/ WD u.kT / WD As sin.!kT /,

where As D 2 N and ! D 2 rad/s. Hence, the state of the system at time kT can be described by
²
x.kC 1/D Adx.k/CBdu.k/CLdd.k/,

y.k/D Cdx.k/C n.k/,
(8)

where the matrices Ad , Bd , Ld and Cd are straightforwardly obtained from the discretization of
(7).

The model falsification architecture depicted in Figure 5 was adopted, using a set of three
plausible models of the plant, described by (8), but with different Cd matrices:

� Model M#1: Cd D
�
0 1 0 0 0

�
;

� Model M#2: Cd D
�
0 2 0 0 0

�
;

� Model M#3: Cd D
�
0 0.5 0 0 0

�
.

As a physical interpretation, these models represent different gains in the sensor that measures the
position of mass m2. For each of these models, a pair of SVOs for the corresponding coprime
factorization was designed, as illustrated in Figure 5.

Notice that, if an SVO is designed for (8) as in [17], then the convergence of the set-valued esti-
mate of the state would only be guaranteed ifN > 177 in (4), because there are k 2N with k 6 177
such that ���Akd

���> 1.

However, by using the coprime factorization-based approach introduced in this paper, we guar-
antee the convergence of the set-valued estimates of the state for any N > 5 in (4). Hence, the
computational burden associated with the implementation of the SVOs is significantly decreased.

The results obtained for a typical Monte–Carlo run of the aforementioned scenario are depicted
in Figure 9. Here, it was considered that the initial state of the system is zero, whereas the set-valued
initial state estimate is given by

OX.0/D ¹x 2R5 W jxi j6 0.1º.
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Figure 9. Output of the plant for a typical Monte–Carlo run. The time instants where the models were
invalidated are also pointed out in the figure.

In reference to Figure 2, Wd and Wn are (constant) unit gains. In this example, model M#3 was
falsified in 1.8 s. Therefore, after six sampling periods, the input/output sequences are not compati-
ble with the ones obtained from a dynamic system described by model M#3. Nevertheless, models
M#1 and M#2 are both valid, in the sense that the observed input/output sequences are compatible
with such dynamics. At time t D 5.4 s, modelM#2 is invalidated. Hence, the only remaining model
is the one compatible with (8) and with the observations. This model remains valid, as expected,
throughout the simulation.

Remark 8
Each iteration requires between 1 and 3 s, to perform all the necessary computations, using an Intel
Xeon CPU @2.6 GHz (Intel, Santa Clara, CA, USA). Notice that, for this case, the processing time
required per sampling period is above the sampling period itself, thus jeopardizing the practical
implementability of the technique. Such an issue can be circumvented by the following: (i) increas-
ing the computational power; (ii) increasing the sampling period; or (iii) decreasing the horizon N .
Indeed, the proposed structure can take advantage of parallel processing units because each SVO is
independent from the other. Nevertheless, such practical improvements are out of the scope of this
paper. For an experimental evaluation of SVOs, the reader is referred to [42].

5. CONCLUSIONS

A coprime factorization-based approach was proposed in this article to address the problem of model
falsification of dynamic systems, using SVOs. The results presented indicate that using SVOs as a
means of model invalidation is possible, not only for stable but also for unstable systems. More-
over, in terms of implementability, using the coprime factors of a transfer function matrix, rather
than the ‘original’ transfer function matrix, may also have its own advantages. In particular, this
method allows us to bound the number of required previous estimates of the state not to be larger
than the number of states of the system. This particular benefit of the proposed methodology was
also illustrated in simulation.

As a caveat, SVO-based model falsification is a worst case approach, in the sense that a model
can only be invalidated if none of the allowable sequences of disturbances and measurement noise
explains the measured output sequence.
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