Design, Development, and Testing at Sea
of the Mission Control System
for the MARIUS Autonomous Underwater Vehicle *

P. Oliveira, A. Pascoal, V. Silva, C. Silvestre

Institute for Systems and Robotics, Instituto Superior Técnico
Av. Rovisco Pais, 1096 Lisboa Codex, Portugal
E-mail address: antonio@isr.isr.ist.utl.pt

Abstract-This paper describes the design
and development of a Mission Control Sys-
tem for the MARIUS AUV, and presents the
results of sea tests for system design valida-
tion carried out in Sines, Portugal.

I INTRODUCTION

Among the challenges that face the designers of
underwater vehicle systems, the following is of the
utmost importance: design a computer based Mis-
sion Control System that will i) enable an operator
to define a vehicle mission in a high level language,
and translate it into a mission plan, é)provide ade-
quate tools to convert a mission plan into a Mission
Program that can be formally verified and executed
in real-time, and 1) endow an operator with the ca-
pability to follow the state of progress of the Mission
Program as it is executed, and modify it if required.

Meeting those objectives poses a formidable task
to underwater system designers, who strive to de-
velop vehicles that can be programmed and oper-
ated by end-users that are not necessarily familiar-
ized with the most intricate details of underwater
system technology. Identical problems face the de-
signers of complex robotic systems in a number of
areas that include advanced manipulators, indus-
trial work cells, and autonomous air and land vehi-
cles. The widespread interest of the scientific com-
munity in the design of Mission Control Systems
for advanced robots is by now patent in a sizeable

*This work was supported by the Commission of the Eu-
ropean Communities under contract MAS2-CT92-0021 of the
MAST-II programme, and by the Portuguese PRAXIS pro-
gramme under contract 3/3.1/TPR/23/94.

N 70N2 2810 Q/oR ¢R NN A 1004 IFER AN

body of literature that covers a wide spectrum of
research topics focusing on the interplay between
event driven and time-driven dynamical systems.
The former are within the realm of Discrete Event
System Theory [4], whereas the latter can be tack-
led using well established theoretical tools from the
field of Continuous and Discrete-Time Dynamical
Systems [5].

Early references in this vast area include the pio-
neering work of K.S. Fu [6], Saridis [9] and Albus (1],
which set the ground for the study of learning con-
trol systems, intelligent machine organization, and
general architectures for autonomous undersea ve-
hicles, respectively. For an overview of recent the-
oretical and applied work in the field, the reader is
referred to [2, 10], which contain a number of pa-
pers on the design of advanced control systems for
unmanned underwater vehicles, combined underwa-
ter vehicle and manipulator systems, intervention
robots, and air vehicles.

As part of the international effort to develop ad-
vanced systems for underwater vehicle mission con-
trol, IST has designed a first version of a Mission
Control System for the MARIUS AUV (3], shown
in Fig. 1. This paper provides a brief summary of
the framework for design, analysis and implementa-
tion of the Mission Control System proposed, and
reports the results of a series of sea tests for sys-
tem validation conducted in Sines, Portugal. The
work reported here has been influenced by the solid
body of research carried out by INRIA/IFREMER
in France, with applications to the VORTEX ve-
hicle, and at NPS in the U.S. with applications to
the PHOENIX vehicle, see [7] and the references
therein.

The organization of the paper is as follows: Sec-

Fig. 1: The MARIUS AUV.

tion describes the basic framework adopted for
Mission Control System design and implementa-
tion using the software programming environments
CORAL and ATOL. Section illustrates the basic
steps involved in the design of a Mission Program
for a simple mission example, describes the set-up
for mission execution and mission follow-up from a
shore station, and reports the results of running the
mission described at sea.

II MissioN CONTROL SYSTEM
DESIGN

This section describes a framework for the design
of Mission Control Systems for AUVs. Due to space
limitations, only the key concepts will be presented
here. For complete details the reader is referred to
[8]. The framework proposed builds on the concepts
of System Task, Vehicle Primitive, Mission Proce-
dure, and Mission Program, that will be explained
in the sequel.

System Task The concept of System Task arises
naturally out of the need to organize into distinct,
easily identifiable classes, the algorithms and pro-
cedures that are the fundamental building blocks of
a complex Underwater Robotic System. For exam-
ple, in the case of an AUV, it is convenient to group
the set of all navigation algorithms to process mo-
tion sensor data into a Navigation Task that will
be responsible for determining the attitude and po-
sition of the vehicle in space. A different task will
be responsible for implementing the procedures for

multi-rate motion sensor data acquisition. In prac-
tice, the number and type of classes adopted is dic-
tated by the characteristics of the Robotic System
under development, and by the organization of its
basic functionalities, as judged appropriate by the
Robotic System designer. These considerations lead
naturally to the following definition:

A Vehicle System Task (abbv. System Task - ST)
s a parametrized specification of a class of algo-
rithms or procedures that implement a basic func-
tionality in an Underwater Robotic System.

