
ROBOT CONCURRENT REMOTE OPERATION THROUGH INTERNET

Alberto Vale, Paulo Inácio, Nuno Antunes,
João Sequeira, Maria Isabel Ribeiro

Instituto Superior Técnico – Instituto de Sistemas e Robótica
Av. Rovisco Pais 1, 1049-001 Lisboa – Portugal

e-mail: {vale,jseq,mir}@isr.ist.utl.pt

Abstract: This paper describes an architecture for the remote operation of a mobile
platform by multiple users using Internet. A client/server approach, developed using Java,
provides the users with multiple control and sensing functionalities. Experimental results
obtained under regular network traffic are presented.
Copyright CONTROLO 2000

Keywords: Remote Operation, Internet, Human Interface, and Protocol

1. INTRODUCTION

Economical, environmental and safety concerns are
leading to an increase in the use of robots. Given the
complexity of realistic environments, full autonomy
in robotics is yet to be achieved and hence semi-
autonomous robotics is being established as a major
research line (IEEE Robotics & Automation, 1999).
The use of Internet as a communication channel
further extends the application examples, namely in
hostile environments such as mining, nuclear waste
disposal and surveillance. Depending on the
kinematics of the robots and of the particular
application considered it might be necessary to allow
simultaneous access of multiple users to a single
robot. A typical example may be a mobile
manipulator with different users managing separately
the mobile platform and the manipulator.

The Internet is known for the non-stationary
characteristics of the traffic, which represents a harsh
constraint in the application of standard control
techniques. The common approach to this problem is
to move the control problem from the class of pure
remotely operated systems (which can be identified
with tele-operation) to the class of semi-autonomous

systems. Semi-autonomy considers the use of
intelligent control techniques to minimize the
practical effects of low bandwidth communication
channels. The web browser’s technology evolution
simplifies the access to a worldwide scale
communication channel and hence the use and design
of remote operation tools. Moreover, current web
browsers are almost hardware platform independent
and hence allow the sharing of software components.

The training of users in the operation of a robot,
using the expertise of different trained users in
complex missions for safeguards or the establishment
of cooperative interactions between multiple robots
and users are just two examples where the concurrent
operation is useful. Priority and arbitration
mechanisms are used to manage multiple users in the
access to a single robot.

This paper addresses three major issues in the remote
operation of robots: the user-robots interface, the
communication channel and the concurrent operation
of a robot by multiple users. A single robot is
considered in this paper. The robot to be remotely
operated, shown in Figure 1 with a manipulator

mailto:vale@isr.ist.utl.pt

mounted on top, is a cart-like mobile platform with
24 ultrasound sensors and an odometer system.

Fig. 1. Robuter image on video window

This paper is organized as follows. Section 2 presents
an overview of the complete work presented in this
paper. Sections 3 to 5 detail the communication
protocol, security issues and user interfaces for the
architecture modules. Experimental results are
presented in Section 6. Section 7 concludes the paper
and presents directions for further developments.

2. OVERVIEW

This work aims at developing an architecture for the
concurrent remote operation of a mobile platform,
through Internet, as illustrated in Figure 2. To ensure
high portability between remote computational
facilities, the software was required to be platform
independent.

Fig. 2. Concurrent Remote Operation

Concurrency leads to a modular client-server
approach. The server application manages all
exchanges between users and the robot. The users
have access to a number of tools with which they
interact with the robot. Each of these tools is a client
in the architecture. The strategy for the development

of the system has been divided into three main steps
described bellow:
• Specification of the basic architecture supported
on Internet. The portability requirement led to the use
of the Java language (Zukowski, 1998; Ammeraal,
1998). Moreover, Java's applet technology provides a
secured way of exchanging small functionalities
between clients and server and data encryption
ensures security in communications.
• Definition of the basis tools through which the
users interact with the robot. These tools include the
client applications that receive and process sensor
data and the applications through which the users
command the robots.
• Design of two GUIs – Graphical User Interfaces
to integrate clients and to access the server. Both
interfaces were written in Java (Flynn, et al., 1997;
Stephen, 1998).

Beyond the automatic management, the server
application still allows the manual management of
users and full platform control by a system
administrator.

3. BASIC ARCHITECTURE

The basic architecture is client-server type (Jeffery,
1996). Communication between server and clients
uses a predefined protocol. The architecture is open
in the sense that there are no constraints on the
number of connectable clients.

Each tool available for the user to interact with the
robot is a client. Users access clients through a web
page after passing an identity authentication step.
This web page constitutes the user interface.

The server main goal is to handle the messages
received from the users, sending them, if appropriate,
to the robot and returning any answer back to the
users.

Each client has a priority assigned by the server. The
order in which messages from/to the robot are routed
from/to the users depends on the priorities assigned
to the corresponding owners. The server has a
database where the profile of every user is kept. This
profile includes the users hierarchy and the list of
tools that each user can access.

