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Abstra
tThe problem of tra
king a desired traje
tory is of fundamental importan
e in real appli
ations where some(roboti
) system is required to follow a pre-planned or pre-spe
i�ed path with time 
onstraints. Forundera
tuated systems this problem is not always solvable sin
e the desired traje
tory may not belong to theset of feasible traje
tories for the given system. However real life appli
ations often only require tra
king ofsome of the variables, the most 
ommon example being a uni
y
le type robot following a preassigned 2D path.In this paper we study the problem of position tra
king for an undera
tuated rigid body in SE(3).
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11. Introdu
tionTra
king a desired traje
tory is a frequent problem is 
ontrol and roboti
s, where a pre-planned path represent-ing the a

omplishment of 
ertain goals must be enfor
ed. This pre-spe
i�ed path may represent an optimalsolution for the problem, a required maneuver to be exe
uted su
h as do
king of a vehi
le, or the out
ome ofsome higher-level 
ontroller.For fully a
tuated systems this problem is now well understood and solutions are proposed in standard textbookson nonlinear 
ontrol [12℄, [16℄ and [18℄. On the other hand tra
king for undera
tuated systems is a 
hallengingproblem from the theoreti
al point of view sin
e not all traje
tories are feasible by the system, and the resultsdeveloped for fully a
tuated systems fail to apply. From the pra
ti
al point of view this problem is also of greatimportan
e sin
e the development of systems with less a
tuators allows for redu
tions in the 
ost of the overallsystem and in full a
tuated systems represents a valuable safeguard regarding malfun
tioning of some of theavailable a
tuators.In this arti
le we will address a spe
ial 
lass of this problem where the system in only required to tra
k someof the state variables, more spe
i�
ally we will 
onsider undera
tuated rigid bodies on the spe
ial eu
lideangroup SE(3) where it is only required that the system tra
ks a referen
e position in three dimensional spa
e.The importan
e of this problem 
omes from the fa
t that often a mission is only spe
i�ed in terms of a desiredposition traje
tory and no orientation information is available. This is the 
ase for underwater vehi
les su
h asbenthi
 labs that must follow a predetermined path towards the areas to explore or unmanned air
rafts thatmust exe
ute pre-spe
i�ed surveillan
e missions. In fa
t the original motivation for this problem 
omes fromuni
y
le1 type vehi
les moving in SE(2) that must follow 
ertain paths to a

omplish team work tasks su
h asplaying so

er (www.robo
up.org). Our motivation has also 
ompelled us to study only the kinemati
 versionof the problem sin
e it is suÆ
ient for 
ontrolling uni
y
le type robots, extentions to dynami
s where morediÆ
ult phenomena o

ur su
h as non-zero side slip will be delayed to future 
ontributions.Traditional approa
hes to this problem involve linearization about the referen
e traje
tory and methods fromlinear 
ontrol theory resulting in a global gain-s
heduled 
ontrol law [13℄ or linear time-varying 
ontrol [21℄.Sear
h based methods to derive state variables and 
ontrol input values ne
essary to tra
k a desired referen
e areproposed in [4℄, [19℄, although only fully a
tuated systems are 
onsidered. Other approa
hes in
lude adaptiveand feedba
k linearization s
hemes [10℄, using 
onstant forward speed, thereby redu
ing the problem to 
ontrolthe attitude of the rigid body towards the referen
e traje
tory [9℄. This approa
h was originally introdu
edin [17, 15℄ and sin
e then more advan
ed te
hniques have also been applied to planar robots su
h as partialfeedba
k linearization and state di�eomorphism (
hange of 
oordinates) and dynami
 feedba
k linearization, [1℄[20℄. A survey of the various methods of 
ontrol and traje
tory tra
king for mobile robots is given in [22℄ andfor o
ean vehi
les in [10℄.Contrary to the des
ribed approa
hes in this paper we will address the problem from a 
oordinate-free per-spe
tive, therefore allowing a simpler and more general understanding and presentation of the results oftenobs
ured by the parti
ular 
hoi
e of 
oordinates 
hosen. This is spe
ially evident on the literature regardingthe SE(3) 
ase, where the parameterizations may 
ontain singularities (Euler angles) or more variables thenthe dimension of the parameterized spa
e (Euler parameters or unit norm quaternions). This approa
h makesuse of several te
hniques from di�erential geometry and has been strongly in
uen
ed by work on tra
king withsimilar approa
hes su
h as [7, 5, 6℄. A good introdu
tion to nonholonomi
 systems in the 
ontext of Riemannianmanifolds is given in [2℄.The paper is divided as follows: in Se
tion 2 mathemati
al results, 
on
epts and notation used throughout thepaper are introdu
ed. In Se
tion 3 the position tra
king problem is mathemati
ally formalized and smooth-ness and boundedness assumptions are presented. An intuitive explanation is given for the 
ontrol strategy atsubse
tion 3.3 whi
h is rigorously studied in subse
tions 3.4 and 3.5. This subse
tion 
ontain the main resultsof the paper. Se
tion 4 
ontains the parti
ularization of the already developed results for the SE(2) 
ase andsimulation results follow in Se
tion 5. Finally 
on
lusions are addressed in Se
tion 6 and an appendix 
ontainssome algebrai
 manipulations of the results presented in se
tion 3.2. Mathemati
al preliminaries2.1. The Lie group SE(3). Consider a three-dimensional rigid body freely moving in R3 , an inertial frame I�xed in spa
e and a body frame B �xed to the body. The natural state spa
e for this system will be the set ofall linear transformations from the frame I to the frame B, representing at ea
h instant of time the 
on�guration1Also known as di�erential drive type robots on some literature.



