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Abstract: The paper addresses the problem of estimating the position of an
underwater target in real time. In the scenario adopted, the target carries a
pinger that emits acoustic signals periodically, as determined by a very high
precision clock that is synchronized with GPS, prior to system deployment. The
target is tracked from the surface by using a system of four buoys equipped with
hydrophones. The buoys measure the times of arrival of the acoustic signals emitted
by the pinger or, equivalently, the four target-to-buoy range measurements (so-
called GIB system). Due to the �nite speed of propagation of sound in water, these
measurements are obtained with di�erent latencies. The paper tackles the problem
of underwater target tracking in the framework of Extended Kalman Filtering by
relying on a purely kinematic model of the target. The paper further shows how
the di�erently delayed measurements can be merged using a back and forward
fusion approach. A measurement validation procedure is introduced to deal with
dropouts and outliers. Simulation as well as experimental results illustrate the
performance of the �lter proposed. Copyright c©2004 IFAC.
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1. INTRODUCTION

The last decade has witnessed the emergence of
Ocean Robotics as a major �eld of research. Re-
motely Operated Vehicles (ROVs) and, more re-
cently, Autonomous Underwater Vehicles (AUVs)
have shown to be extremely important instru-
ments in the study and exploration of the oceans.
Free from the constraints of an umbilical cable,
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AUVs are steadily becoming the tool par excel-
lence to acquire marine data on an unprecedented
scale and, in the future, to carry out interventions
in undersea structures. Central to the operation
of these vehicles is the availability of accurate ve-
hicle navigation and/or positioning systems. The
fact that electromagnetic signals do not penetrate
below the sea surface makes the GPS unsuitable
for underwater positioning. Hence, alternative so-
lutions must be sought. The good propagation
characteristics of sound waves in water makes
acoustic positioning a viable solution.
Classical approaches to underwater vehicle posi-
tioning include Long Baseline (LBL) and Short



Baseline (SBL) systems, to name but a few.
See (Leonard et al., 1998),(Larsen, 2001) and
the references therein for an introduction to this
challenging area. More recently, a number of
methods have been proposed to "reproduce" the
idea of GPS in the underwater environment. In
(Youngberg, 1992) an underwater GPS concept
was introduced. The system consists of surface
buoys equipped with DGPS receptors that broad-
cast satellite information underwater, via acoustic
telemetry. The underwater platform receives these
messages from the buoys and computes its own
position locally. Due to the technical di�culties
inherent to acoustic communications, this concept
has not yet materialized, as far as the authors are
aware, in the form of a commercial product.
A di�erent, yet related approach to acoustic
underwater positioning has actually been im-
plemented and is available commercially: the
so-called GPS Intelligent Buoy (GIB) system
(Thomas, 1998),(ACSA, 1999). This system con-
sists of four surface buoys equipped with DGPS
receivers and submerged hydrophones. Each of the
hydrophones receives the acoustic impulses emit-
ted periodically by a synchronized pinger installed
on-board the underwater platform and records
their times of arrival. As explained later in Sec-
tion 6, the depth of the target is also available
from the GIB system by coding that info in the
acoustic emission pattern. The buoys communi-
cate via radio with a central station (typically on-
board a support vessel) where the position of the
underwater target is computed. Due to the fact
that position estimates are only available at the
central station, this system is naturally suited for
tracking applications.
Motivated by the latter approach to acoustic posi-
tioning, this paper addresses the general problem
of estimating the position of an underwater target
given a set of range measurements from the target
to known buoy locations. Classically, this prob-
lem has been solved by resorting to triangulation
techniques (Henry, 1978), which require that at
least three range measurements be available at the
end of each acoustic emission-reception cycle. This
is hardly feasible in practice, due to unavoidable
communication and sensor failures. It is therefore
of interest to develop an estimator structure ca-
pable of dealing with the case where the number
of range measurements available is time-varying.
The paper shows how this problem can be tackled
in the framework of Extended Kalman Filtering
(EKF) whereby four vehicle-to-buoy range mea-
surements drive a �lter that relies on a simple
kinematic model of the underwater target.
It is important to recall that due to the �nite
speed of propagation of sound in water, the range
measurements are obtained at the buoys with