Encryption algorithms were applied on messages
exchanged between users and server. The Blowfish
and the R.S.A. (Rivest, Shamir e Adleman)
algorithms (Ferreira, 1997) were chosen to encrypt
the data exchanged between the users and the robot.

4. USER INTERFACE

To operate the platform, a remote user starts a
session in the web page that establishes a connection

with the server program, after validation of user
identity (see Figure 3).

Fig. 3. User interface web page

The user interface enables the user to access the tools
through which it interacts with the robot. The main
tool is the user interface itself. Once logged in, the
user is informed of the available tools. Figure 4
shows a graphical arrangement for the standard set of
tools.

Fig. 4. Standard tools

Relevant messages from the server and the statistics
on the communications channel are also displayed at
the user interface.

Each tool interacts with the user through its own
window. The main tool is a small floating window to
simplify its display in the user screen area. Figures 3,

6 and 7 illustrate the graphical appearance of three
tool windows. Each of these tools is independent of
the others and is detailed ahead in the paper.

The Main Tool
The main tool provides the user with the choice of
the tools to control the platform. The tool’s structure
(see Figure 5) was drawn in order to make use of the
multi-threading processing. This tool manages the
messages exchanged between the user and the server.
To make this possible, the main thread receive all the
server’s commands and sends back to the server the
answers to the received commands.

Fig. 5. Diagram of main tool

Video image tool
Any user can access this tool. It simply shows the
video images captured through a web-cam, typically
placed in the robot working area (see Figure 1 for a
view of the test environment).

Ultrasonic sensor tool
This tool complements the video image tool. It
displays the measurements of the ultrasonic sensors
installed in a ring around the robot. The associated
display window is divided in three areas: the
visualization map, the range scale, and the most
recent sensorial data. In the map center, the platform
is represented with the front facing the top of the
window (see Figure 6 for details). The occupied
space around the robot, perceived by the ultrasound
sensors, is represented by a set of cones. The height
of each cone represents the distance at which an
obstacle has been detected in the corresponding
direction.

Talker tool
This tool establishes a communication channel
between a user and the system administrator or
among users. This tool allows the interaction among
users geographically apart that are operating the same
robot or a set of robots.

...Tools

Main

Video Sonar Talker Control

User Interface

Main
Tool

Listening
Server program

Waiting server
message

User
Program

Multi
threading

Reply the message
for interpreter

Thread

Fig. 6. Ultrasonic sensor tool window

Command/Control tool
The robot motion commands are generated with this
tool. A "graphical joystick" enables the user to select
a wide range of motion directions and wheel
velocities.

Fig. 7. Control tool and advanced control tool

Each time the user presses one of the buttons in the
tool display, a motion command is sent to the server.
In this tool two classes of motion buttons are
available: one for platform rotation and the other for
translation through the desired direction. All the
motion and orientation commands in this tool are
relative to the platform reference frame. In this way,
the agreement between graphical display in the tool
and the ultrasound data visualization tool is
complete.

Advanced control tool
This tool implements a dispatcher of commands to
the robot using the motion commands syntax
directly. This requires a minimum knowledge of the
robot kinematics and of the motion command
language. This tool represents a remote terminal for
the robot onboard computer and is especially useful
in debugging any additional tool that needs to
generate motion commands.

5. SERVER INTERFACE

The system administrator operates the server
program. It is configured from two files, loaded at
program startup. If these files do not exist the
program immediately finishes by security reasons. A
file with the logging of the events is created in case
of an emergency stopping.

The graphical interface aims at simplifying the
system administration by displaying all the
information passing through the server (see Figure 8
where the interface server is displayed). The display
area is divided in four areas. The top-left area
displays, in real time, all the messages exchanged
between the users and the server. On the top-right is
displayed, also in real time, the commands sent to the
platform and any reply messages are displayed also
in real time. In the bottom-left area the user can
exchange messages with the system administrator
and with any other user logged in the system. The
last area displays a list identifying the logged users
and a summary of their current status.

Fig. 8. Interface Server

The server structure is supported in two main threads
as represented in Figure 9. One thread handles the
robot whereas the other handles the new users. This
second thread launches a new thread for each new
user that logs in.

The messages received by the server are first parsed
for validity according to the protocol displayed in
Figure 10. When a message from a talker tool is
received, it is displayed together with the user
identification, in the related area of the interface.
When a message from a control tool is received the
server verifies the command type in the message
content. If it is a stop command, the server sends it to
the platform, waits for a reply and sends this reply to
the control tool. If it is a motion command the server
monitors the position error. Whenever this error is
larger than a predefined value, the server
automatically generates an additional motion

command to adjust the robot position. The final
configuration is replied to the control tool window.

Line for New
Users

Waiting connection
call

Start the
communication with

the new user

Server
Program

Multi
threading

Line Response
for the New User

Thread Thread

Fig. 9. Basis users management flowchart

In
te
rn
et

User
Program

Server
Program

Send
connection

order

Receive
connection order

Send
encriptation-key

Receive
encriptation-key

Send login
and

password

Receive login
and

password

Validate the
users database

Known
User ?