2(position and orientation) of the rigid body's frame B with respe
t to the inertial frame. This set is not only adi�erentiable manifold but also a group, therefore a Lie group [3℄, namely SE(3):SE(3) = ��R x01�3 1� : R 2 R3�3 ; x 2 R3 ; R�1 = RT ; det(R) = 1�(1)The tangent spa
e at the identity element of the group 
onstitutes a Lie algebra, se(3) de�ned as:se(3) = ��
 v0 0� : 
 2 R3�3 ; v 2 R3 ; 
T = �
�(2)Sin
e an algebra implies a linear spa
e stru
ture, we shall 
onsider in this paper the following base for se(3):X1 = 26640 0 0 00 0�1 00 1 0 00 0 0 03775 ; X2 = 2664 0 0 1 00 0 0 0�1 0 0 00 0 0 03775 ; X3 = 26640�1 0 01 0 0 00 0 0 00 0 0 03775(3)
X4 = 26640 0 0 10 0 0 00 0 0 00 0 0 03775 ; X5 = 26640 0 0 00 0 0 10 0 0 00 0 0 03775 ; X6 = 26640 0 0 00 0 0 00 0 0 10 0 0 03775(4)2.2. Left invariant kinemati
s. The left translation map Lg (on any Lie group) is de�ned as:Lg : G! GLg(x) = g � x(5)Using the above de�nition we 
an de�ne left invarian
e of a ve
tor �eld by requiring that a left invariant ve
tor�eld X satis�es: X(g) = X(g � e) = TLgX(e)(6)where e is the group identity and TLg : TG ! TG is the derivative of the map Lg, using this fa
t theundera
tuated rigid body kinemati
 equations take a spe
ial simple form:ddtg = g � (X1u1 +X2u2 +X3u3 +X4u4)(7)where u1; u2; u3 
ontrols roll, pit
h and yaw of the rigid body, respe
tively, and u4 
ontrols the forward velo
ity.Note that the system is undera
tuated sin
e motion along the basis ve
tors X5 and X6 is not possible.2.3. Riemannian metri
s. A bilinear form on a ve
tor spa
e V over the real �eld is a multilinear map� : V � V ! R, it is 
alled symmetri
 if �(v; w) = �(w; v) and positive de�nite if �(v; v) � 0 and if equalityholds i� v = 0. � in also 
alled an inner produ
t on the ve
tor spa
e V and denoted by < :; : >. If we nowde�ne an inner produ
t at ea
h point p of a manifold M , that is �p : TpM �TpM ! R ensuring that �p variessmoothly from point to point (on any 
oordinate 
hart the fun
tions gij = �( ��xi ; ��xj ) are C1), we 
all � aRiemannian metri
 and M a Riemannian manifold.In the spe
ial 
ase where the manifold is a Lie group G we 
an de�ne a metri
 at the identity element �e andleft translate it to the remaining points of the manifold [8℄ by requiring that:< L1(g); L2(g) >g=< gL1; gL2 >g=< g�1gL1; g�1gL2 >g�1g=< L1; L2 >e(8)



3for any left invariant ve
tor �elds L1 and L2.In this paper we shall asso
iate a ve
tor f!; vg with ea
h ve
tor �eld L on SE(3) through the identi�
ation:f(!1; !2; !3); (v1; v2; v3)g  ! L = 2664 0 � !3 !2 v1!3 0 � !1 v2�!2 !1 0 v30 0 0 0 3775(9)This identi�
ation allows us to express a left invariant metri
 on SE(3) by:� = ��I3�3 03�303�3 �I3�3�(10)for a dis
ussion on the possible metri
s on SE(3) and its relation with the kinemati
 
onne
tion we defer thereader to [23℄ and the referen
es therein.2.4. Conne
tions. A C1 
onne
tion or 
ovariant derivative r on a �ber bundle E of rank n over a manifoldM is a linear map r : �(E)! �(T �M 
E) that veri�es the Leibniz rule:r(fX) = df 
X + frX 8 f 2 C1(M); X 2 �(E)(11)Let "1; :::; "n be a lo
al basis for the �ber over M, we 
an 
ompletely determined the 
onne
tion by de�ning ann� n matrix of 
ove
tors !kj on M by: r"j = !kj "k(12)sin
e for any se
tion of E, X = Xk"k, Xk 2 C1(M) its 
ovariant derivative 
an be 
omputed as:rX = r(Xk"k)= dXk 
 "k +Xkr"k by Leibniz rule= (dXk +Xj!kj )
 "j(13)In this paper we will only work with 
onne
tions on the tangent bundle, so the de�nitions spe
ialize to r :TM ! T �M 
 TM , and on a 
oordinate 
hart this map is 
ompletely de�ned by the Christofell symbols:r ��xi ��xj = �kij ��xk(14)Comparing (14) and (12) we realize that !kj = �kijdxi, therefore the 
onne
tion 
an be lo
ally 
hara
terized by:rXY = ��Y i�xj Xj + �kijX iY j� ��xk(15)We say that a 
onne
tion is torsion-free or symmetri
 if[X;Y ℄ = rXY �rYX(16)where [X;Y ℄ is the Lie bra
ket between the ve
tor �elds X and Y . Given a Riemannian metri
 < :; : > we saythat a 
onne
tion is 
ompatible with the metri
 if:LX < Y;Z >=< rXY; Z > + < X;rXZ >(17)



4Unfortunately a 
onne
tion is not uniquely determined on a manifold however given a Riemannian metri
, thereis one and only one 
onne
tion 
ompatible with the metri
 and torsion-free. We defer the reader to [3℄ to furthermaterial regarding 
ovariant di�erentiation and Riemannian geometry.We shall be using the kinemati
s 
onne
tion 
ompatible with the previously given left-invariant metri
 andwhose non zero Christofell symbols we reprodu
e here for 
ompleteness:�312 = �231 = �123 = 12 ; �321 = �213 = �132 = � 12�615 = �426 = �534 = 1; �624 = �435 = �516 = �1(18)2.5. Error fun
tions. We shall de�ne error fun
tions on Rn sin
e we are only interested in tra
king traje
toriesin R3 , for a de�nition of error fun
tions on abstra
t manifolds the reader is deferred to [7℄. An error fun
tionis a map � : Rn � Rn ! R, su
h that �(x; r) � 0 and �(x; r) = 0 i� x = r. We shall also impose thatd2�(x; r) = �d1�(x; r) where d1 is the exterior derivative with respe
t to x and d2 the exterior derivative withrespe
t to r. This will allow the time derivative of �(x; r) being expressed by the familiar expression:ddt�(x; r) = d1�(x; r) � _x+ d2�(x; r) � _r = d1�(x; r)( _x � _r)(19)We shall say that the error fun
tion is (uniformly) quadrati
 lower bounded if there is a s
alar b � 0 su
h that:�(x; r) � bkd1�(x; r)k2(20)Note than in abstra
t manifolds this 
ondition may only hold lo
ally a

ording to the topology of the manifold.3. Tra
king for nonholonomi
 systems3.1. Problem formulation. The goal of this paper is to des
ribe an algorithm to tra
k a desired positionreferen
e r(t) disregarding however the rigid body orientation. Mathemati
ally the position tra
king or positiontra
king is de�ned as:A 
ontrol law u(g) solves the position tra
king problem if:� The tra
king error �(t) = �(x(t); r(t)) and the 
ontrols ui are bounded for all time.� The tra
king error asymptoti
ally de
ays to zero, limt!1 �(t) = 0It is usual to in
lude another requirement when only feasible traje
tories are being tra
ked, namely that �(0) =0 ) �(t) = 0. However this requirement may not be satis�ed if one wishes to tra
k traje
tories not feasibleby all the states of the system. Suppose that �(0) = 0 and that ddtr(t) =2 SpanfX1; X2; X3; X4g under thiss
enario one 
an never guarantee that the error fun
tion will remain zero.3.2. Regularity and boundedness assumptions. We shall assume the following regularity and boundednessproperties:� �(x; r) 2 C2� r(t) is twi
e di�erentiable� supt2Rkr(t)k <1� supt2Rk _r(t)k <1� supt2Rk�r(t)k <1We assume that the referen
e traje
tory be twi
e di�erentiable, this is not a restri
tive assumption sin
e it isdesirable that referen
e be as smooth as possible. Boundedness assumptions on the referen
e traje
tory are alsostandard assumptions.



53.3. Intuitive motivation. To a
hieve exponential tra
king of the rigid body position it would desirable thatthe ve
tor �eld _x = X 
ould be 
hosen to be X = _r � �(d1�(x; r))T , where we use the metri
 (gij = �I3�3)on R3 to transform the 
ove
tor d1�(x; r) in the ve
tor gij(d1�(x; r))j = 1� (d1�(x; r))i = 1� (d1�(x; r))T =�(d1�(x; r))T . Therefore, by using V1 = �(x; r) as a 
andidate Lyapunov fun
tion one imediatly sees that:ddtV1 = d1�(x; r) � ( _x� _r)= d1�(x; r) � � _r � �(d1�(x; r))T � _r�= ��d1�(x; r) � (d1�(x; r))T(21)whi
h is negative semi-de�nite, negative de�niteness is a 
onsequen
e of the quadrati
 nature of �, in fa
t usingthe inequality in (20): ddtV1 = ��d1�(x; r) � (d1�(x; r))T = ��kd1�(x; r)k2 � ��b �(x; r)(22)It is not always possible to freely assign the ve
tor �eld _x due to the kinemati
 restri
tions of the system,however the above observation suggests the following approa
h to solve the problem:� Use roll, pit
h and yaw inputs to align the ve
tor �eld Xr = �03�3 X01�3 0 � with X4.� Proje
t Xr on X4, to determine the forward velo
ity 
ontrol input.This approa
h will now be des
ribed in more detail.3.4. Orientation 
ontrol. To ensure that Xr belongs to SpanfX1; :::; X4g one must derive a 
ontrol law thatstabilizes the system in the following set 	 = fg 2 SE(3) :< Xr; X5(g) >g= 0; < Xr; X6(g) >g= 0g.We 
an build a 
andidate Lyapunov fun
tion measuring the \distan
e" to the set 	, let  i : R�R ! R i = 1; 2be two error fun
tions and 
onsider the following Lyapunov 
andidate fun
tion:V2 =  1(< Xr; X5 >; 0) +  2(< Xr; X6 >; 0)(23)After some tedious algebra presented in the appendix it 
an be shown that its time derivative is given by:ddtV2 = d 1�< f0; �r � � ddt (d1�(x; r))jTxfixedg; X5 > ��u4 < �2�(x; r)�xixj X4; X5 >+u1 < Xr; X6 > �u3 < Xr; X4 >�+ d 2�< f0; �r � � ddt (d1�(x; r))jTxfixedg; X6 > ��u4 < �2�(x; r)�xixj X4; X6 >+u2 < Xr; X4 > �u1 < Xr; X5 >�(24)This means that if we 
hoose �(x; r) in su
h a way that < �2�(x;r)�xixj X4; X5 >= 0 and < �2�(x;r)�xixj X4; X6 >= 0 andas long as < Xr; X4 >6= 0 we 
an use u2 and u3 to exponentially steer the rigid body towards the set 	. Beforestating this result we will give a more useful 
hara
terization of the allowed error fun
tions:Proposition 3.1. The requirement that < �2�(x;r)�xixj X4; X5 >= 0 =< �2�(x;r)�xixj X4; X6 > is satis�ed i� �(x; r) =12k(r)(x � r)T (x� r), where k(r) is a smooth fun
tion of r.Proof. �2�(x;r)�xixj X4 must not be a linear 
ombination of X5 and X6 whi
h in turn implies the following matrixequation k(x; r)X4 = �2�(x;r)�xixj X4, where k(x; r) is a smoothly varying s
alar gain (a fun
tion on R3 � R3 ). Thesolution is 
learly �2�(x;r)�xixj = k(x; r)I3�3. Integrating �2�(x;r)�x1x2 = 0 we get ��(x;r)�x1 = f1(x1; r)+f2(x3; r), note thatf1 or f2 
annot be a fun
tion of both x1 and x3 be
ause it would violate �2�(x;r)�x1x3 = 0. Integrating on
e morewe get that �(x; r) = h1(x1; r) + h2(x2; r) + h3(x3; r). Now the diagonal of the Hessian of �(x; r) tell us that



6�2hi(xi;r)�xixi = k(x; r), sin
e �2hi(xi;r)�xixi is a fun
tion of xi and r it 
an be equal to a fun
tion of xj (i 6= j) and r i�k is a fun
tion of r alone. Using this fa
t we 
an integrate �2h1(x1;r)�x1x1 = k(r) to get �h1(x1;r)�x1 = k(r)x1+ g(r) andintegrating on
e more h1(x1; r) = 12k(r)(x1)2 + g(r)x1 + s(r). To determine the fun
tions g(r) and s(r) we usethe 
ondition d1�(r; r) = 0 ) �h1�x1 (r1; r) = 0 to 
on
lude that �h1�x1 (r1; r) = k(r)r1+g(r) = 0 or that r1 = � g(r)k(r) ,this allow us to write h1 as h1(x1; r) = k(r)� 12 (x1)2 � r1x1 + s(r)k(r)�. Finally we use the negative-de�niteness ofthe error fun
tion on
e more to get h1(r1; r) = 0. Sin
e k(r) 6= 0 it follows that s(r)k(r) = 12 (r1)2.The error fun
tion 
an then be written in a more 
ompa
t form as �(x; r) = 12k(r)(x � r)T (x� r).Now we are ready to state the following result.Proposition 3.2 (Exponential stabilization in 	). For all initial 
onditions in the open and dense2 set � =fg 2 SE(3) : < Xr; X4(g) >g 6= 0g and all the error fun
tions of the form �(x; r) = 12k(r)(x � r)T (x � r) the
ontrol law: u1 = 0u2 = ��2d 2� < f0; �r � � ddt (d1�(x; r))jTxfixedg; X6 >< Xr; X4 > �2 > 0u3 = �3d 1+ < f0; �r � � ddt (d1�(x; r))jTxfixedg; X5 >< Xr; X4 > �3 > 0(25)exponentially stabilizes the system (7) in the set 	.Proof. Consider the Lyapunov 
andidate fun
tion (23), its time derivative is given by (24), substituting the
ontrol law (25) and taking in to a

ount the spe
ial form of the error fun
tion, one gets:ddtV2 = ��3(d 1)2 � �2(d 2)2(26)whi
h is negative semide�nite. Negative de�niteness is proved with an argument similar to the proof of (21),let b 1 , b 2 be the quadrati
 lower bounding 
onstants for the fun
tions  1,  2 as de�ned in (20), respe
tively.It follows that: ddtV2 � � �3b 1  1 � �2b 2  2(27)To show that traje
tories never leave the set � it is enough to 
onsider that _V2 � 0, therefore the proje
tion ofXr over X4 never de
reases and thus 
an never be zero.RemarksThe spe
ial form of the error fun
tion is not ne
essary to stabilize the system in the set 	, however it is veryuseful sin
e it de
ouples the attitude 
ontrol from the position 
ontrol. It will allow us to 
hose a 
ontrol law foru4 in the next se
tion without disturbing the attitude kinemati
s. However it redu
es the set of possible errorfun
tions, forbidding the use of di�erent weights for the error along di�erent dire
tions (one is for
ed to usek(r) in all dire
tions). This 
an also be seen as a dire
t 
onsequen
e of the redu
ed set of metri
s 
ompatiblewith the kinemati
s 
onne
tion.Control law (25) for
es u1 to be zero, implying that it is not ne
essary that the rigid body possesses roll
ontrol to stabilize it in 	. However roll 
ontrol 
an be used if pit
h or yaw 
ontrol fails, 
onstituting auseful redundan
y. What is more useful in 
ertain situations is to be able to 
hose whi
h a
tuators to use foroptimizing fuel 
onsumption or other optimality 
riteria during the mission, however this approa
h will not befurther addressed in this paper.2The set � is open sin
e its 
omplement is the pre-image of the set f0g (
losed in the usual topology of R) by a 
ontinuous(smooth) fun
tion. To show that it is dense in SE(3) it suÆ
es to show that its 
omplement is 
ontained in its border. This istrivial attending that the pre-image of any open set in R 
ontaining 0 also 
ontains other points of �, by de�nition of  .



7Note that 
ontrol law (25) uses the a

eleration of the referen
e traje
tory whi
h is not usual in traje
torytra
king. This 
an be easily explained if one realizes that the attitude 
ontrol is tra
king velo
ities in tryingto align Xr with X4, therefore sin
e (25) 
an be viewed as a generalized PD 
ontroller it needs a

elerationinformation to a

omplish this goal.Unfortunately 
ontrol law does not guarantees 
onvergen
e for all initial 
onditions, but only for an open anddense set of SE(3), however this is the best that 
an be a
hieved sin
e SE(3) is not a simply 
onne
ted spa
eand this is a topologi
al obstru
tion to the existen
e of global stabilizing 
ontrol laws.3.5. Position Control. Sin
e the orientation of the rigid body is 
onverging to the set 	 by the a
tion of
ontrol inputs u2 and u3, it remains to 
ontrol the forward velo
ity through 
ontrol input u4. The 
ontrol lawfor u4 should be proportional to a measure of the alignment between Xr and X4, this 
an trivially be a
hievedby proje
ting the referen
e ve
tor �eld Xr on X4, resulting in:u4 = < Xr; X4 >< X4; X4 > = 1� < Xr; X4 >= � < Xr; X4 >(28)Combining (28) with (25) we 
an asymptoti
ally tra
k the desired referen
e, this 
onstitutes the main 
ontri-bution of the paper:Theorem 3.3 (Asymptoti
al position tra
king). For all initial 
onditions in the set � and all error fun
tionsof the form �(x; r) = 12k(r)(x� r)T (x� r), 
ontrol law (25) and (28) makes the system (7) asymptoti
ally tra
kthe desired referen
e r(t).In order to prove the result we will need the following standard lemma whose proof 
an be founded in [14℄Appendix A.2.Lemma 3.4. Let f(x) : D ! Rn ; D � Rn be a lo
ally Lips
hitz ve
tor �eld on D. If the solution x(t) is boundedand belongs to D for t � 0, then its positive limit set L+ is a nonempty, 
ompa
t, invariant set. Moreover,x(t)! L+ as t!1.Proof. The proof will be done in several steps. First we will show that the traje
tories of the system are bounded.Next we shall use Lemma 3.4 with Proposition 3.2 to show that the traje
tories of the system 
onverge to thelargest invariant set in 	. Finally it will be shown that the largest invariant set in 	 is the desired referen
er(t).Boundedness of traje
toriesThe traje
tories of the rotation matri
es (living in SO(3)) are bounded sin
e SO(3) is a 
ompa
t spa
e. Weonly need to show that position of the rigid body is also bounded. We shall use the fa
t that the traje
tories ofthe system _x0 = X(x0) = _r � d1�(x0; r) are bounded sin
e ddt� � 0 as shown in (21). Furthermore boundednessof x0(t) implies that there exist non-negative s
alars 
1, 
2 and 
3 for ea
h initial 
ondition su
h that x0i(t) < 
i.The position of the rigid body is governed by:_x = � < X(x); R2410035 > R2410035(29)where R is the rotation matrix asso
iated with the group element g. R �1 0 0�T is just the �rst 
olumn iof the matrix R, and sin
e R is an orthogonal matrix, the ve
tor i has unitary Eu
lidean norm. This last fa
timplies that ea
h element of i veri�es �1 � ii � 1. Having this in mind one 
an write (29) has:



8 x(t) = x(t0) + Z tt0 � < X(x0(�)); i(�) > i(�)d�= x(t0) + 264R tt0 X(x0(�))T i(�) i1(�)d�R tt0 X(x0(�))T i(�) i2(�)d�R tt0 X(x0(�))T i(�) i3(�)d�375= x(t0) + 26666664R tt0�X1(x0(�))i1(�) +X2(x0(�))i2(�) +X3(x0(�))i3(�)�i1(�) d�R tt0�X1(x0(�))i1(�) +X2(x0(�))i2(�) +X3(x0(�))i3(�)�i2(�) d�R tt0�X1(x0(�))i1(�) +X2(x0(�))i2(�) +X3(x0(�))i3(�)�i3(�) d�
37777775� x(t0) + 264R tt0 X1(x0(�)) +X2(x0(�)) +X3(x0(�)) d�R tt0 X1(x0(�)) +X2(x0(�)) +X3(x0(�)) d�R tt0 X1(x0(�)) +X2(x0(�)) +X3(x0(�)) d�375� (
1 + 
2 + 
3)2411135(30)Using a similar argument one 
an show that traje
tories are lower bounded by �
2 + 
3 
1 + 
3 
1 + 
2�T .Convergen
e to the largest invariant set in 	The system (7) with 
ontrol laws (25) and (28) is lo
ally Lips
hitz sin
e the boundedness assumptions (3.2) on�(x; r) and r(t) easily imply that � _g�g is 
ontinuous on �. Therefore on any 
ompa
t neighborhood the derivativeof _g with respe
t to g is bounded, implying lo
al Lips
hitz 
ontinuity. By applying Lemma 3.4 we 
on
ludethat the positive limit set is an invariant set. From (23) we know that traje
tories approa
h 	 asymptoti
ally,therefore by Lemma 23 they approa
h the largest invariant set 
ontained in 	.The largest invariant set in 	To study the largest invariant set in 	 we start by noting that g 2 	 ) X4 = �Xr for a s
alar � and theposition kinemati
s is simpli�ed to _x = _r��(d1�(x; r))T . Therefore the largest invariant set in 	 is the desiredreferen
e r(t) as shown in (21). 4. The SE(2) 
aseThe SE(2) 
ase will now be derived as a parti
ular 
ase of the 
ontrol laws already developed. We will 
onsiderthat the rigid body is only allowed to move on a horizontal plane, therefore u1 = 0 and u2 = 0. Consideringthe following base for the Lie algebra se(2) of SE(2):X1 = 240�1 01 0 00 0 035 ; X2 = 240 0 10 0 00 0 035 ; X3 = 240 0 00 0 10 0 035(31)we get the simpli�ed 
ontrol law:u1 = ��d � < f0; �r � � ddt(d1�(x; r))T g; X3 >< Xr; X2 > ; � > 0u2 = � < Xr; X2 >(32)where all the fun
tions are the 2D analogues of the already des
ribed ones.
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Figure 1. Referen
e traje
tory for the SE(3) 
ase r(t) = �
os( t10 ); sin( t10 ); t10�, t 2 [0; 100℄.
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Time (s)Figure 2. Tra
king error (r(t) � x(t)) for the SE(3) 
ase, initial position x(0) =(�10;�30;�5), initial orientation R = I3�3.5. Simulation resultsIn this se
tion some simulations results are presented for the SE(3) and the SE(2) 
ase. For the SE(3) theused error fun
tions and gains were �(x; r) = 12 (x � r)T (x � r),  1(a; b) =  2(a; b) = 12 (a � b)2, �1 = 10 and�2 = 10. The metri
 s
alar � was 
hosen to be unitary. With this values the desired referen
e was an helixgiven by r(t) = �sin( t10 ); 
os( t10 ); t10�, t 2 [0; 100℄, represented in �gure 1.The errors between the desired traje
tory r(t) and the real traje
tory x(t) are represented in �gure 2 for aninitial position of x(0) = (�10;�30;�5) and an initial orientation of R = I3�3.Convergen
e is very fast and the referen
e traje
tory is tra
ked with good pre
ision, this motivates the use ofmore 
hallenging referen
es su
h as: r(t) = ( (t; t) 0 < t � 30(60� t; t) 31 < t � 60(�60 + t; t) 61 < t � 100
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king error (r(t) � x(t)) for the SE(2) 
ase, initial position x(0) = (20; 100),initial orientation R = �I2�2.
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Figure 4. Tra
king error (r(t) � x(t)), for the SE(2) 
ase with bounded a
tuators, initialposition x(0) = (20; 100), initial orientation R = �I2�2.for the SE(2) 
ase. Note that the referen
e is not twi
e di�erentiable violating the 
onditions of theorem 3.3,this implies that the system will lose tra
k of the referen
e at the points of non-di�erentiability as 
an be seenin �gure 3.Even in this 
ase the results are very impressive sin
e the traje
tory is retra
ked very qui
kly after being lost.To turn the simulations more realisti
 the same traje
tory was simulated with bounded a
tuators. The linearand angular velo
ities are restri
ted to the set [�5; 5℄, the results are depi
ted in �gure 4.The 
onvergen
e time is mu
h greater and the initial part of the traje
tory is not tra
ked at all as 
an be seen from�gure 5. This was expe
ted sin
e the initial 
ondition is far from the traje
tory, however at the points of non-di�erentiability of the referen
e the results are very similar with the unrestri
ted a
tuators 
ase, eviden
ing thegood performan
e and robustness for situations not expli
itly taken in to a

ount in the theoreti
al development.
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Figure 5. Referen
e traje
tory and vehi
le lo
ation for the SE(2) 
ase with bounded a
tua-tors, initial position x(0) = (20; 100), initial orientation R = �I2�2.6. Con
lusionsIn this paper we have studied the problem of tra
king a desired position for an undera
tuated rigid body inthe spe
ial eu
lidean group. It is was shown that the problem is solvable using stati
 state feedba
k on a openand dense set of SE(3) even if roll 
ontrol is not possible. The development of the 
ontrol law was done in a
oordinate free way thereby avoiding the unne
essary 
ompli
ations often imposed by possible parameterizationsof SE(3). The need to de
ouple the position motion from the orientation motion led to a redu
tion of the set offun
tions measuring the error between the rigid body desired and a
tual position. This is a dire
t 
onsequen
eof the also redu
ed set of left invariant metri
s 
ompatible with the kinemati
 
onne
tion on SE(3). Asymptoti

onvergen
e towards the referen
e traje
tory was shown and several simulations were in
luded to shown thealgorithm good performan
e even with non-di�erentiable referen
e traje
tories.7. Appendix7.1. Time derivative of V. We shall perform the detailed 
omputations only on the �rst term of V sin
e theother term is similar. ddt < Xr; X5 >=< DdtXr; X5 > + < Xr; DdtX5 >(33)Sin
e Xr = f0; _r��(d1�(x; r))T g is already expressed in the inertial frame its 
ovariant derivative is an ordinarytime derivative: DdtXr = f0; �rg � �f0; ddt (d1�(x; r))jTxfixedg � �f0; ddt (d1�(x; r))jTrfixedg(34)The last term 
an be written as:�f0; ddt (d1�(x; r))jTrfixedg = �u4f0; �2�(x; r)�xixj X4g(35)where �2�(x;r)�xixj represents the Hessian of �(x; r).Finally the inner produ
t 
an be 
omputed, re
olle
ting (34) and (35) we get:



12 < DdtXr; X5 >=< f0; �r � � ddt (d1�(x; r))jTxfixedg; X5 > ��u4 < �2�(x; r)�xixj X4; X5 >(36)by the same reasoning < DdtXr; X6 > is:< DdtXr; X6 >=< f0; �r � � ddt (d1�(x; r))jTxfixedg; X6 > ��u4 < �2�(x; r)�xixj X4; X6 >(37)The se
ond term of (33) is given by:< Xr; DdtX5 > = < Xr;r _gX5 >= < Xr;rg(Xiui)X5 >(38) = ui < Xr;rXi(g)X5 >whi
h by de�nition is given by:< Xr; DdtX5 > = u1 < Xr;�k15Xk > +u2 < Xr;�k25Xk >+u3 < Xr;�k35Xk > +u4 < Xr;�k45Xk >= u1 < Xr; X6 > �u3 < Xr; X4 >(39)by the same reasoning < Xr; DdtX6 > is given by:< Xr; DdtX6 >= u2 < Xr; X4 > �u1 < Xr; X5 >(40)Finally we get:ddt < Xr; X5 > = < f0; �r � � ddt (d1�(x; r))jTxfixed � _rg; X5 > ��u4 < �2�(x; r)�xixj X4; X5 >+u1 < Xr; X6 > �u3 < Xr; X4 >(41)and ddt < Xr; X5 > = < f0; �r � � ddt (d1�(x; r))jTxfixed � _rg; X6 > ��u4 < �2�(x; r)�xixj X4; X6 >+u2 < Xr; X4 > �u1 < Xr; X5 >(42) Referen
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