The implementation of a System Task requires
the interplay of two modules: i) a Functional mod-
ule that contains selected algorithms and procedures
and exchanges data with other System Taks and
physical devices, and i) a logical Command module,
embodied in a finite state automaton, that receives
external commands, produces output messages, and
controls the selection of algorithms, procedures, and
data paths to and from the Functional module.

The design of the Functional module is carried
out using well known tools from such diverse fields
as navigation, guidance and control, instrumenta-
tion and measurements, communication theory, and
computer science. The design of the Command
module amounts to specifying a finite state automa-
ton [4] that deals with the logical aspects of the
System Task.

Vehicle Primitive The concept of Vehicle Primi-
tive plays a central role in the general framework for
Mission Control System design described in this pa-
per. A Vehicle Primitive corresponds to an atomic,
clearly identifiable action performed by an Under-
water Robotic System, and constitutes the basic
building block for the organization of complex robot
missions. The following definition is offered:

A Vehicle Primitive (VP) is a parameterized spec-
fication of an elementary operation mode of an Un-
derwater Robotic System. A Vehicle Primative cor-
responds to the logical activation and synchroniza-
tion of a number of System Tasks that lead to a
structurally and logically tnvariant behavior of an
underwater robot.

Associated with each Vehicle Primitive, there are
sets of pre-conditions and resource allocation re-
guirements that must be met in order for the Primi-
tive to be activated, as well as a set of Vehicle Prim-
itive errors. During operation, a Vehicle Primitive
will generate messages that will trigger the execu-
tion of a number of System Tasks. The conditions

402

that determine the occurrence of those events are
dictated by the logical structure of the Vehicle Prim-
itive itself, and by the types of message received
from the underlying Vehicle System Tasks. The nor-
mal or abnormal termination of a Vehicle Primitive
will generate a well defined set of post-conditions
that are input to other Vehicle Primitives, and will
release the resources that were appropriated during
its execution.

By exploring the use Petri nets for the mod-
eling of discrete event systems [4] it is possible
to show that a Vehicle Primitive can be embod-
ied in a Petri net structure defined by the five-
tuple (PVPyTVPJAVPswVPaxVPO)7 where Pyp, Ty p,
and Ay p denote sets of places, transitions, and arcs
respectively, wyp is a weight function, and Xy 5, is
the initial Petri net marking. The set of places Py p
can further be decomposed as P,p = P,,. UP,., U
F.., UP,.UP,,., where P,., P, P..,, Pp,, and P,
denote the subset of places that hold information
related to the pre-conditions, resource allocation,
errors, post-conditions, and the remaining state of
the Petri net, respectively.

Based on the framework introduced, a Vehi-
cle Primitive programming environment named
CORAL has been developed. The left side of Fig-
ure 2 depicts the organization of the CORAL soft-
ware tools that are available to edit and generate a
Library of Vehicle Primitives which implement the
complete set of atomic actions required for a specific
Underwater Robotic System. Each Vehicle Primi-
tive, embodied in its equivalent Petri net, can be
input either graphically via a CORAL graphic in-
put interface, or via a textual description using the
declarative, LR1 synchronous language CORAL. A
CORAL compiler/linker is in charge of accepting
the vehicle primitive textual descriptions, and pro-
ducing a Vehicle Primitive Library that is an archive
containing the syntax and semantic descriptions of
all Vehicle Primitives, as well as the data sets re-
quired for their execution.

In order to run the Vehicle Primitives described
before, a CORAL Engine has been developed that
accepts Vehicle Primitive descriptions and executes
them in real-time.

Mission Procedure/Mission Program Given
a mission to be performed by an Underwater
Robotic System, the generation of the correspond-
ing mission plan requires the availability of a set
of entities aimed at specifying robot Actions at a

number of abstraction levels. Those entities - hence-
forth referred to as Mission Procedures - allow for
modular Mission Program generation, and simplify
the task of defining new mission plans by modify-
ing/expanding existing ones. The above introduc-
tion motivates the following definition:

A Mission Procedure is a parameterized specifi-
cation of an Action of an Underwater Robotic Sys-
tem. A Mission Procedure corresponds to the logical
and temporal chaining of Vehicle Primatives - and
possibly other Mission Procedures - that concur the
execulion of the specified Action.

According to the definition, the execution of a
robot mission entails the execution of a number
of well defined Actions specified by Mission Pro-
cedures, which in turn synchronize the operation
of Vehicle Primitives. In practice, the activation
of Mission Procedures and Vehicle Primitives will
be triggered by conditions imposed by the mission
plan structure, and by messages received from the
underlying Vehicle Primitives during the course of
the mission.