di�erent latencies. To overcome this problem, the
paper shows how the di�erently delayed measure-
ments can be merged in an EKF setting by in-
corporating a back and forward fusion approach.
Simulation as well as experimental results illus-
trate the performance of the �lter proposed.
The paper is organized as follows. Section 2 de-
scribes the problem of underwater target posi-
tioning and introduces the relevant process and
measurement models. Based on the models de-
rived, Section 3 computes the matrices that are
essential to the mechanization of a solution to
the positioning problem in terms of an Extended
Kalman Filter (EKF). Section 4 shows how the
EKF structure can be changed to accommodate
latency in the measurements. Simulation and ex-
perimental results that illustrate the performance
of the �lter proposed are discussed in Sections
5 and 7, while Section 6 describes brie�y the
acoustic validation and initialization procedures
that were implemented. Finally, Section 8 contains
the main conclusions and describes challenging
problems that warrant further research.

2. PROBLEM STATEMENT. FILTER DESIGN
MODELS

Consider an earth �xed reference frame {O}:=
{X0, Y0, Z0} and four (possibly drifting) buoys at
the sea surface with submerged hydrophones at
positions (Xhi, Yhi, Zhi); i = 1, . . . , 4 as depicted
in Figure 1. For simplicity of presentation, we
restrict ourselves to the case where the target
moves in a plane at a �xed known depth Zp.
Its position in the earth �xed frame is therefore
given by vector (x(t), y(t), Zp). The problem
considered in this paper can then be brie�y be
stated as follows: obtain estimates (x̂(t), ŷ(t)) of
the target position based on information provided
by the buoys, which compute the travel time of the
acoustic signals emitted periodically by a pinger
installed onboard the underwater platform. The
solution derived can be easily extended to the
case where the target undergoes motions in three
dimensional space.

2.1 Target (process) model

In what follows we avoid writing explicitly the
dynamical equations of the underwater target
being tracked and rely on its kinematic equations
of motion only. Thus, a general solution for target
positioning is obtained that �ts di�erent kinds of
moving bodies such as AUVs, ROVs, divers, or
even marine mammals.
The following notation will be used in the sequel:
V is the total velocity of the vehicle in {O}, ψ
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Fig. 1. Geometry of the target positioning problem.

denotes the angle between vector V and X0, and
r is the rate of variation of ψ. Notice that if the
target moves in three dimensional space, and as-
suming the depth coordinated is known, tracking
of its x, y coordinates can be done easily by re-
interpreting V as the projection of the total ve-
locity vector on its two �rst components. Given a
continuous-time variable w(t), w(tk) (abbv. w(k))
denotes its values taken at discrete instants of
time tk = kh; k ∈ Z+, where h > 0 denotes the
sampling interval. Standard arguments lead to the
discrete-time kinematic model for the target





x(k + 1) = x(k) + hV (k) cos ψ(k)
y(k + 1) = y(k) + hV (k) sin ψ(k)
V (k + 1) = V (k) + ξv(k)
ψ(k + 1) = ψ(k) + hr(k) + ξψ(k)
r(k + 1) = r(k) + ξr(k),

(1)

where the inclusion of the angular rate equation
for r(k) captures the fact that the target under-
goes motions in ψ that are not measured directly
and are thus assumed to be unknown. The process
noises ξv(k), ξψ(k), and ξr(k) are assumed to
be stationary, independent, zero-mean, and Gaus-
sian, with constant intensities Ξv, Ξψ, and Ξr

respectively. The above model can be written as a
Linear Parametrically Varying system of the form

x(k + 1) = f(x(k), ξ(k))
= A(x(k))x(k) + Lξ(k) (2)

where

A(x(k)) =




1 0 h cos ψ(k) 0 0
0 1 h sin ψ(k) 0 0
0 0 1 0 0
0 0 0 1 h
0 0 0 0 1




, x(k) =




x(k)
y(k)
V (k)
ψ(k)
r(k)




(3)

L =




0 0 0
0 0 0
1 0 0
0 1 0
0 0 1




, ξ(k) =




ξv(k)
ξψ(k)
ξr(k)


 . (4)