Is the user
enabled?

Yes

Accepted. Get
the user profile

Refused

Security violation

Send
result

Receive the
message

Was
accepted ?

No

Make tools
available for

this user

Close the
channel

connection

Yes

No

No

Yes

In
te
rn
et

In
te
rn
et

E
nc

rip
ta

tio
n

E
ncriptation

Fig. 10. Diagram of the validity protocol

When a message is originated in an advanced control
tool, the server sends the content of the message
directly to the robot and then waits for a reply. After
receiving the reply the server program sends it to the
user that originated the initial message.

The emergency stop is to be used in imminent danger
situations to immobilize the robot. When an
emergency stop is invoked, the server starts a
procedure to send an emergency stop command to
the robot. This procedure starts with the immediate
suspension of all currently logged users having the
privilege of sending motion commands. After the
robot immobilization a history file is created,
allowing the posterior inquiry on the emergency
situation causes.

6. EXPERIMENTAL RESULTS

This section presents a set of experiments, carried out
in such a way as to simulate real working conditions.
The users could only interact with the platform
through the available tools. The video image tool and
the ultrasonic tool assumed a major role, because
these are the only way to know the platform
environment. The web-cam was located in a strategic
point, allowing the visualization of all the workspace.
The communication infrastructure that supported the
test session was a LAN (local area network) of
Instituto de Sistemas e Robótica (Lisbon pole).

Each test was running during one hour with
ultrasound sampling rate of 4 seconds. All user tools
were used to control the platform. To determine the
minimum data transfer rate value, acceptable for
remote operation, four tests were carried out in
different hours of the day, which means different
network traffic conditions. The communication speed
of the messages exchanged between client and server
oscillated among the 390 bytes/s and the 505 bytes/s
with an average value of 450 bytes/s. These
measurements were made with the following
procedure: the server sent a message to the client,
who replied with another message. As the length of
these messages is known, the number of bytes
exchanged was divided by the time spent in this
transmission. In these measurements, the time spent
in the information processing by a Pentium computer
was discarded when compared with the
communication speed. Some of these tests were
made with different users, that were controlling the
platform simultaneously. Each of these users had a
different priority assigned by the server, which was
verified by automatic management operating.
Intentionally, an emergency situation was created, in
which the server must immobilize the platform. This
action was fulfilled through the emergency stopping
of the server interface.

Fig. 11. Path with an “8” shape. Ultrasound sampling
rate of 1s

In the first test the operator had to command the
platform, using the available tools, along an obstacle
contour, with an “8” shape path (see Figure 11). The
second test was identical to the first one, but with an
ultrasound sensor sampling interval of 1.25s (see
Figure 12). The comparison between Figure 11 and
12 shows, in this last one, an increased number of
situations where the user had to stop the platform to
re-adjust its orientation. This is due to a lower
refreshing rate of the environment in the platform’s
vicinity.

Fig. 12. Path with an “8” shape. Ultrasound sampling
rate of 1.25s

In the third test, the user directs the robot along a
path delimitated by barriers (see Figure 13). The
resulting trajectory shows clearly three stop-and-
reorient maneuvers due to odometer errors. The
sampling interval of the first test was used. Figure 14
shows the results of ten trials of the third test where
each “*” represents the origin of the robot reference
frame. The density of “*” shows a good system
repeatability.

It is worth noting that near the curve the web cam did
not help the user to correctly perceive the orientation
of the robot. The ultrasound sensor tool overcame
this problem.

Fig. 13. Path with a “U” shape limited by barriers.
Ultrasound sampling rate of 1s

Fig. 14. Last experience repeated 10 times.
Ultrasound sampling rate of 1s

7. CONCLUSIONS

From the aforementioned tests the feasibility of the
remote operation through Internet is verified. Despite
the simplicity of the test environment the architecture
proved to have the necessary functionalities to fulfil
the goal and it could be possible by concurrent users.

Still some future developments are to be considered,
namely the inclusion of new interaction tools with
the robot, and the use of a data compression
algorithm to save some bandwidth.

8. REFERENCES

Ammeraal, L. Computer Graphics for Java
Programmers. Sybex 1997.

Craig, J. Introduction to Robotics, Mechanics and
Control. Addison-Wesley Publishing Company,
1991.

Ferreira, P. Suporte de Aplicações Distribuídas.
L.E.I.C. – I.S.T. 1997.

Flynn, J. and Clark B. Visual J++ Programando em
Java. Makron Books 1997.

IEEE Robotics & Automation, Vol. 6, No 3,
September 1999.

Jeffery. Advanced Windows. Microsoft Press, 1996.
Stephen, D. Learn Java Now. Microsoft Press, 1998.
Zukowski, J. Mastering Java 1.2. Sybex, 1998.