In principle, simple Mission Programs could be
embodied into - higher level - Petri nets that would
implement the necessary Mission Procedure struc-
tures. However the analysis of even a simple mission
plan programmed using that methodology will con-
vince the reader that the complexity of the result-
ing Petri net structure can become unwieldy. See
Section for a detailed example. Furthermore, the
approach described does not lend itself to capturing
situations where the mission plan includes logical,
as well as procedural statements (e.g., do loops for
the repeated execution of Mission Procedures and
Vehicle Primitives, etc.). These considerations mo-
tivated the need to define a specific environment
for Mission Program/Mission Procedure design and
implementation, named ATOL, which is currently
being developed.

The framework for Mission Control System design
and implementation proposed in this paper leads to
the general structure of Figure 2 (right side), which
captures the interaction among System Tasks, Vehi-
cle Primitives, and Mission Program/Mission Pro-
cedures, at both programming and run-time. In
the figure, the Human/Machine Interface provides
the user with a text editor, and an on-line checking
mechanism for the syntax and semantics of ATOL
statements.

From an execution point of view, the ATOL Ex-
ecutor - running an ATOL Mission Program - is-

403

Vehicle
Primitive Editor

Task

Header
Prototype

Graphical
Primitive
Description
Graphical to | Text
Text Translation Editor
< T3
Textual
| Primitive |
Description
Primitive CORAL Primitive
Library Compiler/Linker Library
Execution Syntax/Semantics

CORAL: A Vehicle Primitive Programming environment

| Human/Machine Vehicle
l Interface Primitive Assessement
statements l Lmessages
Primitive %O [a—|
Library ATOL =
Syntax/Semantics| Executor
— Primitive
éctivalioél | messages
ommandas
R) 1
Primitive
Library [---> Loader -+ CORAL
Execution Engine
messages I
LSystem Task 1 System Task 2 System Task n

CORAL/ATOL: Mission Execution environment

Fig. 2: Mission Control System Organization.

sues commands to the CORAL Loader, which trans-
fers selected Vehicle Primitive descriptions from the
Vehicle Primitive Library to the CORAL Engine.
The Engine runs the Primitives selected by inter-
acting with the System Tasks, and issues messages
that condition the execution of the ATOL Mission
Program. During mission execution, the status of
any Vehicle Primitive can be displayed on a Vehicle
Primitive Assessment module that allows visualiz-
ing the flow of markings on the corresponding Petri
nets.

IIT MissioN PROGRAM DESIGN
UsING CORAL. TESTS AT SEA

This section outlines the programming of a sim-
ple mission using CORAL, and presents the results
of its execution using the MARIUS AUV [3]. The
prototype vehicle is 4.5m long, 1.1m wide and 0.6m
high. It is equipped with two main back thrusters
for cruising, four tunnel thrusters for station keep-
ing maneuvers, and rudders, elevator and ailerons
for vehicle steering in the vertical and horizontal
planes. The vehicle has a dry weight of 1060 kg, a
payload capacity of 50 kg, and a maximum operat-
ing depth of 600 m. Its maximum rated speed with
respect to the water is 2.5 m/s. At the speed of

1.26 m/s, its expected mission duration and mission
range are 18 h and 83 km, respectively.

The mission example requires that the AUV trace
a square shaped trajectory, at constant depth and
speed of 1.35m and 2.0m/s, respectively. The square
maneuver is obtained by requesting the vehicle to
change its heading by —90 deg every 40 seconds.
The initial heading is 0 deg.

The design of the corresponding Mission Pro-
gram involves a Mission Procedure named Horiz-
Path, whose implementation using the CORAL pro-
gramming environment is shown in Figure 3. This
Mission Procedure parametrizes the action of keep-
ing constant heading 1, depth 2, and speed u of the
vehicle, for a period of time t.

The HorizPath Mission Procedure starts by set-
fing a timer to generate a timeout after the required
execution time has elapsed. This is done by issu-
ing an timeout command with the required Mission
Procedure duration time ¢. To perform the maneu-
ver, three Vehicle Primitives are called in parallel:
KeepSpeed with a velocity set-point u, KeepDepth
with a depth set-point of z, and KeepHeading with
a heading set-point of . The generation of a time-
out terminates the execution of HorizPath by exit-
ing the three Vehicle Primitives.