2.2 Measurement model

In the set-up adopted for vehicle positioning the
underwater pinger carries a high precision clock
that is synchronized with those of the buoys (and
thus with GPS) prior to target deployment. The
pinger emits an acoustic signal every T seconds, at
known instants of time. In each emission cycle, the
pinger emits at discrete-time s, while buoys i; i =
1, ..., 4 compute their distances to the underwater
unit at times ri ≥ s; ri = Nih, where Ni is the
time it takes for the acoustic signal to reach buoy
i, modulo the sampling interval h. Notice that
the Ni's are not necessarily ordered by increasing
order of magnitude, since they depend on the
distance of each of the buoys to the target. Notice
also that even though zi = zi(s) refers to time s,
its value can only be accessed at time ri > s. It
is therefore convenient to de�ne z̄i(ri) = zi(ri −
Nih) = zi(s), that is, z̄i(ri) is the measurement of
zi(s) obtained at a later time ri.
With the above notation, the noisy range mea-
surements of each buoy are modeled as

zi(s) = Ri(s) + [1 + ηRi(s)]θi(s), (5)
where
R2

i (s) = (Xhi − x)2 + (Yhi − y)2 + (Zhi − Zp)2

(6)
is the square of the distance from the vehicle to
buoy i and x and y denote the horizontal position
of the pinger at instant s. In the above, θi(s)
is a stationary, zero-mean, Gaussian white noise
process with constant intensity Θi. It is assumed
that θi(s) and θi(s) are independent for i 6= j. The
constant parameter η captures the fact that the
measurement error increases as the range grows.
The full set of available measurements available
over an interrogation cycle can vary from 0 to
4, depending on the conditions of the acoustic
channel. Stated mathematically, the set of 0 ≤
m ≤ 4 measurements can be written as

z̄m
r = C̄[z̄1(r1), ..., z̄4(r4)]T (7)

where C̄ : R4 → Rm denotes the operator that
extracts and orders the m distances available



according to the time-sequence at which they are
computed at the buoys. For reasons that will
become clear later, it is important to de�ne

zm(s) = C[z1(s), ..., z4(s)]T (8)
where C : R4 → Rm denotes the operator that
extracts the set of m distances available, as if they
had been obtained at time s . In an analogous
manner, zp(s); p ≤ m will denote the �rst p
components of zm(s).

3. EXTENDED KALMAN FILTER DESIGN

In preparation for the development of a position-
ing system, and taking into account the relation-
ship between zm(s) and z̄m

r , consider an "ideal"
situation where all or part of the m measurements
obtained over an interrogation cycle are available
at the corresponding interrogation time s, as con-
densed in vector zp(s); p ≤ m. In this situation,
given the nonlinear process and the observation
models given by (1) and (5), respectively it is
simple to derive an EKF structure to provide
estimates of positions x(k) and y(k) based on
measurements zp(s), where s denotes an arbi-
trary interrogation time . The details are omitted;
see for example (Anderson and Moore, 1979) or
(Athans, 2003), and the references therein. Fol-
lowing standard practice, the derivation of an Ex-
tended Kalman Filter (EKF) for the above design
model builds on the computation of the following
Jacobian matrices about estimated values x̂(k) of
the state vector x(k):

Â(x̂(k)) =
∂f(x, ξ)

∂x
|x̂(k), L̂ =

∂f(x, ξ)
∂ξ

|x̂(k), (9)

Ĉ(x̂(s)) =
∂zp

∂x
|x̂(s), D̂(x̂(s)) =

∂z

∂θ

p

|x̂(s)

(10)
It is straightforward to compute
Â(x̂(k)) =



1 0 h cos(ψ̂(k)) −hV̂ (k) sin(ψ̂(k)) 0
0 1 h sin(ψ̂(k)) hV̂ (k) cos(ψ̂(k)) 0
0 0 1 0 0
0 0 0 1 h
0 0 0 0 1




(11)
and

L̂ =




0 0 0
0 0 0
1 0 0
0 1 0
0 0 1




. (12)

Furthermore, by de�ning

Ĉi(x̂(s)) =
[
−Xhi − x̂(s)

R̂i(s)
−Yhi − ŷ(s)

R̂i(s)
0 0 0

]

(13)

and
D̂i(x̂(s)) = 1 + ηR̂i(s), (14)

it follows that
Ĉ(x̂(s)) = stackp{Ĉj(x̂(s))} (15)

where stackp denotes the operation of stacking p
row matrices Ĉj(x̂(s)) by forcing the sequence of
sub-indices j to match that in zp(s). For example,
if at time s we have access to the distances
measured by buoys 1, 3, and 2 in this order, then

Ĉ(x̂(s)) =




C1(x̂(s))
C3(x̂(s))
C2(x̂(s))


 . (16)

(17)
Similarly,

D̂(x̂(s)) = diagp{D̂i(x̂(s)} (18)
where the elements of the pxp diagonal matrix
D̂(x̂(s)) are ordered in an analogous manner. Note
that the dimensions of Ĉ and D̂ vary according
to the number of measurements that we suppose
are available at time s. With an obvious abuse of
notation, the measurement noise intensity matrix
can then be written as

Θ(s) = diagp{Θj(s)} (19)
where Θj(s) = E{θj2(s)}, while the process noise
intensity matrix admits the representation

Ξ(k) = E{ξ(k)ξT (k)} =




Ξv(k) 0 0
0 Ξr(k) 0
0 0 Ξψ(k)


 .

