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Abstract— Endowing artificial agents with the ability of
predicting the consequences of their own actions and effi-
ciently planning their behaviors based on such predictions
is a fundamental challenge both in artificial intelligence and
robotics. A computationally practical yet powerful way to model
this knowledge, referred as objects affordances, is through
probabilistic dependencies between actions, objects and effects:
this allows to make inferences across these dependencies, such
as i) predicting the effects of an action over an object, or
ii) selecting the best action from a repertoire in order to obtain a
desired effect over an object. We propose a probabilistic model
capable of learning the mutual interaction between objects in
complex tasks that involve manipulation, where one of the
objects plays an active tool role while being grasped and used
(e.g., a hammer) while another item is passively acted upon
(e.g., a nail).

We consider visual affordances, meaning that we do not
model object labels or categories; instead, we compute a set
of visual features that represent geometrical properties (e.g.,
convexity, roundness), which allows to generalize previously-
acquired knowledge to new objects. We describe an experiment
in which a simulated humanoid robot learns an affordance
model by autonomously exploring different actions with the
objects present in a playground scenario. We report results
showing that the robot is able to i) learn meaningful relation-
ships between actions, tools, other objects and effects, and to
ii) exploit the acquired knowledge to make predictions and take
optimal decisions.

I. INTRODUCTION AND RELATED WORK

Humans solve complex tasks on a routine basis, by choos-
ing, amongst a vast repertoire, the most proper actions to
apply onto objects in order to obtain certain effects. Accord-
ing to developmental psychology [1], the ability to predict
the functional behavior of objects and their interaction with
the body, simulating and evaluating the possible outcomes
of actions before they are actually executed, is one of the
purest signs of cognition, and it is acquired incrementally
during development through the interaction with the envi-
ronment. Neuroscientific evidence [2] supports the idea that,
in the brain, these predictions happen during action planning
through the activation of sensorimotor structures that couple
sensory and motor signals. To reproduce such intelligent
behavior in robots is an important, hard and ambitious task.

One possible way to tackle this problem is to resort to the
concept of affordances, introduced by Gibson in his seminal

1A. Gonçalves, G. Saponaro, L. Jamone and A. Bernardino are with
the Institute for Systems and Robotics, Instituto Superior Técnico, Univer-
sidade de Lisboa, Lisbon, Portugal. {agoncalves, gsaponaro,
ljamone, alex}@isr.ist.utl.pt

This work was partially supported by the POETICON++ project from
the European FP7 program (grant agreement no. 288382). G. Saponaro is
supported by a doctoral grant (SFRH/BD/61910/2009) from the Portuguese
Government – Fundação para a Ciência e a Tecnologia.

work [3]. He defines affordances as action possibilities
available in the environment to an individual, thus depending
on its action capabilities.

From the perspective of robotics, affordances are powerful
since they capture the essential world and object properties,
in terms of the actions that a robot is able to perform. They
can be used to predict the effects of an action, or to plan the
actions to achieve a specific goal; by extending the concept
further, they can facilitate action recognition and can be
exploited for robot imitation [4].

Many computational models have been proposed in the
literature in order to equip robots with the ability to learn
such affordances (sometimes more generally referred as
sensorimotor representations) and use them for prediction
and planning.

The early work of Fitzpatrick et al. [5] focuses on learn-
ing object affordances within a developmental framework,
putting forward the idea that a robot can learn about what
it can do with an object only by acting on it and observing
the effects. More specifically, the robot learns about the roll-
ability affordance of objects, by applying its available actions
on the objects several times and observing the resulting
changes in the environment.

The concept of affordances and its implications in robotics
are discussed by Şahin et al. [6], who propose a formalism to
use affordances at different levels of robot control; they apply
one part of their formalism for the learning and perception of
traversability affordances on a mobile robot equipped with
range sensing ability [7].

In the framework presented by Montesano et al. [8], ob-
jects affordances are modeled with a Bayesian Network [9], a
general probabilistic representation of dependencies between
actions, objects and effects; they also describe how a robot
can learn such a model from motor experience and use it
for prediction, planning and imitation. In order to allow the
system to generalize the acquired knowledge across similar
objects, they do not consider object labels, but instead they
represent objects in terms of a basic set of perceived visual
features; for example, the robot learns that spherical objects
roll faster than cubic ones when pushed. Since learning is
based on a probabilistic model, the approach is able to deal
with uncertainty, redundancy and irrelevant information.

The concept of affordances has also been formalized under
the name of object-action complexes (OACs, [10]); from a
functional perspective in robotics, the terms affordances and
object-action complexes point to the same general concept.

All these approaches consider actions that are directly
applied to an object. However, many daily actions involve



the use of tools. Humans develop the ability to use tools in
a meaningful way following a long and complex process that
begins at birth. Guerin et al. [11] provide a discussion about
the mechanisms underlying the development of tool use in
human newborns, from the initial sensorimotor learning to
the emergence of planning capabilities. In this paper, we look
at how a robot can learn that certain visual features of a
tool make it appropriate to perform a specific action, and to
obtain desired effects on the environment. The problem has
been investigated within the robotics community, with a few
notable examples.

Stoytchev [12] investigates the learning of tool affordances
as tool–behavior pairs that provide a desired effect. The
learned representation is said to be grounded in the behav-
ioral repertoire of the robot, which knows what it can do with
an object using each behavior. However, what is learned are
the affordances of specific tools (i.e., considered as individual
entities), and no association between the distinctive features
of a tool and its affordances is made. Therefore, the general-
ization capabilities of the system with respect to novel tools
are limited.

A recent work by Tikhanoff et al. [13] focuses on learning
a specific affordance (i.e., pulling) during tool use. The robot
learns what is the best position relative to the object in which
the tool-effector must be placed to allow a successful drawing
action (bringing the object closer to the robot), as a function
of the tool dimension and the shape of the tool-effector.
Although useful for robot operations, this knowledge is
specific for the tool that is experienced, and cannot be easily
generalized to unseen tools.

An interesting approach has been proposed by Jain et
al. [14], in which a Bayesian Network is used to model tool
affordances as probabilistic dependencies between actions,
tools and effects. To address the problem of predicting the
effects of unknown tools, they propose a novel concept
of tool representation based on the functional features of
the tool, arguing that those features can remain distinctive
and invariant across different tools used for performing
similar tasks. However, it is not clear how those features
are computed or estimated, if they can be directly obtained
through robot vision and if they can be applied to different
classes of tools.

Moreover, it is worth noting that both in [12] and [14] the
properties of the affected objects are not considered; only
the general affordances of tools are learned, regardless of
the objects that the tools act upon.

Our proposed approach builds upon the probabilistic mod-
els of [8] and [14]. We model affordances with Bayesian
Networks, and we do not consider objects labels, but instead
we reason upon the perceived visual features. A distinctive
characteristic of our approach is that we do not model just
the general affordances of individual objects, but also the
affordances of tools and affected objects together, hence
modeling the interaction between tools and objects based
on their physical (geometrical) properties.

The rest of the paper is organized as follows. In Section II
we illustrate our affordance model in detail, describing the

visual features that we use to encode objects and effects
(Section II-A), and how the model parameters can be learned
by the robot through autonomous exploration (Section II-B).
In Section III we provide experimental results that support
the effectiveness of our approach, showing some examples of
how the acquired affordance knowledge can be exploited to
instruct the robot behaviors. Finally, in Section IV we report
our conclusions and sketch future work directions.

II. A PROBABILISTIC MODEL OF TOOLS AND OBJECTS
AFFORDANCES

The model of affordances proposed in [8] considers ac-
tions that are directly applied to an object: a conceptual
schema is depicted in Fig. 1a. However, many actions involve
the use of tools. In a sense, we could say that all actions
are performed exploiting tools, if we assume that hands
and feet can also be viewed as tools. The extension we
propose is to include the notion of tools into the probabilistic
model of affordances, as depicted in Fig. 1b. The grey
arrows identify all the possible connections (the most general
architecture), while the black ones are those that we selected
for our implementation, in which we consider only the causal
relationships from actions/tools/objects to effects.

This model considers the notion of (affected) objects
explicitly, unlike [14], therefore it can be used to infer
i) affordances of affected objects, ii) affordances of tools,
and iii) affordances of the interaction between tools and
objects. In our framework, there is not an explicit “toolness”
property, neither specified a priori nor learned. All objects
are represented by a set of physical properties, so that any
object can potentially be used by a robot actively (as a “tool”)
or passively (as an “affected object”).

A. Visual descriptors

A great deal of information about the shape of an object
can be extracted from its visible silhouette. For this, we need
to be able to segment the object from the background, that
is, the ability to partition a visual scene into multiple distinct
segments. This might be a difficult task, especially if we deal
with unknown objects in cluttered scenes. As we are not
addressing this general problem in the context of this work,
we consider a simple playground environment, consisting of
a table with colored objects on top; in this case we can
apply simple color-based segmentation to retrieve connected
components of pixels in 2D, that we call “blobs”. We assume
that each blob corresponds to an object, which in turn can
potentially be used as an active tool or as a passive, affected
object.

From each segmented blob, we extract the visual features
reported in Table I, which we call shape descriptors: an
example is shown in Fig. 2. They are computed in 2D as
relationships between: blob contour perimeter, blob area, ex-
ternal contour perimeter (polygonal approximation), convex
hull, approximating ellipse, minimum-enclosing circle and
minimum-enclosing rectangle [15]. All objects can poten-
tially act as active “tools” or passive “affected objects”. For
instance, given a visual context with some blobs (e.g., two



(a) Probabilistic model of object affordances from [8].

(b) Extension proposed in this paper, which models the notion of active
objects (“tools”) and passive ones (affected “objects”). Grey arrows represent
the connections of the most general architecture, black ones are those we
selected for our implementation.

Fig. 1: Conceptual schemas of probabilistic object affor-
dances.

balls and a baseball bat), in general the robot can try out
all possible combinations of tool usage with the available
items: move ball #1 using the bat, move ball #2 with ball #1,
move the bat with a ball, etc. Some of these combinations
will produce physical displacement of the affected object,
others will not—in other words, some objects afford an
action onto other objects (we call them “tools” and “affected
objects”, respectively), and a robot can learn this from self-
exploration (Section II-B). For simplicity, in this work we
consider as tools two items which have a high elongatedness
value (so that their handle can be grasped by the robot), and
as affected objects the remaining items of Fig. 5.

The idea is that the set of descriptors captures physical
(geometrical) properties of objects and tools that affect the
way in which they interact with each other, and the effects
that are generated due to specific actions; in other words,
the descriptors capture the affordances of objects and tools.
The robot can learn these visual affordances by exploring
actions on affected objects using tools (while measuring
the visual descriptors of the affected object and the tool-
effector), and by measuring the visual effects on the affected
objects. For example, the robot can learn that objects with
a high circleness value (sphere-like objects), when pushed
laterally by a tapping action, are likely to roll on the table for
longer distances compared to objects with high squareness
(cuboids) and that high tool-effector eccentricity (e.g., a rake)
is required to draw objects closer.

TABLE I: Shape descriptors.

Descriptor Definition

Area Number of pixels
Convexity Ratio between convex hull perimeter and object

perimeter
Eccentricity Ratio between minor and major axes of best-fit ellipse
Compactness Ratio between object area and squared external con-

tour perimeter
Circleness Ratio between object area and area of minimum-

enclosing circle
Squareness Ratio between object area and area of minimum-

enclosing rectangle
Elongatedness Linear combination of eccentricity and compactness

Fig. 2: Example of visual descriptors extracted from a
segmented blob.

B. Autonomous robot exploration

From a philosophical point of view, one might argue
whether affordances are properties either of the world (cups
afford to be grasped because they typically have a handle),
of the agent (cups afford to be grasped because humans
are typically able to grasp them), or of both of them.
However, a great deal of affordance knowledge results from
the ecological exploratory interaction between the agent
(human or robot) and the environment, thus depending both
on the physical properties of the objects and on the motor
and perceptual capabilities of the agent.

This learning process requires that the cognitive system
knows how to perform a number of actions and has de-
veloped some perceptual capabilities: then, affordances can
be learned through self-exploration (i.e., an exploration of
the possibilities of the self in the environment). In practical
terms, this means to try out the available actions on the
available objects, using the available tools, monitoring and
recording the effects: as we focus on visual affordances,
the recorded data consists of visual geometric features of
both passive objects and active tools, as well as visually

Fig. 3: The item on the left is a possible tool, its blob is
divided in two parts (bottom and top); the visual descriptors
can be computed on both parts, handle and effector. The item
on the right is a possible affected object.
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Fig. 4: The detailed structure of the Bayesian Network model
for objects and tools affordances used in the experiments.

measurable effects caused by actions on objects. We consider
the Bayesian Network structure depicted in Fig. 4; note that
this is the most general structure in which all the objects,
tools and actions nodes are connected to the effects.

The nodes of Fig. 4 do not encode object labels or
categories, but the features that we compute on them. As
mentioned in Section II-A, tools are divided into the handle
and the effector, and the features of the effector part are the
only ones used in the context of this work. Object and tool-
effector properties are described by a vector containing the
visual descriptors defined in Table I. The two effect nodes in
the figure refer to object motion in the horizontal and vertical
directions in the image space, respectively.

The nodes in the Bayesian Network can be seen as the
perceptual and motor channels available in our system.
Therefore, the number of nodes will remain the same if
the number of tools and objects increases. Only if more
perceptual or motor abilities are added to the system, will
the network grow.

III. EXPERIMENTAL RESULTS

We report the results we obtained in learning the visual
affordances of objects and tools, and we provide some
examples that show how this learned basis of knowledge can
be used to support the behavior of a robot in its environment.

A. The robotic platform

The iCub [16] is an open-source humanoid robot for
research in embodied cognition, developed in the context of
the EU project RobotCub (2004-2010) and adopted by more
than 20 laboratories worldwide. It has 53 motors that move
the eyes, neck, arms and hands, waist, and legs. It is equipped
with stereo vision, proprioception, vestibular system, force
and tactile sensing.

In this work, we adopt the iCub Simulator [17], a re-
alistic software that uses ODE (Open Dynamic Engine)
for simulating rigid body dynamics and collision detec-
tion algorithms to model physical interaction with objects.
YARP [18] and iCub software libraries are employed to
provide the simulated robot with motor control capabilities
to perform several actions using various tools [13]. We

Fig. 5: Exploration using the iCub simulator. Top image: the
tools and objects explored. Bottom image: the exploration
sequence that is repeated multiple times for each tool-object-
action combination.

implemented the software modules that compute the visual
descriptions of tools and affected objects (Section II-A), and
those that coordinate autonomous exploration (Section III-B).
Our software is publicly available from the iCub repository
(http://www.icub.org), and it runs both on the real
iCub and on the simulator.

B. Learning the affordances through exploration

To show the effectiveness of our proposed method for
learning tools and objects affordances, we consider an ex-
ploration scenario in which the robot interacts with three
different objects (Sphere, Cube, Cylinder – Sp,Cu,Cy) lo-
cated on a table, using two different tools (Stick, Rake –
St,Ra), applying four possible actions (Tap from Left, Tap
from Right, Push, Draw – TL,TR,Pu,Dr), and measuring
two effects (horizontal and vertical motion of an object on
the table – EffectX,EffectY). One single exploration step is
defined as an action over an affected object using a tool,
as in Fig. 5; for each step, the visible effects of the action
are recorded. The robot tracks affected objects by moving
its eyes, head and torso, in order to compute the object
displacement on the table resulting from the action; the four
actions involve motion of the robot torso and arms.

The structure of the Bayesian network is depicted in
Fig. 4. The information inside each of the perceptual nodes
is clustered, depending on the distribution of the data. For
affected object and tool-effector features, we consider three
discrete levels: low (L), medium (M) and high (H). Given
the items that we defined in the simulator (without noise),
we typically obtain the following sets of features:

• Sphere (Sp) = [H,H,H,H,H,L];
• Cube (Cu) = [L,H,L,L,L,H];
• Cylinder (Cy) = [M,H,M,M,M,M].
• Stick (St) = [L,H,L,L,L,L];
• Rake (Ra) = [H,H,M,M,M,H].

As for effects, we consider 5 discrete levels: Very Pos-
itive (VP), Low Positive (LP), No Movement (NM), Low
Negative (LN) and Very Negative (VN). In horizontal move-
ments, positive means to the right and negative to the left. For
vertical movements, positive means closer to the robot (going
down in image space) and negative means farther from the
robot (up in image space).

http://www.icub.org


TABLE II: Conditional probability of the horizontal ef-
fect given the squareness property of the affected object:
P (EffectX|Object Squareness).

High
Right

Low
Right

No
Move-
ment

Low
Left

High
Left

Low 0.292 0.147 0.275 0.129 0.155
Medium 0.301 0 0.353 0.153 0.191
High 0 0.034 0.879 0.086 0

TABLE III: Conditional probability of the horizontal effect
given the action: P (EffectX|Action).

High
Right

Low
Right

No
Move-
ment

Low
Left

High
Left

Tap Left 0 0 0.264 0.35 0.385
Tap Right 0.534 0.12 0.345 0 0
Draw 0.092 0 0.671 0.142 0.093
Push 0 0.024 0.942 0.032 0

At the current stage, actions are not parameterized: they
are always executed in the same way, with the same arm.
Therefore, the Action node simply contains the IDs of the
four actions. Adding additional parameters (e.g., movement
speed, approaching direction) is a possible direction for
future extensions of the model.

We collected data from 144 exploration steps in simu-
lation. From these measurements we learn the conditional
probability distribution tables (CPDs) that describe the re-
lationships between parent and children nodes contained in
the links of the Bayesian network, P (child|parent).

Tables II and III show some of the CPDs that result from
the exploration. There, we can observe that “high object
squareness” produces higher probability of No Movement,
and low squareness higher probability of any kind of move-
ment. Another case is that of P (EffectX|Action), which
yields higher probabilities of movement in the direction of
the actions. This allows to qualitatively assess the validity of
the methodology, proving that the robot has learned mean-
ingful relationships between the perceived visual features of
tools and affected objects in the environment. In Table III, the
Tap Left/Right action probabilities have asymmetric values
across Left/Right movement effects because in this work we
are using the same robot arm throughout all the experiments.

C. Probabilistic inferences for prediction and planning

After learning, the Bayesian Network can be used for
prediction and planning.

Table IV presents some illustrative inferences (queries
to the Bayesian Network) that show how the information
encoded in the network can be used to support the robot
behaviors. The first two lines of the table predict the effect
(in this case, the vertical motion) of a draw action applied
to a sphere and a cylinder, using either a stick or a rake:
P (EffectY|T = [St,Ra], O = [Sp,Cy], A = Dr). For the
sphere, we observe that a stick produces a high entropy
results, whereas the rake has 60% probability of drawing the

TABLE IV: Query table for the vertical effect of a draw
action with a stick and a rake applied to a sphere and a
cylinder: P (EffectY|T,O,A = Dr).

High
Closer

Low
Closer

No
Move-
ment

Low
Far-
ther

High
Far-
ther

T=Stick, O=Sphere 0.166 0.166 0.5 0.166 0
T=Rake, O=Sphere 0 0.6 0.4 0 0
T=Stick, O=Cylinder 0 0 0 0.5 0.5
T=Stick, O=Cylinder 0 1 0 0 0

sphere closer. For the cylinder, the result is that the rake can
reliably help bring it closer to the robot, whereas the stick
has a contrary effect to the one desired. It is worth noting that
in Table IV, despite the fact that we are displaying the name
of tools and objects, the robot does not know their labels. It
only has access to a set of visual shape descriptors which,
in this case, we can map to a specific object for human
interpretation: however, they could come from a different,
novel object that has similar geometric properties. It is via
the the object shape properties affording specific actions that
the system makes its predictions, not via object categories.
This allows generalization of the method to unknown objects.

Another possible use of a Bayesian Network model of
affordances is for planning. For instance, given a set of tool-
like objects available (possibly unknown) and a desired effect
(e.g., bring closer) in an object (e.g., a cylinder), the robot
can reason about which of the available tools and action on
its repertoire are better to achieve the desired effect. The
query is formulated as:

(T ∗, A∗) = argmax
T,A

P (T,A|EffectY = LP, O = Cy). (1)

Using the learned data and having the tools Rake and Stick
available, the above query results in the choice of a Rake and
action Draw:

P (T = Ra, A = Dr|EffectY = LP, O = Cy) = 0.789. (2)

The estimated probability of actually obtaining the de-
sired effect (EffectY = LP) is 0.789. More precisely, the
query in Eq. 1 produces A = Dr (draw action) and T =
[H,H,M,M,M,H] (the values that the descriptors of the
tool-effector should have) as best result (i.e., the result with
the highest probability). If the robot is looking at a set of
tools available in the environment it can compute the visual
features on them, and choose the tool whose features are
closer to the ones provided by the query. Another possibility
is to directly use the computed features within a query,
and ask to the Bayesian Network what is the probability
of obtaining the desired effect with each of the available
tools; the probabilities can be then ranked, and the best tool
(among the available ones) chosen.

Given the experience our simulated robot made over
different objects, the results of this query are the same if
the object is a sphere (the selected tool and action are still



Rake and Draw), but the estimated probability of obtaining
the desired effect is lower:

P (T = Ra, A = Dr|EffectY = LP, O = Sp) = 0.716. (3)

This is a consequence of the fact that spherical objects
can rotate more in unexpected directions with respect to
cylindrical objects, due to their shape. The same query can
be performed also if no information about the object is
available: in this case, we still get the same result, but with
a lower estimated probability:

P (T = Ra, A = Dr|EffectY = LP) = 0.565. (4)

This reflects the fact that during exploration some objects
could not be brought closer even using the Rake tool and
the Draw action (e.g., a cube, which typically does not move
much).

A different query can show that, for example, in order to
displace an object (e.g., a cylinder, O = Cy) far to the right
(desired effect EffectX = VP), the Tap Right action is the
best one, but both a Rake-like and a Stick-like tool can be
equally suited. Indeed, if we query

(T ∗, A∗) = argmax
T,A

P (T,A|EffectX = VP, O = Cy), (5)

the two highest probabilities that we obtain are:

P (T = St, A = TR|EffectX = VP, O = Cy) = 0.371; (6)
P (T = Ra, A = TR|EffectX = VP, O = Cy) = 0.261. (7)

Interestingly, all other non-zero probabilities that we ob-
tain also suggest the Tap Right action and tool descriptors
that do not correspond to the explored Rake or Stick (St =
[L,H,L, L, L, L],Ra = [H,H,M,M,M,H]), but instead
are slight variations of them (namely [L,M,L,L, L, L],
[H,M,M,M,M,H], [L,H,L, L, L,M ]). Any other action
among the available ones produces zero probability of dis-
placing the object to the right.

IV. CONCLUSIONS AND FUTURE WORK

We propose a novel probabilistic framework of visual
affordances that considers tools and affected objects in ma-
nipulation scenarios. Such a model can be learned by a robot
through autonomous exploration of the environment, and it
can be used to support its intelligent behaviors in many ways,
including: i) making predictions about the effects gererated
by an action, and ii) choosing the best action and tool to
obtain a desired effect on an object. We look at the visual
features of tools and affected objects, not at their identities or
semantic labels: in this way we can generalize the acquired
knowledge to new, unknown tools and objects. Compared to
previous works, we consider complex actions in which tools
are used to act upon other objects, and we keep the notion
of both tools and objects in the model, therefore being able
to learn not just the general affordances of either tools or

objects, but also the affordances resulting from their joint
interaction.

We report experimental results in which a humanoid robot
learns the model through autonomous exploration, and we
offer several examples on how the acquired knowledge
can be used for prediction and planning. We are currently
conducting experiments on the real iCub robot. We plan
to increase the number of experienced objects, so that we
collect data that cover more densely the space of their visual
features; moreover, we are interested in scaling up the com-
plexity of the action representation by introducing different
action parameters that can vary during the exploration, like
the speed of the motion or the trajectory profile.
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