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Abstract

In closed loop control systems, a supervision loop is some-
times needed in order to perform an operation task which
usually consists in adjustments of set-points and con-
troller parameters.

Here a fuzzy approach to the supervision of controller pa-
rameters in single loop plants is described. The fuzzy
supervision is performed over two different direct con-
trollers: a PI and a Fuzzy Controller. Ezperiments were
made to test the supervision strategy with two different
simulated systems and one scaled pilot plant.

In the fuzzy controller, the central values of the rules out-
put membership functions are adjusted at the supervision
sampling instants. For the PI controller, the adjusted pa-
rameters are the proportional and integral gains.

Introduction

In complex processes, due to the inherent restrictions of
control algorithms, the presence of human operators or
automatic mechanisms of supervision is needed.
Supervision action can be approached in two senses. In a
strict sense, related with controllers tunning, supervision
is concerned with the change of controllers parameters in
order to obtain a better closed loop performance.

In a wider sense, supervision is essentially concerned with
monitoring of global process performance, related with
process operation. Some interesting works have been
presented [4], but a global approach is far from being
established.

Knowledge based systems, together with pattern recogni-
tion, are useful tools to perform an automatic supervision
procedure.

The strict approach has been addressed before by adap-
tive control, although that can not be considered a super-
vision method, because the change of controller param-
eters is not based on relevant features taken after some
sampling instants but on the continuously sampled value
of an error signal. However, some problems remain:
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o Adaptive controllers have a considerable number of
project parameters that are left free for the expert
in control. So, the supervision of that kind of con-
trollers is also an important fleld of investigation
[1,2].

o In industrial process control, due to the classic solu-
tions implemented and to the reluctance to change
to complex control structures, PID controllers and
other unsupervised direct controllers are still the
most used.

In the following, a strict fuzzy supervision approach
is taken and a supervision architecture for direct con-
trollers, is proposed and discussed. A prior application
of an algorithmic supervision architecture to fuzzy con-
trollers has been presented by the authors in an earlier
paper|[8].

The framework to be used, with successful results in au-
tomatic control of complex industrial plants, such as ce-
ment kilns [6] and chemical processes(7], is the fuzzy con-
trol theory. Fuzzy inference systems [11] present advan-
tages in what concerns to the knowledge representation.
In order to validate the proposed supervision architec-
ture, three systems were studied:

o A stable, linear minimum phase system, with an
abrupt change in dynamics.

e A stable, linear non minimum phase system.

e A non-linear scaled pilot plant.

Two different controllers were used: a PI and a direct
fuzzy controller. In those controllers, a supervisor was
implanted and the improvement resulting from supervi-
sion is discussed.

Section 2 includes the description of the supervisor ar-
chitecture and the implemented controller and supervi-
sor loops. In section 3, results are presented, for both
controllers with supervision. Finally some emergent con-
clusions are presented.



Proposed Architecture

Supervision Loop

Although classical direct controllers can achieve good
performance in the control of linear systems, high non-
linearities demand some kind of adaptiveness of the con-
troller, namely if the working point of the process is time
varying.

In the case of PI controllers the proportional and in-
tegral gains must be continuously monitorized and ad-
justed when system changes occur or when the working
point changes.

In fuzzy controllers, which are non-linear in nature, the
fine tuning of control rules is the key. Incorrect control
actions are usually the result of ill-designed mathemat-
ical functions for the description of the linguistic terms
used by the controller, or due to the existence of slightly
incorrect premises for the control rules.

Features
o
X K Extractor
reference q, error control output
o K P
A

Figure 1: Architecture of the controller and supervisor

The overall architecture of the fuzzy supervised control
loop is-presented in figure 1. It is essentially a two loop
hierarchical system where the basic loop is the control
Joop and the higher level loop is the supervision loop.
The control loop with PI or fuzzy controller is similar to
those found in the literature {5,7,10].

Typical fuzzy controller inputs
are the error (error(t) = reference(t) — output(t)), the
change in error (Aerror(t) = error(t) — error(t — 1)),
the integral of error or other process features.

The supervisor function is represented in figure 1 by
®.(f1,.... fa) where f;, i =1,...,n are the n features
extracted from the process output. The block K is the
basic loop controller.

The fuzzy supervisor is composed by three different ele-
ments:

e The input fuzzy encoder which consists of a set of
analog membership functions, describing the input
linguistic terms.

e The linguistic control rules , in the form IF premises
THEN actuation. Here, the premises are described
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by the input linguistic terms (one for each input
variable) and the actuation by the output linguistic
terms.

o A defuzzifier, which converts the output from the
entire set of rules (determined by maz-min fuzzy in-
ference method) to a crisp control action.

From the point of view of the controller, given the system
performance and a desired performance index, expressed
by output features of the system, the supervisor performs
a fine-tuning procedure.

In the experiences described later in the paper, the cho-
sen features were:

e The overshoot

o The rise time percentage error (related to an esti-
mated delay of the system output).

The two features are related to the system step response.
In the fuzzy controller and due to the characteristics of
the fuzzy inference procedure, a choice is done of only
the most important rules fired. Based on the comparison
between determined and desired features the supervisor
will act upon those rules.

Controllers Implementation

Fuzzy Controller — The implemented fuzzy con-

troller has two inputs: the error and the change in error
between two consecutive instants.
Three linguistic terms are defined for each of the input
variables: POSITIVE_BIG (PB), ZERO (ZE) and NEG-
ATIVE-BIG (NB). Each linguistic term is described by
the membership function 2-1—4, where « is the central
value and z ranges in the universe of interest. Similarly,
seven linguistic terms were defined for the output variable
(the input of the controlled system): POSITIVE_BIG
(PB), POSITIVE.MEDIUM (PM), POSITIVE.SMALL
(PS), ZERO (ZE), NEGATIVE_SMALL (NS), NEGA-
TIVE_MEDIUM (NM) and NEGATIVE.BIG (NB).

Table 1: Rules protocol for fuzzy controller

~ Change in error

bu | PB ZE NB

Error | PB | PB PM NS
ZB|PM ZE NM
NB|PS NM NB

The initial control protocol, a set of nine rules, can be
seen in table 1.

This protocol agrees with some constraints related with
symmetry and stability [3,8]. The outputs of the table
are the seven linguistic terms associated with the control
variable.



The defuzzification is done by the simplified centroid for-
mula:

- ng Vzr lla:_z_(vzz)
Zzz Baz( V::z)

where the values of V, are the central values of the out-
put membership function ., associated with the output
linguistic term zz, after scaling by the min-maz fuzzy
inference method.

y (1

PI Controller — The PI controller is implemented
by

u(t) = Kp(error(t) + K; E error(k))

k=to

2)

In the experiments, K, and K; are initially mistuned, in
what concerns to the desired output features.

Fuzzy Supervisor of Fuzzy Controller

The features chosen as supervisor inputs were overshoot
and rise time, as described before.

Table 2: Rules protocol for fuzzy supervisor of fuzzy con-
troller

iy
6Vy: | PB PM PS
S%| PB | PSs NMs NBs
PM | PMs ZEs NMs
PS PBs PMs NSs

The operation of the fuzzy supervisor is based on the
protocol presented in table 2. From the table, the change
in Vg, 6V, is determined. New values for central values
of output membership functions are then computed as

sz(k + 1) = sz(k)(l + 6‘7::2)

The set of most important rules during the last con-
sidered period is required, because only those rules are
changed.

The defuzzification procedure used in the supervisor is
also the centroid method.

Different options were considered in order to choose the
supervisor actuation instants:

e Constant supervision sampling time (greater than
system sampling time).

e Variable supervision sampling time, related to the
reference input changes.

e Variable supervision sampling time, given by a delay
after steady-state of the step response.
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Assuming the system to be controlled as stable, the last
option has been chosen, since it is the most closely related
with the instants when new information about feature
values is known.

The displacement decisions fulfill the restrictions pre-
sented in {3] and [8], which intend to preserve the initial
policy of linguistic control used by the operator.

Fuzzy Supervisor of PI Controller

The features chosen as supervisor inputs are the same as
for the fuzzy controller.

Table 3: Rules protocol for supervision of K;

tr
0K; | PB PM PS
S% | PB | NBi NMi NSi
PM | ZEi ZEi ZEi
PS | PSi PMi PBi

Table 4: Rules protocol for supervision of K,

i
6K, | PB. PM PS
S% | PB | PBp ZEp NSp
PM { PMp ZEp NMp
PS | PSp ZEp NBp

The protocol rules which perform the changes in K; and
K, parameters resulted from simulations performed with
second order systems closed loop controlled by a PI and
are presented in tables 3 and 4.

The defuzzification procedure used in the PI supervisor
is also the centroid method.

The option of variable supervisor sampling time has been
chosen, as in the previous case.

Results

The validation of the supervision method has been done
by testing the results of its application over two simulated
systems and a scaled pilot plant. For each of them, the
supervised PI and the supervised fuzzy controller were
compared.

The objectives of the study were:

o Testing the robustness of the fuzzy supervision with
respect to changes in dynamics, non-linearities or
“difficult” systems;

o Evaluating convergence speed and steady-state be-
havior of the systems responses to a sequence of
steps, denoted by the evolution of features and con-
troller parameters.
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Figure 2: Results for the minimum phase system with
change in dynamics and fuzzy controller

In the simulations, undisturbed stable systems were as-
sumed.

The first simulation was performed over a linear 2nd.
order discrete-time system, with minimum-phase and a
change in dynamics at the middle of the simulation.
The initial difference equation describing the system was

y@t) = 1.06y(t — 1) — 0.22y(t — 2) +
1.99E — 2u(t — 1) + 1L.99E — 2u(t — 2)

and after change in dynamics

y(t) = 09y(t—1)—0.22y(t—2)+

1.99E — 2u(t — 1) + 1.99E — 2u(t — 2)

The results are shown in figures 2 and 3. It can be seen
that both controllers are robust to the system change in
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Figure 3: Results for the minimum phase system with
change in dynamics and PI controller

dynamics, due to the fuzzy supervision. There is a slight
oscillation in the steady state values of the PI controller
gains which results from the trade-off between the target
rise-time and overshoot values. Notice that for a required
0% overshoot the value of rise-time is lower-bounded.
However, changes in controller parameters result in con-
tradictory evolutions for the rise-time and overshoot of
step response. The more overshoot is diminished , the
more rise-time grows.

The other simulated system was also linear and 2nd. or-
der discrete-time, but now with a zero outside the unit
circle, that is, a non-minimum phase system, described
by

1.2y(t — 1) - 0.35y(t — 2) —
u(t = 1) + 2u(t — 2)

yt) =

Non-minimum phase systems are difficult to control

reference
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Figure 4: Results for the non-minimum phase system and
fuzzy controller

due to its characteristic step-response: first the output
evolves in the opposite direction of the applied step and
only after a few instants follows that direction.

From figures 4 and 5 it can be noticed that, although
oscillations are presented by controller parameters in the
fuzzy controller case, the supervisor deals with the tuning
task, necessary to achieve the desired features.

The non-minimum phase characteristic of the controlled
system explains the oscillations, namely for the fuzzy
controller. This is dué to the lack of precision of the
fuzzy controller in dealing with the errors presented by
this type of system, which cover a broader range of values
in the universe of interest for the membership functions
involved. An alternative could be the use of more input
linguistic terms and consequently a more detailed set of
rules.
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Figure 5: Results for the non-minimum phase system and
PI controller

Finally, the strategy has been tested with a scaled pilot
plant. This was a tank system with sump and process
tanks, circulating pump, variable area flowmeter and mo-
torized flow control valve. An additional manual flow
control valve allows the process tank draining adjust-
ment. There is also a level sensor which measures the
liquid level inside the tank, drawn from the sump tank
by a centrifugal pump, at a rate controlled by the motor-
ized valve and visually measureable by the flowmeter.

The purpose of the experiments was to control the liquid
level inside the tank. The resultant system is non-linear,
namely because of the characteristic flow/input current
in the motorized valve, including hysteresis.

Once again, the results presented in figures 6 and 7 show
the convergence of the supervision procedure to the de-
sired features after a few step responses.
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Figure 6: Results for the scaled pilot plant with super-
vised fuzzy controller

Conclusions and Future Trends

A new strategy for supervision of fuzzy and PI controllers
was presented. It consists of a continuous adjustment of
controller parameters. The amount of adjustment re-
sults from a fuzzy rules based inference which take into
account two features extracted from the control system
output - the rise time and the overshoot.

In the case of fuzzy controllers this strategy differs from
other known approaches to fuzzy supervision [3,9] in the
sense that the linguistic meaning of the rules and its re-
lation to initial operator actions are preserved.

It is also shown that PI controllers can be tuned on line
automatically by heuristic rules, based on features of the
system output.

In both cases, experimental results show that the strat-
egy is robust relatively to changes in dynamics, non-
linearities and “difficult” systems such as non-minimum-
phase. No proof of convergence of the method has been
presented, but it has been shown in all the examples that
the target features were achieved after a few supervision
sampling instants.

At the present in the fuzzy controller, every interve-
nient rule classified among the most important ones is
adjusted by the same amount. In the future, displace-
ments weighted by the relative importance of the rules
will be considered.
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