The Mission Program can be explained with the
help of Figure 3, which shows four distinct phases:

404

mod HorizPath(t, z, u, ¥ P \pgna)

ST'I:T
(Timeout, ¢, p lriggerOKPlimeuul

)

KeepSpeed KeepDepth

(2D Bxit3 P Depthok)

KeepHeading
(WP Exit2:P HeadOK)

WP P SpeedOK

Pspeedok Phiegdox

° pMission

Init

Puiggerok PryiorPanon)

Priox

proneeees

HorizPath
(t=20s,z=1.35m,u=2m/s i =0deg.p py,..00x)

P Phase()OK

HorizPath
(t=40s,z=1.35m,u=2m/s ¥ =0deg,pp.ce10x)

ControlDataLog
(P Exithg’p Log()l()

HorizPath
(t=40s,2=1.35m,u=2m/s | =-180deg.p pyase30K)

w2

b, Abort

Reset
(Preset)

Fig. 3: Mission Procedure and Mission Program in CORAL.

in phase 1, all vehicle System Tasks are initialized
by calling the Init Vehicle Primitive; in phase 2, the
HorizPath Mission Procedure is called for a period
t = 20 s, with a velocity set-point of u = 2 m/s,
a depth set-point of z = 1.35 m, and an heading
set-point of 1 = 0 deg. At the end of this phase,
the vehicle is headed north, and ready to start the
required square maneuver; phase 3 calls the Horiz-
Path Mission Procedure repeatedly, with heading
set-points of Odeg, —90deg, —180deg, and —270deg,
while maintaining the remaining input set-points
equal to those in phase 2. The required duration
of each Mission Procedure call is t = 40 s. In paral-
lel, the Vehicle Primitive ControlDataLog is called
to start logging control loop data for later off-line
analysis.

In order to assess the performance of the Mis-
sion Control System of MARIUS, a series of tests
were conducted at sea in Sines, Portugal, in Jan-
uary 1996. The tests included programming and
running the mission described above. Throughout
the mission, the vehicle pulled a buoy with an an-
tenna, thus enabling radio communications between
the vehicle and a shore station. The software for
Mission Control was run on the computer network
installed on-board the AUV. Figures 4 through 7
display some of the data acquired in the course of
the mission, which was executed to perfection. Fig-
ures 4 and 5 show the commanded and measured
heading, and the rudder activity, respectively. Fig-
ures 6 and 7 show the slight variations in heading
and depth due to the wave action in shallow water.

405

REFERENCES

(1] J. Albus, “System Description and Design Architecture
for Multiple Autonomous Undersea Vehicles,” National
Institute of Standards and Technology, Technical Note
1251, September 1988.

[2] P. Antsaklis, K. Passino, An Introduction to Intelligent
and Autonomous Control, Kluwer Academic Publishers,
1993.

[3] G. Ayela, A. Bjerrum, S. Bruun, A. Pascoal, F-L. Pereira,
C. Petzelt, J-P. Pignon, ” Development of a Self-
Organizing Underwater Vehicle - SOUV, Proceedings
of the MAST-Days and Furomar Conference, Sorrento,
Italy, November 1995.

[4] C. Cassandras, Discrete Event Systems. Modeling and
Performance Analysis,Aksen Associates Incorporated

Publishers, 1993.

[5] G. Franklin, J. Powell, M. Workman, Digital Control of
Dynamic Systems, Addison-Wesley, 1990.

[6] K.S. Fu,“Learning Control Systems-Review and Out-
look,” IFEE Transactions on Automatic Control, Vol.AC-
15, No.2,1970

71 M. Lee, R. McGhee, Editors, Proceedings of the IARP
2nd Workshop on Mobile Robots for Subsea Environ-
ments, Monterey, California, May 1994.

[8] P. Oliveira, A. Pascoal, V. Silva, C. Silvestre, “Design,
Development, and Testing of a Mission Control System
for the MARIUS AUV”| Proceedings of the 3rd Work-
shop on Mobile Robots for Subsea Environments, Toulon,
France, March 1996.

[9] G. Saridis, “Analytical Formulation of the Principle of
Increasing Precision with Decreasing Intelligence for In-
telligent Machines,” Automatica, Vol. 25, pp. 461-467.

[10] K. Valavanis, G. Saridis, A. Pascoal, P. Lima, F-
L. Pereira, editors. Proc. of the Joint U.S./Portugal
Workshop on Undersea Robotics and Intelligent Control,
Lisbon, Portugal, March 1995.

w and Yaw command [deg]

time {s]

Fig. 4: Commanded and measured heading.

30k ;

n
S
T

=

=

=

£ o

3

3

§ 10

3

320

-30 ;
0 10 20 30 40 50 60 70 80
time [s]

Fig. 5: Rudder deflection.

1
o
o
G

Yaw and Yaw command [deg]
1
o
L o

02 i ; i ; . ; i i :
0 2 4 6 8 10 12 14 16 18 20
time 5]

Fig. 6: Measured heading (zoom in).

.

> @» I
T T
i

depth and depth command [m]

—
ny

time [5]

Fig. 7. Commanded and measured depth.

406