(20)
The matrices A(x̂(k)) and Â(x̂(k)) have an im-
portant property that will be used later:

Property 1. Given any nonzero positive integer
N , de�ne




α1 = α1(N, k) ,
N∑

l=0

cos(ψ̂(k) + lr̂(k)),

α2 = α2(N, k) ,
N∑

l=0

sin(ψ̂(k) + lr̂(k)),

β1 = β1(N, k) ,
N∑

l=0

l cos(ψ̂(k) + lr̂(k)),

β2 = β2(N, k) ,
N∑

l=0

l sin(ψ̂(k) + lr̂(k))

(21)
Then it can be shown that

Φ̂(k + Nh, k) ,
N∏

l=0

Â(x̂(k + lh)) = (22)



1 0 hα1 −hV̂ (k)α2 −hV̂ (k)β1

0 1 hα2 hV̂ (k)α1 hV̂ (k)β2

0 0 1 0 0
0 0 0 1 hN
0 0 0 0 1




(23)
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Fig. 2. Back and forward fusion approach. The solid line
denotes the availability of real time outup �lter data.

and

Φ(k + Nh, k) ,
N∏

l=0

A(x̂(k + lh)) = (24)



1 0 hα1 0 0
0 1 hα2 0 0
0 0 1 0 0
0 0 0 1 hN
0 0 0 0 1




. (25)

For N = 0,
Φ̂(k, k) = Φ(k, k) , I. (26)

4. FUSING DELAYED MEASUREMENTS
WITH THE EKF

From the discussion above, the main problem to
be overcome in the design on acoustic positioning
system for the underwater unit is caused by the
variable time-delay a�ecting each buoy measure-
ment. The question then arises as to how delayed
measurements can be naturally incorporated into
an EKF structure. The reader will �nd in (Larsen
et al., 1998) a survey of di�erent methods pro-
posed in the literature to fuse delayed measure-
ments in a linear Kalman Filter structure. In
that work, a new method is also presented that
relies on "extrapolating" the measurement of a
variable obtained with latency to present time,
using past and present estimates of the Kalman
Filter. The problem tackled in this paper di�ers
from that studied in (Larsen et al., 1998) in two
main aspects: the underlying estimation problem
is nonlinear, and the components of the output
vector at a given time s are accessible with dif-
ferent latencies. As shown below, this problem
can be tackled using a back and forward fusion
approach which recomputes the �lter estimates
every time a new measurement is available. This
computational complexity involved is drastically
reduced by resorting to Property 1 .
In this work the estimator runs at a sampling
period h typically much smaller than T , the in-
terrogation period of the underwater pinger. Let

s be an arbitrary instante of time at which the
underwater pinger emits an acoustic signal and let
i ≤ m be the buoy that �rst receives this signal
at time ri = s + Nih. Further let z̄i(ri) be the
corresponding distance. Up until time ri no new
measurements are available, and a pure state and
covariance prediction upatde are performed using
the EKF set-up described before, leading to the
predictor (see (Anderson and Moore, 1979))

x̂(k + h) = A(x̂(k))x̂(k) (27)
P (k + h) = Â(x̂(k))P (k)ÂT (x̂(k)) + L̂ΞL̂T

(28)
with k = s, s + h, . . . , ri. Upon reception of
the �rst measurement z̄i(ri) available during the
interrogation cycle, and assuming that the state
x̂(k) and covariance P (k) estimates at time k = s
have been stored, it is possible to go back to time
s and perform a �lter state and covariance update
as if measurement z̄i(ri) were available at s. Using
the notation introduced before with p set to 1,
this leads to

x̂+(s) = x̂(s) + K(s)
[
z1(s)− ẑ1(s)

]
(29)

P+(s) = P (s)− P (s)ĈT

[
ĈP (s)ĈT + D̂ΘD̂T

]−1
ĈP (s) (30)

