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Abstract

The problem of tracking a desired trajectory is of fundamental importance in real applications where some
(robotic) system is required to follow a pre-planned or pre-specified path with time constraints. For
underactuated systems this problem is not always solvable since the desired trajectory may not belong to the
set of feasible trajectories for the given system. However real life applications often only require tracking of
some of the variables, the most common example being a unicycle type robot following a preassigned 2D path.
In this paper we study the problem of position tracking for an underactuated rigid body in SE(3).

Keywords: Trajectory tracking, Nonlinear Control, Nonholonomic Systems, Underactuated Systems, Differ-
ential Geometry






1. INTRODUCTION

Tracking a desired trajectory is a frequent problem is control and robotics, where a pre-planned path represent-
ing the accomplishment of certain goals must be enforced. This pre-specified path may represent an optimal
solution for the problem, a required maneuver to be executed such as docking of a vehicle, or the outcome of
some higher-level controller.

For fully actuated systems this problem is now well understood and solutions are proposed in standard textbooks
on nonlinear control [12], [16] and [18]. On the other hand tracking for underactuated systems is a challenging
problem from the theoretical point of view since not all trajectories are feasible by the system, and the results
developed for fully actuated systems fail to apply. From the practical point of view this problem is also of great
importance since the development of systems with less actuators allows for reductions in the cost of the overall
system and in full actuated systems represents a valuable safeguard regarding malfunctioning of some of the
available actuators.

In this article we will address a special class of this problem where the system in only required to track some
of the state variables, more specifically we will consider underactuated rigid bodies on the special euclidean
group SE(3) where it is only required that the system tracks a reference position in three dimensional space.
The importance of this problem comes from the fact that often a mission is only specified in terms of a desired
position trajectory and no orientation information is available. This is the case for underwater vehicles such as
benthic labs that must follow a predetermined path towards the areas to explore or unmanned aircrafts that
must execute pre-specified surveillance missions. In fact the original motivation for this problem comes from
unicycle! type vehicles moving in SFE(2) that must follow certain paths to accomplish team work tasks such as
playing soccer (www.robocup.org). Our motivation has also compelled us to study only the kinematic version
of the problem since it is sufficient for controlling unicycle type robots, extentions to dynamics where more
difficult phenomena occur such as non-zero side slip will be delayed to future contributions.

Traditional approaches to this problem involve linearization about the reference trajectory and methods from
linear control theory resulting in a global gain-scheduled control law [13] or linear time-varying control [21].
Search based methods to derive state variables and control input values necessary to track a desired reference are
proposed in [4], [19], although only fully actuated systems are considered. Other approaches include adaptive
and feedback linearization schemes [10], using constant forward speed, thereby reducing the problem to control
the attitude of the rigid body towards the reference trajectory [9]. This approach was originally introduced
in [17, 15] and since then more advanced techniques have also been applied to planar robots such as partial
feedback linearization and state diffeomorphism (change of coordinates) and dynamic feedback linearization, [1]
[20]. A survey of the various methods of control and trajectory tracking for mobile robots is given in [22] and
for ocean vehicles in [10].

Contrary to the described approaches in this paper we will address the problem from a coordinate-free per-
spective, therefore allowing a simpler and more general understanding and presentation of the results often
obscured by the particular choice of coordinates chosen. This is specially evident on the literature regarding
the SE(3) case, where the parameterizations may contain singularities (Euler angles) or more variables then
the dimension of the parameterized space (Euler parameters or unit norm quaternions). This approach makes
use of several techniques from differential geometry and has been strongly influenced by work on tracking with
similar approaches such as [7, 5, 6]. A good introduction to nonholonomic systems in the context of Riemannian
manifolds is given in [2].

The paper is divided as follows: in Section 2 mathematical results, concepts and notation used throughout the
paper are introduced. In Section 3 the position tracking problem is mathematically formalized and smooth-
ness and boundedness assumptions are presented. An intuitive explanation is given for the control strategy at
subsection 3.3 which is rigorously studied in subsections 3.4 and 3.5. This subsection contain the main results
of the paper. Section 4 contains the particularization of the already developed results for the SE(2) case and
simulation results follow in Section 5. Finally conclusions are addressed in Section 6 and an appendix contains
some algebraic manipulations of the results presented in section 3.

2. MATHEMATICAL PRELIMINARIES

2.1. The Lie group SE(3). Consider a three-dimensional rigid body freely moving in R?, an inertial frame T
fixed in space and a body frame B fixed to the body. The natural state space for this system will be the set of
all linear transformations from the frame I to the frame B, representing at each instant of time the configuration

TAlso known as differential drive type robots on some literature.
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(position and orientation) of the rigid body’s frame B with respect to the inertial frame. This set is not only a
differentiable manifold but also a group, therefore a Lie group [3], namely SFE(3):

(1) SE@%aHﬁ f}:ReRﬂier,RlzRﬁdamy:%
1x3

The tangent space at the identity element of the group constitutes a Lie algebra, se(3) defined as:

(2) sqmz{ﬁ%ﬂzneﬁwiveRiQTz—n}

Since an algebra implies a linear space structure, we shall consider in this paper the following base for se(3):

00 00 0010 0-100
00-10 0000 1 000
(3) =101 00| = |Z1000]" ¥*= |0 000
00 00 0000 0 000
0001 0000 0000
0000 0001 0000
(4) Xa=1oo00l" = looool" = {0001
0000 0000 0000

2.2. Left invariant kinematics. The left translation map L, (on any Lie group) is defined as:

L,:G—=G
5) L) =gz

Using the above definition we can define left invariance of a vector field by requiring that a left invariant vector
field X satisfies:

(6) X(g) = X(g9-€) =TLyX(e)

where e is the group identity and TLy, : TG — TG is the derivative of the map L,, using this fact the
underactuated rigid body kinematic equations take a special simple form:

d
(7) 79=9 (X1uy + Xoug + Xzuz + Xquy)
where w1, us, us controls roll, pitch and yaw of the rigid body, respectively, and u4 controls the forward velocity.
Note that the system is underactuated since motion along the basis vectors X5 and Xg is not possible.

2.3. Riemannian metrics. A bilinear form on a vector space V over the real field is a multilinear map
©:V xV = R, it is called symmetric if O(v,w) = O(w,v) and positive definite if ©(v,v) > 0 and if equality
holds iff v = 0. © in also called an inner product on the vector space V and denoted by < .,. >. If we now
define an inner product at each point p of a manifold M, that is ©, : T,M x T,M — R ensuring that ©, varies
smoothly from point to point (on any coordinate chart the functions g;; = @(%, 8%;) are C*), we call © a

Riemannian metric and M a Riemannian manifold.

In the special case where the manifold is a Lie group G we can define a metric at the identity element ©, and
left translate it to the remaining points of the manifold [8] by requiring that:

(8) < Li(9), L2(9) >g=< gL1,9L> >g=< g 'gL1,9 'Ly >,-1,=< L1, Ly >,



for any left invariant vector fields L; and L.

In this paper we shall associate a vector {w,v} with each vector field L on SE(3) through the identification:

0 - w3 w2 U1

w3 0 — W1 Vo
—Ww2 W1 0 V3
0 0 0 0

(9) {(wl,wg,wg),(vl,vg,vg)} «— L =

This identification allows us to express a left invariant metric on SE(3) by:

alzxz 0343
10 0=
(10) [ 033 613x3:|

for a discussion on the possible metrics on SE(3) and its relation with the kinematic connection we defer the
reader to [23] and the references therein.

2.4. Connections. A '™ connection or covariant derivative V on a fiber bundle E of rank n over a manifold
M is a linear map V : I'(E) — I'(T*M ® E) that verifies the Leibniz rule:

(11) V(fX)=df @ X + fVX VY feC®M), X € (E)

Let €1, ...,&, be a local basis for the fiber over M, we can completely determined the connection by defining an

n X n matrix of covectors wf on M by:

(12) Ve; = wfsk

since for any section of E, X = X*e, X* € C>(M) its covariant derivative can be computed as:

VX = V(X*g)
= dX*®ey + X*Ve, by Leibniz rule
(13) = (dXF+Xwh)®e;

In this paper we will only work with connections on the tangent bundle, so the definitions specialize to V :
TM — T*M ® TM, and on a coordinate chart this map is completely defined by the Christofell symbols:

0 v 0
14 vazi oxi Fijw

Comparing (14) and (12) we realize that wf = I‘fjd:ci, therefore the connection can be locally characterized by:

i RN
k yi
X 4 THXYT ) o

%
(15) vxy = ( o

Oxi

We say that a connection is torsion-free or symmetric if

(16) [X,Y] = VxY - Vy X

where [X,Y] is the Lie bracket between the vector fields X and Y. Given a Riemannian metric < .,. > we say
that a connection is compatible with the metric if:

(17) Lx <Y, Z>=<VxY,Z>+<X,VxZ >



Unfortunately a connection is not uniquely determined on a manifold however given a Riemannian metric, there
is one and only one connection compatible with the metric and torsion-free. We defer the reader to [3] to further
material regarding covariant differentiation and Riemannian geometry.

We shall be using the kinematics connection compatible with the previously given left-invariant metric and
whose non zero Christofell symbols we reproduce here for completeness:

3 172 171 — 1
F21_1—‘13_F32__§

(18) F(f5 = Fge = Fg4 = Fg4 = ng = F?G =-1

2.5. Error functions. We shall define error functions on R” since we are only interested in tracking trajectories
in R3, for a definition of error functions on abstract manifolds the reader is deferred to [7]. An error function
is amap ¢ : R* x R* — R, such that ¢(z,r) > 0 and ¢(x,r) = 0 iff x = r. We shall also impose that
dog(z,r) = —d1¢(z,r) where d; is the exterior derivative with respect to x and ds the exterior derivative with
respect to r. This will allow the time derivative of ¢(x,r) being expressed by the familiar expression:

(19) % (z,r) =did(z,r) - &+ dagp(z,r) -7 = dy(z,7) (T — 7)

We shall say that the error function is (uniformly) quadratic lower bounded if there is a scalar b > 0 such that:

(20) ¢(z,r) > blldid(z, )|

Note than in abstract manifolds this condition may only hold locally according to the topology of the manifold.

3. TRACKING FOR NONHOLONOMIC SYSTEMS

3.1. Problem formulation. The goal of this paper is to describe an algorithm to track a desired position
reference r(t) disregarding however the rigid body orientation. Mathematically the position tracking or position
tracking is defined as:

A control law u(g) solves the position tracking problem if:

e The tracking error ¢(t) = ¢(x(t), r(t)) and the controls u; are bounded for all time.
e The tracking error asymptotically decays to zero, lim;_, o, ¢(t) =0

It is usual to include another requirement when only feasible trajectories are being tracked, namely that ¢(0) =
0 = ¢(t) = 0. However this requirement may not be satisfied if one wishes to track trajectories not feasible
by all the states of the system. Suppose that ¢(0) = 0 and that %r(t) ¢ Span{Xi, X2, X3, X4} under this
scenario one can never guarantee that the error function will remain zero.

3.2. Regularity and boundedness assumptions. We shall assume the following regularity and boundedness
properties:

e ¢(z,r) € C?
e 7(t) is twice differentiable

o supyeq [F(D]] <

o sup;cr [#(1)]] < oo

o supycq [[F(1)]] < o0

We assume that the reference trajectory be twice differentiable, this is not a restrictive assumption since it is
desirable that reference be as smooth as possible. Boundedness assumptions on the reference trajectory are also
standard assumptions.
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3.3. Intuitive motivation. To achieve exponential tracking of the rigid body position it would desirable that
the vector field & = X could be chosen to be X = 7 — A(d;¢(x,7))T, where we use the metric (g;; = 8I3x3)
on R? to transform the covector di¢(z,r) in the vector ¢ (did(z,r)); = %(dlgb(x,r))i = %(dlgi)(x,r))T =
A(di¢(z,7))T. Therefore, by using Vi = ¢(z,r) as a candidate Lyapunov function one imediatly sees that:

%Vl = d1¢($,T) ' (QZ—T)
= dig(z,r) - (F = Mdio(z, )" —7)
(21) = —Adig(e,1) - (dig(e,n)"

which is negative semi-definite, negative definiteness is a consequence of the quadratic nature of ¢, in fact using
the inequality in (20):

d A
(22) V1 = —Adig(z,r) - (dig(z,r)" = =Alldi g, 7)||* < —5 %)
It is not always possible to freely assign the vector field # due to the kinematic restrictions of the system,

however the above observation suggests the following approach to solve the problem:

03x3 X
01x30
e Project X, on Xy, to determine the forward velocity control input.

e Use roll, pitch and yaw inputs to align the vector field X, = [ ] with Xy.

This approach will now be described in more detail.

3.4. Orientation control. To ensure that X, belongs to Span{Xj, ..., X4} one must derive a control law that
stabilizes the system in the following set ¥ = {g € SE(3) : < X, X5(9) >,=0, < X, X¢(g9) >,=0}.

We can build a candidate Lyapunov function measuring the “distance” to the set ¥, let ¢); : RxR - R ¢=1,2
be two error functions and consider the following Lyapunov candidate function:

(23) Vs :1/)1(< X, X5 >,0)+1/)2(< X, X >,0)

After some tedious algebra presented in the appendix it can be shown that its time derivative is given by:

d . . d
%VQ = dyy (< {0,7“ - A%(d1¢(w7r))|zfimed}:X5 > —Aug < a¢( )X4 X5 >
+uy < X, Xg > —uz < X, X4 >)
. d
b o (< {05~ A @) Ty} X > g < 20T,
(24) Hus < Xp, Xg > —uy < Xy, X5 >)

This means that if we choose ¢(z,r) in such a way that < O o(a, 9@y, X;>=0and < & é(z, 9@ ¥, X¢>=0and

oxtzl dxixgd
as long as < X, Xy ># 0 we can use uy and ug to exponentially steer the rigid body towards the set ¥. Before
stating this result we will give a more useful characterization of the allowed error functions:
2
Proposition 3.1. The requirement that < aaﬁ(’;]’) X4, X5 >=0=< E’aﬁﬁj&;’“) X4, X¢ > is satisfied iff ¢(x,r) =
tk(r)(z —r)T(z —r), where k(r) is a smooth function of r.

Proof. MX4 must not be a linear combination of X5 and Xg which in turn implies the following matrix

Oztad
%le, where k(z,r) is a smoothly varying scalar gain (a function on R® x R?). The
® (1)

= k(z,7)I3x5. Integrating 2 o = 0 we get 8¢(m D= fi(a',7)+ fo (23, 1), note that

f1 or f» cannot be a function of both z! and 2 because it would v101ate 8 ¢5x ), Integrating once more

we get that ¢(x,7) = hy(z',7) + ha(22,7) + hz(23,7). Now the diagonal of the Hessian of ¢(z,r) tell us that

equation k(z, r)X4 =
2p(x,r)

solution is clearly W
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2, (i . 2, (i
Mzk(w,r} since Zhilz’r)

o , si72 is a function of 2’ and r it can be equal to a function of 7 (i # j) and r iff

2 1 1
k is a function of r alone. Using this fact we can integrate % = k(r) to get % =k(r)z' + g(r) and

integrating once more h (z!,r) = $k(r)(z")? + g(r)z' + s(r). To determine the functions g(r) and s(r) we use
the condition di@(r,7) =0 = 2% (r!,7) = 0 to conclude that 24-(r!,r) = k(r)r! + g(r) = 0 or that r! = —%g’

this allow us to write h; as hy(x!,r) = k(r) <%(w1)2 —rlzgh + M) Finally we use the negative-definiteness of

(r)
the error function once more to get hq(r',r) = 0. Since k(r) # 0 it follows that ZE:; =1(r

12,
The error function can then be written in a more compact form as ¢(z,r) = Sk(r)(z —r)T(z —r). O

Now we are ready to state the following result.

Proposition 3.2 (Exponential stabilization in ). For all initial conditions in the open and dense? set ¥ =
{9 € SE(3) : < X,,X4(g) >,7# 0} and all the error functions of the form ¢(z,r) = tk(r)(z — r)T(z —r) the
control law:

uy = 0
u o _p2d¢2_ < {0,7“ - A%(dlqﬁ(war)ﬂzfimed}"xﬁ > >0
S <X, X4 > P2
(25) u _ p3d¢1+ < {O:T - A%(d1¢(wvr))|gfixed}:X5 > >0
’ <X, X4 > pa

exponentially stabilizes the system (7) in the set U.

Proof. Consider the Lyapunov candidate function (23), its time derivative is given by (24), substituting the
control law (25) and taking in to account the special form of the error function, one gets:

(26) LV = —py(i1)? — (i)’

which is negative semidefinite. Negative definiteness is proved with an argument similar to the proof of (21),
let b¥1, b¥2 be the quadratic lower bounding constants for the functions 1, ¢ as defined in (20), respectively.
It follows that:

d P3 P2
(27) EVQ < —Wipl - %@ZJQ
To show that trajectories never leave the set X it is enough to consider that Vs < 0, therefore the projection of
X, over X4 never decreases and thus can never be zero. O
Remarks

The special form of the error function is not necessary to stabilize the system in the set ¥, however it is very
useful since it decouples the attitude control from the position control. It will allow us to chose a control law for
14 in the next section without disturbing the attitude kinematics. However it reduces the set of possible error
functions, forbidding the use of different weights for the error along different directions (one is forced to use
k(r) in all directions). This can also be seen as a direct consequence of the reduced set of metrics compatible
with the kinematics connection.

Control law (25) forces u; to be zero, implying that it is not necessary that the rigid body possesses roll
control to stabilize it in ¥. However roll control can be used if pitch or yaw control fails, constituting a
useful redundancy. What is more useful in certain situations is to be able to chose which actuators to use for
optimizing fuel consumption or other optimality criteria during the mission, however this approach will not be
further addressed in this paper.

2The set ¥ is open since its complement is the pre-image of the set {0} (closed in the usual topology of R) by a continuous
(smooth) function. To show that it is dense in SE(3) it suffices to show that its complement is contained in its border. This is
trivial attending that the pre-image of any open set in R containing 0 also contains other points of 3, by definition of .
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Note that control law (25) uses the acceleration of the reference trajectory which is not usual in trajectory
tracking. This can be easily explained if one realizes that the attitude control is tracking velocities in trying
to align X, with X4, therefore since (25) can be viewed as a generalized PD controller it needs acceleration
information to accomplish this goal.

Unfortunately control law does not guarantees convergence for all initial conditions, but only for an open and
dense set of SE(3), however this is the best that can be achieved since SE(3) is not a simply connected space
and this is a topological obstruction to the existence of global stabilizing control laws.

3.5. Position Control. Since the orientation of the rigid body is converging to the set ¥ by the action of
control inputs us and wus, it remains to control the forward velocity through control input us. The control law
for uy4 should be proportional to a measure of the alignment between X, and Xy, this can trivially be achieved
by projecting the reference vector field X, on Xy, resulting in:

< Xy, X4 > 1
= X, Xy >=A< X, Xy >

28 et 7
( ) U4 <X47X4 > B

Combining (28) with (25) we can asymptotically track the desired reference, this constitutes the main contri-
bution of the paper:

Theorem 3.3 (Asymptotical position tracking). For all initial conditions in the set ¥ and all error functions
of the form ¢(z,r) = 1k(r)(z —r)T (z —r), control law (25) and (28) makes the system (7) asymptotically track
the desired reference r(t).

In order to prove the result we will need the following standard lemma whose proof can be founded in [14]
Appendix A.2.

Lemma 3.4. Let f(z) : D — R™, D C R" be a locally Lipschitz vector field on D. If the solution x(t) is bounded
and belongs to D for t > 0, then its positive limit set L™ is a nonempty, compact, invariant set. Moreover,
z(t) = LT ast — oc.

Proof. The proof will be done in several steps. First we will show that the trajectories of the system are bounded.
Next, we shall use Lemma 3.4 with Proposition 3.2 to show that the trajectories of the system converge to the
largest invariant set in ¥. Finally it will be shown that the largest invariant set in ¥ is the desired reference

r(t).
Boundedness of trajectories

The trajectories of the rotation matrices (living in SO(3)) are bounded since SO(3) is a compact space. We
only need to show that position of the rigid body is also bounded. We shall use the fact that the trajectories of
the system ' = X (z') = 7 — dy¢(z', 7) are bounded since 4 % < 0 as shown in (21). Furthermore boundedness
of 2'(t) implies that there exist non-negative scalars ¢1, ¢2 and ¢ for each initial condition such that z}(t) < ¢;.
The position of the rigid body is governed by:

29 =A< X(z Rm>3m
(29) (), [OJ [OJ

where R is the rotation matrix associated with the group element g. R [1 0 O] is just the first column 3
of the matrix R, and since R is an orthogonal matrix, the vector i has unitary Euclidean norm. This last fact

implies that each element of i verifies —1 < i; < 1. Having this in mind one can write (29) has:



Jo { X1 (@' (7))ia (7) + X (2 (7))ia(7) + Xy (2! (7))ia(7) )i (7) dr
= xz(ty) + ftto X (2'(1))ia (1) + Xo(2'(7))i2(1) + X3(2'(1))is(T) ) ia(T) dT
Ju <X1 (@'(r))ix () + Xo(2'(7))iz(7) + X3(~’U'(T))i3(T)> ig(7) dr

[[! X1 (@' (7)) + Xa (2! (7)) + Xa(a' (7)) dr

< xlto) + | i, X1 (@' (7)) + Xo(2'(7)) + Xa(a'(7)) dr

Lo X1(@'(7) + Xo (2 (7)) + Xa(2'(7)) dr
1
(30) S (Cl + co + 03) 1
1

. .. . . T
Using a similar argument one can show that trajectories are lower bounded by [02 +c3 cp+c3 e+ 02]
Convergence to the largest invariant set in U

The system (7) with control laws (25) and (28) is locally Lipschitz since the boundedness assumptions (3.2) on
¢(z,r) and r(t) easily imply that % is continuous on ¥.. Therefore on any compact neighborhood the derivative
of g with respect to g is bounded, implying local Lipschitz continuity. By applying Lemma 3.4 we conclude
that the positive limit set is an invariant set. From (23) we know that trajectories approach ¥ asymptotically,
therefore by Lemma 23 they approach the largest invariant set contained in .

The largest invariant set in ¥

To study the largest invariant set in ¥ we start by noting that ¢ € ¥ = X, = nX, for a scalar n and the
position kinematics is simplified to & = # — A(d1¢(z,7))T. Therefore the largest invariant set in ¥ is the desired
reference r(t) as shown in (21). O

4. THE SE(2) CASE

The SE(2) case will now be derived as a particular case of the control laws already developed. We will consider
that the rigid body is only allowed to move on a horizontal plane, therefore u; = 0 and us = 0. Considering
the following base for the Lie algebra se(2) of SE(2):

0-10 001 000
(31) X;= |1 oo|, X,=]o000|, X;=|001
0 00 000 000

we get the simplified control law:

—ﬂd¢— < {O,T - A%(dl¢(x=r))T}aX3 >
Uy = , p>0
<X, X5 >

(32) s = A< X, Xo >

where all the functions are the 2D analogues of the already described ones.
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FIGURE 1. