A WAVELET TRANSFORM FREQUENCY CLASSIFIER FOR STOCHASTIC
TRANSIENT SIGNALS

Francisco M. Garcia

Isabel M. G. Lourtie

ISR - Instituto de Sistemas e Robética, IST - Instituto Superior Técnico
Torre Norte, Av. Rovisco Pais, P-1096 Lisboa Codex, Portugal
E-mail : fmg@isr.ist.ist.utl.pt

ABSTRACT

The paper presents a wavelet transform based frequency
classifier for stochastic bandpass transient signals. Using
compactly supported bases of wavelets, continuous nonsta-
tionary bandpass processes can be described by reduced
dimension discrete time signal representations. We develop
an optimization procedure to adapt both the sampling fre-
quency and the discrete time wavelet filters to the contin-
uous classes of signals involved. When compared to the
classical Bayesian structures, the proposed receiver strongly
reduces the required computational load. The receiver per-
formance is accessed by Monte Carlo simulation, the proba-
bilities of detection for each signal class, and the probability
of false alarm, being computed.

1. INTRODUCTION

Detection and classification of stochastic transient signals is
an important problem in areas such as underwater acous-
tics [1, 2] and seismology [3]. Stochastic transient sig-
nals are short-time duration processes, nonstationary in na-
ture. Consequently, traditional signal processing techniques
based on, for example, the Fourier series, are not well suited
for processing transient signals.

The conventional approach to optimal statistical signal
classification is the Bayes classifier [4]. It consists on a M-
ary detection scheme that can be implemented as a binary
classification tree: the likelihood ratio (LR) between each
pair of hypotheses is compared with a threshold that de-
pends on the signal classes a priori known probabilities.

Underlying the development of the optimal receiver, the
decomposition of signal and noise processes under a set of
orthonormal basis functions is often used. For binary sig-
nal detection, one classical approach is the Karhunen-Logve
expansion (KLE) that provides a representation of both sig-
nal and white noise processes in terms of a discrete number
of random uncorrelated signal coeflicients. In general, for
M-ary signal detection, unless the several signal classes au-
tocorrelation functions have the same eigenfunctions [5], a
KLE of the observations cannot be obtained.

In this paper, we develop a frequency signal classifier
suited for stochastic bandpass transient signals. The design
of the classifier relies on properties of the wavelet trans-
form (WT), namely the capability of nearly describing a
bandpass transient signal by a small set of wavelet decom-
position scales [6], giving rise to a computationally efficient
classification scheme.

2. PROBLEM FORMULATION

Let z(t) be a sample function of the observed process, mod-

eled by
o(t) = s:(1) + w(?), (1)
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where t is the time variable. Signals s;(t),7= 1,2, .., belong
to a set of strictly bandpass Gaussian stochastic transient
signals. The observation noise w(t) is a zero mean Gaus-
sian white noise process. Signals and noise are mutually
independent stochastic processes with known autocorrela-
tion function.

Let us denote by S, (t,w) the time-frequency power spec-
tral density of each signal s;(¢), defined as the Fourier trans-
form of the autocorrelation function R, (t+ 7/2,t— 7/2),
computed over the lag-variable r. Signals s;(¢) are, thus,
characterized by exhibiting a limited bandwidth in the fre-
quency domain, i.e.,

Ve Su(t,w) =0 if |0l ¢ Wainowmes],  (2)
and a nearly finite duration in the time domain, i.e.,
Yw S, (tw)~0 if t¢[0,%s] (3)

In the above equations, [Wmin;,Wmax;] stand for the maxi-
mum frequency range, and t,; for the time duration, of the
transient signal s;(t).

Given the observation process {z(t),t € [0,77]}, where
T stands for the observation time interval, our goal is to
decide about the presence (or absence) of a transient signal
and simultaneously characterize to which one of the a priori
given classes the arriving signal belongs.

By the Nyquist theorem, it is possible to reconstruct any
bandpass process s(t) from its samples s(nT.), n = 1,2, ....,
provided that the sampling time interval T < 7/wmax. In
the above context, we are going to deal with this problem
in the discrete time domain, that is, we consider that we
first sample the continuous observation process z(t), giving
rise to the observed discrete time sequence

z(nTs) = 8i(nTs) + w(nTy). (4)

Afterwards, the decomposition of the signal under a discrete
wavelet orthonormal basis is considered.

In the next section, the discrete wavelet transform de-
composition of a bandpass transient signal is discussed and
related with its continuous time characterization as a func-
tion of both the sampling interval and the wavelet functions
of the basis.

3. WAVELET TRANSFORM
REPRESENTATION OF BANDPASS
TRANSIENTS
Using Mallat’s recursive algorithm for image decomposition
{7, 8] in its one-dimensional form,

c{c = Z h(n - 2k)c{{“1

S ; )
4 = g(n —2k)ch



where h(n) and g(n) are Daubechies [8] finite length filters,
a discrete time sequence ¢, = s;(nT,) is decomposed in the
subsequences d*, d?, ..., d™ and ¢™. The recursive filtering
equations (5) can also be expressed in terms of the original
sampled signal s; as the internal product

¢ =< 8i, hl > (6)
di =< s8i,07 >

Filters k(n) and g(n) are, respectively, lowpass and high-
pass filters, While ¢™ represents a smoothed version of
s;, sequences d” stand for filtered versions of s; in different
frequency bands [6]. The internal product < si, g7 >, is rel-

evant only when both signal s; and filter gj, exhibit overlap-
ping frequency bands. Consequently, performing the WT
decomposition of s; until the lowpass residue correspond-
ing to < s;, kg > is close to zero, and neglecting those
sequences d’ for which < s;, g7 > is also close to zero, one
gets an approximate representation of s; based on a smaller
set of frequency scales.

The elements of the wavelet transform coefficients (WTC)
covariance matrix representing the filtered versions of the
sampled transient signal s;(n7}) are

Eld7d]] = E[<sign ><si,g >] (7)

+ 00 + o0

Yo D e+ ART(E+ A, 04),

f=—00 A=—00

where Rfj (£1,£2) represents the sampled version of the
continuous signal autocorrelation function Re, (41T, £2T%).
Filters g7 are finite length filters (g7 (£) = 0 for £ ¢
[Lrg, L7 ]). Consequently, expression (7) 1s non-zero only
when the time domain compact support of both g;* and g}
overlap, giving rise to the sparsity structure of the WT
covariance matrix.

Let us assume that the signal antocorrelation function is
nearly stationary over the compact support of each finite
length filter g;*, that is,

RU(6+0,6) ~ RE(LT+ A, L) LY € [L, L] (8)

In other words, the time variation of the autocorrelation
function is slow when compared to the time duration of the
wavelet function (WF) of the basis.

In the above context, from (7), the diagonal terms of the
WTC covariance matrix become

+ 00 + 00
2
Bl )= S RI(LT+4,L7) Y g€+ A)r (o).
A=~—00 e=—00

. . (9)
Using Parseval’s theorem, and taking into account the sym-
metric structure of the autocorrelation function, it results
after manipulation

+r
E[dr] = i/ SEF(LT, )G ()], (10)
-

where S&#¢(L7 Q) stands for the discrete time
Fourier transform of the sampled autocorrelation function
RZ“ (L7 + A, LT) computed on the integer lag-variable A.
An interesting issue regarding the wavelet functions of the
basis is that the amplitude characteristic |G’ (€2)| does not
depend on n [6], that is,

Vn |G = 1G™(Q)], (11)
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being the same at every n for each scale m.
From the sampling theorem,

SEELT,0) = A5, (17T &), Q€[-ma],  (12)

where S;,(t,w) is the continuous time-frequency power
spectral density of the transient signal s;(t), equation (10)
becomes

i L
Pl & 5

T
/ So (LT Ty, )| G™(WTs)Pdw.  (13)
R

Ts

Due to the transient signal nearly finite duration, condition
(3), independently of the frequency bands of both signal
and WF ¢7*,

S (L7 Ts,w)|G™(WTH))? =0, for LPT, ¢ [0,t]. (14)

Since two consecutive vectors gp," and gp%; have their non-
zero terms shifted by 2™ [6], only a finite number of non-zero

coefficients E[d?g] can be found for each scale m. Simul-
taneously, the bandpass power spectral density of both the
transient signal and the frequency scaled wavelet function
G™(wTs) need to overlap in the frequency domain. More-
over, since each scale m corresponds to different frequency
bands, only a finite number of scales m gives rise to non-

zero E[d;”g] coefficients. Finally, let us point out that the
frequency scaling introduced by the sampling interval T in
|G™(wTy)| allows us to define the location of its non-zero
frequency range. Therefore, with an appropriate choice of
both the sampling interval and the wavelet basis, it is possi-
ble to tune the decomposition of process 3:(t) so that most
of its energy fall in a small set of coefficients. In the next
section, we present the classifier structure, including the
tuning procedure to optimize the energy distribution among
the several classes of transient signals.

4. CLASSIFICATION SCHEME

The classification problem is herein addressed as a M-ary
detection problem. Each hypothesis H;, « = 0,1, ...., cor-
responds to receiving, under the presence of white noise, a
stochastic transient signal s;(¢) from class 7. Hypothesis Ho
stands for the situation where no signal is present.

Let us denote by X the observation vector obtained by
sampling and decomposing, under a set of orthonormal
functions that span every possible class of signals, the ob-
served continuous time waveform z(t). In the Bayes classi-
fier, implemented as a binary classification tree, the decision
about which class the received signal belongs results from
sequentially comparing the a posteriori probabilities

H;

P(H,|X) HZ P(HK|X), VE#j, (15)

for every pair of hypotheses, as shown in Figure 1. For
Gaussian signal and noise processes, the binary test (15)
becomes

Hj
_ - Ajl P(Hy)
C:XTAI—A1X>1n<") 2111( )

W =A% < ) 0\ P
(16)
where P(H,) is the assumed known a priori probability of
hypothesis 7, A; represents the covariance matrix of the ob-
servation vector X under hypothesis ¢, and |- | stands for

the matrix determinant.




ozm) (2n) (2w (n2m)

Figure 1. Bayesian classification tree.

When the dimension of the observation vector X is large,
the evaluation of the likelihood ratio L, left side of inequal-
ity (16), is a heavy computational procedure to be taken at
every processing step along time. To reduce this computa-
tional load, it is convenient to decompose the observation
signal z(t) under the smallest possible set of coefficients.
For this purpose, we are going to define, for each binary
test, the signal decomposition that better adapts to the
two hypotheses under analysis.

Given two distinct decompositions, X and Y, of the

same observations, the binary tests P(H;|X) Z P(Hi|X)

and P(H;|Y) z P(H|Y) are equivalent if and only if X
and Y are one-to-one mappings. This is not the case if
X and Y correspond to different samplings of the contin-
uous waveform :::(3, even if both sampling rates are under
the transient signal Nyquist condition. Nevertheless, both
tests reflect, with similar accuracy, the comparison between
“signal classes j and k a posteriori probabilities given the
continuous time observation {z(t), t € [0,7]}”. For this
reason, we assume that using different sampling rates at
each pair of binary tests in the classification tree is harm-
less.

Our goal is to define, for each pair of binary tests (15), the
“best” signal decomposition, in the sense that it minimizes
the number of wavelet coefficients required to describe, up
to a given amount of error, the transient signals under clas-
sification.

This problem is solved in two steps: First, given the two
classes of transients, j and k, find 7, and a filter g (cor-
responding to a wavelet family (WF) orthonormal basis of
compact support) such that there exists two different scales
m; and mx that maximize the functional

Ny(mj) Ny(my)
J= 30 BEEPCH+ Y EWRFIH. (1)
n=No(m;) n=No(my)

The maximization of the above functional leads to the
choice of the two scales that “better” represent the classes
of signals under classification, in the sense that they in-
clude the most part of the energy of signal classes j and k,
respectively. Remark that, in (17), we are assuming that
E[d™?] ~ 0 for n ¢ [No(m:); N1(m:)]. These limits are
established based on the transient signals time duration ..
Secondly, and once defined the most important scale to de-
scribe each signal class, the other scales to be included are
obtained in order to guarantee that the mismatch between
the complete and the approximate signal representations is
smaller than an a priori given maximum allowable error.
From (13), and defining

Ni(mi)
W,‘((/J) = Z Si‘i(LzlniTS:w) ) (18)

n=No(m;)
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one concludes that maximizing (17) is equivalent to maxi-
mize

+E
J :/ W;(w)|G™ (WTs)|? + Wi(w)|G™ (wTs)[Pdw.
-
Ts

19
The above functional has several local maximum p(ajrz
(mj, mx). For example, if the time average power spec-
tral densities, W;(w), of two distinct signal classes are cen-
tered around two frequencies that are not separated from
each other by more than one octave, then a maximum is
obtained for m; = mgs1. For fixed WF, if f, = 1/T is
the sampling frequency corresponding to a maximum, then
other maxima are reached at sampling frequencies close to
2'f., 1 € N. Typically, we choose the lowest sampling fre-
quency that corresponds to a maximum, in order to reduce
the computational load of the receiver. Care must be taken,
however, to ensure that for each pair of classes, the sam-
pling frequency is higher than the Nyquist frequency for all
classes, to avoid aliasing effects that may reduce the perfor-
mance of the classifier.

The binary tests (16) are, then, implemented based on
different signal decompositions for each pair of hypothesis
7 and k, and taking only into account the dominant scales
for each signal class, that is,

Hj
XTAD Xk - XTATX; 2 In ('ﬁf-l> +2In (P(H")) :
Hy

Ak} P(H;)

In (20), X; is the decomposition of the observed wave-
form {z(t), ¢ € [0,T]} under the “smallest” decomposition

achieved for class i, the corresponding covariance matrix A;
being built accordingly.

5. SIMULATIONS

The performance of the herein proposed receiver is evalu-
ated based on a 20,000 run Monte Carlo experiment, con-
sisting of four hypothesis H;, i = 0,1,2,3, for classification.
Hypothesis Ho considers that only noise is observed, while
the other three hypotheses, assumed to be equally likely,
correspond to the case where a stochastic transient signal
is embedded in white noise. The observation noise spectral
height is 16.

The three classes of transient signals are gemerated ac-
cordingly to the block diagram shown in Figure 2, where

pi(?)

u(t)—(x) si(t)

Figure 2. Signal structure.

pi(t) is a gating function in the time interval [0, 1] s., Fi(w)is
a strictly bandpass filter, and u(t) is a Gaussian zero-mean
white noise process with spectral height 1. Filters Fi(w) are
obtained by truncating, outside a pre-specified bandwidth,
the frequency response of fourth order linear filters charac-
terized by having unitary maximum gain, a double zero at
the origin and a double pair of complex conjugated poles.
Table 1 summarizes the gating and filtering characteristics
in the generation of the three classes of signals.

The received waveform z(t) is decomposed using
Daubechies’ D14 family of wavelets [8]. The tuning of the
signal decomposition to each binary test in the classifica-
tion tree is performed by maximizing the functional (19).
Table 2 shows the sampling time and the dominant scales



Table 1. Signal classes.

[ Signal gating Flw)
poles “band (rad/s)
1 16.4e~500—0-9772 [ 90 4 450 [66, 99
2 11.9e~ 1% —30 & 5120 [99,148]
3 54.6 —45 £ 5180 | [148,223]

Table 2. Dominant scales and sampling times for
classification tree.
Test i — j « P(H:|X) 2 P(H;|X)
1-2 1-3 2-3 I-0 J20713
T, (ms) | 7.8 | 13.5 | 10.4 | 13.2 | 88 | 5.9
cale 1 3 2 2 2 2 2
cale j 2 3 3

obtained for each binary hypothesis test. Remark that, for
the decision tests in-between any signal class and the noise
only situation, the sampling interval is tuned taking only
into account the signal characterization.

Two experiments are conducted: In the first one, the
complete (exact) WT decomposition of the received process
is considered. In the second one, only the dominant terms
for each signal class decomposition are used, corresponding
to about 88 % of the total energy. The number of dominant
terms is in-between 11 and 56, corresponding to an efficient
improvement regarding signal decomposition.

Denoting by Pp, the probability of detecting a signal
from class s; under hypothesis H;, that is, of saying that
a transient signal of class s; is present when it is, and by
Pr, the probability of false alarm, i.e., the probability of
saying that a transient is present when it is not, the classifier
probability of error is given by

P(e)= ) [1 - Pp,]P(H) + PraP(Ho).  (21)

=1

To access the performance of the receiver under both case
studies, we plot in Figure 3, for each signal class, the Pp,
vs. Pp, curves, i.e., the receiver operating characteristics
(ROC) curves. Table 3 shows, in percentage, the a poste-

09 T T T T T |
094} W
0924 e
5 Q@b R
8
Zossf b
k]
E086 3
z° b
2 cxas53-1oo%
o o84} - Clasg 2+ 1005+~
Class 1- 100%
s H H
082 oy 3% = - Clash 3~ 88% |
4,;31 : 6 -0-6 Ciss2-88%
08k o ; : X% =X - Class 1+ 88% |
x i
078 i i I T i i i
002 004 006 008 01 012 014 046 018 02

Probability of false alarm

Figure 3. Receiver operating characteristics.

riori probabilities, P(s:|H;), of detecting a signal of class
¢ under hypothesis H;, assuming that all hypotheses are a
priori equally likely, that is, when P(H;% = 0.25, Vi. First
and second values correspond, respectively, to the complete
and approximate signal descriptions.
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Table 3. Classification results.

] P(SI—IH]) P(Sgr}r;) P(sg H;r P‘ IlOiSe]H]_l
1] 85.9-82.9 0.1-0.2 0.2-0.4 13.8-16.5
2 0.1-0.2 86.9-83.6 0.2-0. 12.9-15.8
3 0.1-0.1 0.1-0.1 88.7-86.1 11.1-13.6
0 1.9-2.1 1.0-1.3 2.6-3.1 94.5-93.5

The receiver that uses the complete WT decomposition
of the processes is the best Bayes classifier for the given
signal classes. The achieved ROCs represent, for each class
of signals, an upper bound for the receiver performance.
As expected, when only the dominant terms for each signal
class decomposition are used, a small performance degrada-
tion is observed, due to the mismatch between assumed and
actual signal characterization. Remark, however, that the
computational efficiency of the receiving scheme regarding
the second experiment is greatly improved.

6. CONCLUSION

The paper presents a classifier for Gaussian stochastic tran-
sients, based on the wavelet transform. The main contribu-
tion of the present work consists on a procedure to adapt
both the sampling interval and the wavelet function of the
basis to the continuous classes of signals involved.

Other interesting properties of the wavelet transform,
that motivated this work but are not highlighted herein,
point out to the possibility of designing receiving schemes
well suited to operate in real-time [6], leading to an inte-
grated procedure to simultaneously perform the transient
signal segmentation and classification tasks.

The Monte Carlo simulation study, carried out with syn-
thetic data, leads to the conclusion that only a small set
of features are required to describe bandpass stochastic
transient signals. Although exhibiting a small degradation
in performance with respect to the optimal solution, the
achieved structure shows to be computationally efficient.
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