K(s) = P+(s)ĈT
[
D̂ΘD̂T

]−1 (31)

where ẑ1(s) denotes the estimate of z1(s). A new
prediction cycle can now be done moving forward
in time until a new measurement zj is available,
using (27)-(28) and starting with the updated
states and covariance found in (29)-(30). Due to
property 1, this prediction can be expressed in a
computationally simple form. Let rj = s + Njh
be the time step at which measurement z̄j(rj) is
received. Then, the prediction cycle from s to rj

can be computed in closed form as

x̂(rj) = Φ(rj , s)x̂
+(s) (32)

P (rj) = Φ̂(rj , s)P+(s)Φ̂T (rj , s)

+
Nj−1∑

l=0

Φ̂(s + lh, s)L̂ΞL̂T Φ̂T (s + lh, s)

(33)

Again, upon computation of measurement z̄j(rj)
it is possible to go back to time s and perform
a �lter state and covariance update as if mea-
surements z̄i(ri) and z̄j(rj) were available at s.
This is done using equations (29)-(30), with the
one-dimensional vector z1(s) replaced by z2(s)
and matrices Ĉ,D̂, and Θ matrices recomputed
accordingly. This back and forward structure pro-
ceeds until the m measurements available over
an interrogation cycle (starting at s and ending
at s + T ) are dealt with. This procedure is then
repeated for each interrogation cycle. The overall
structure of the algorithm proposed is depicted in
Figure 2.
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5. SIMULATION SETUP AND RESULTS

In the simulations, four buoys were placed at the
corners of a square with a 1Km side. The depth
of the hydrophones Zhi was set to 5m for all the
buoys. A typical target trajectory was simulated
at a nominal speed of 1m/s and a turning diameter
of 15m. The target maneuvered in the horizontal
plane, at a constant depth Zp = 50m. The range
measurements were generated every T = 1s and
corrupted according to (5) with a 0.1m standard
deviation Gaussian noise. The EKF was run at
a sampling period of h = 0.1s. The actual and
estimated initial states, as well as the process and
measurement noise intensities, were set to
x(0)

[
500 400 1 π/4 0

]T

x̂0

[
520 380 0.5 π/2 0

]T

P0 diag{(20)2 (20)2 (0.5)2 (0.05)2 (0.005)2}
Ξv (0.001)2

Ξψ (0.005)2

Ξr (0.02)2

Θi (0.1)2, i = 1, . . . , 4
η 0.001

Figure 3 shows a simulation of actual and esti-
mated 2D target trajectories and the details of
a turning maneuver. Figure 4 shows actual and
estimated ψ(k) as well as the details of actual and
estimated x(k). Notice the 'jump' in the estimates
whenever a new measurement is available. Notice
also how the heading estimates change slowly in
the course of a turning maneuver.
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6. MEASUREMENT VALIDATION AND EKF
INITIALIZATION

In preparation for actual tests of the GIB-based
system at sea, this section discusses practical
issues that warrant careful consideration. As is
well known, the implementation of any acoustic
positioning system requires that mechanisms be
developed to deal with dropouts and outliers that
arise due to acoustic path screening, partial sys-
tem failure, and multipath e�ects. See for example
(Vaganay et al., 1996) and the references therein
for an introduction to this circle of ideas and
for an interesting application to AUV positioning
using a Long Baseline System. In the case of the
GIB system, the problem is further complicated
because of the mechanism that is used to trans-
mit the depth of the target. In fact, the pinger
onboard the vehicle emits two successive acoustic
pulses during each emission cycle, the time delay
between the two pulses being proportional to the
pinger depth. Ideally, the data received at each
buoy during each emission cycle consists of two
successive pulses only. In practice, a number of
pulses may be detected depending on the "qual-
ity" of the acoustic channel. For example, the data
received may correspond to a number of situations
that include the following: i) only the �rst pulse is
received - a valid range measurement is acquired
but the depth info is not updated, ii) only the
second pulse is received - data contains erroneous
information, and iii) a single pulse is received as
a consequence of multipath e�ects - data may be
discarded or taken into consideration if a model
for multipath propagation is available.
In the present case, following the general strategy
outlined in (Vaganay et al., 1996), a two stage
procedure was adopted that that includes a time-
domain as well as a spatial-domain validation.
Time-domain validation is done naturally in an
an EKF setting by examining the residuals asso-
ciated with the measurements (i.e., the di�erence



between predicted and measured values as they
arrive), and discarding the measurements with
residuals that exceed a certain threshold. During
system initialization, or when the tracker is not
driven by valid measurements over an extended
period of time, a spatial-domain validation is per-
formed to overcome the fact that the estimate of
the target position may become highly innacurate.
This is done via an initilization algorithm that
performs multiple Least Squares (LS) triangula-
tions based on all possible scenarios compatible
with the set of measurements received and selects
the solution that produces the smallest residuals.
Figure 6 shows raw and validated measurements
for one of the GIB buoys. The vertical scale is
presented in milliseconds to stress the fact that
each of the buoys computes its distance to the
pinger indirectly, by measuring the time-delay be-
tween the reception and the emission of the �rst
acoustic pulse. Notice how the depth information
is coded in the delay between two consecutive
acoustic pulses. The �gure on the right shows the
boxed area in detail.
The diagram in Figure 5 depicts the procedure
for measurement validation. In an initialization
scenario, or whenever a �lter reset occurs, the
multiple triangulation algorithm is performed un-
til a valid solution is obtained, that is, until the
residuals of the resulting set of measurements are
less than a certain threshold. Once a valid posi-
tion �x is obtained, the EKF is initialized and a
procedure that relies on the EKF estimates and
a piori information about the vehicle's maximum
speed and noise characteristics selects the valid
measurements. The EKF will be reset if the resid-
uals become bigger than a threshold or if the du-
ration of a pure prediction phase (that is, the time
window during which no validated measurements
are available) lasts too long.

7. EXPERIMENTAL SETUP AND RESULTS

Experimental data were recorded during tests at
sea in Sines, Portugal, during the period from 23-
24th April, 2003 using a commercially available
GIB system. The data were processed o�-line us-
ing the positioning algorithm described. Data val-
idation was done using the methodology described
in the previous section. Four buoys were moored
in an approximate square con�guration with a
500 meter side. The pinger was maneuvered at an
approximate depth of 5 meters. In the data subset
selected for post-processing, acoustic reception at
hydrophones was good and four measurements
were available most of the time. However, one
of the buoys had reception problems and did not
commute to Di�erential GPS mode. This situation
was easily tackled in an EKF framework by giving
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Fig. 6. Top: Raw and validated measurements from one
of the buoys during tests at sea. Bottom: idem, detail
of boxed area.

higher variance to the measurements provided by
that buoy. The following conditions were adopted:

P0 diag{(10)2 (10)2 (1)2 (0.05)2 (0.005)2}
Ξv (0.01)2

Ξψ (0.005)2

Ξr (0.025)2

Θi (1)2 if DGPS, (4)2 if GPS, i = 1, . . . , 4
η 0.001

Figure 7 shows the estimated target trajectories
using EKF and a simple LS Triangulation. The
EKF performs well, even with 1 or 2 measure-
ments, whereas Triangulation is unable to com-
pute solutions. As expected, Triangulation pro-
duces noisier estimates than the EKF solution.
Figure 8 is a screenshot of the graphical interface
used to report the status of the target tracking
algorithm.

8. CONCLUSIONS AND FUTURE WORK

The paper proposed a solution to the problem of
estimating the position of an underwater target
in real time. The experimental set-up adopted
consists of a system of four buoys that com-
pute the times of arrival of the acoustic signals
emitted periodically by a pinger installed on-
board the moving platform (so-called GIB sys-
tem). The positioning system fuses the vehicle-
to-buoy range measurements by resorting to an
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Fig. 7. Top: Estimated target trajectories with Triangula-
tion and EKF based Estimator. Bottom: idem, zoom
of boxed area.

Extended Kalman Filter (EKF)-structure that
addresses explicitly the problems caused by mea-
surement delays. By dealing directly with each
buoy measurement as it becomes available, a sys-
tem is obtained that exhibits far better perfor-
mance than that achievable with classical trian-
gulation schemes, where all buoy measurements
are collected before an estimate of the target's
position can be computed. Simulation as well as
experimental results show that the proposed �lter
is computationally e�ective and yields good re-
sults, even in the presence of acoustic outliers or
a reduced number of valid buoy measurements.
Future work will include the study of di�erent
nonlinear �lter structures for which convergence
results can in principle be derived. Another inter-
esting topic of research is how to fuse the �lter
estimates with other kinds of sensorial data.
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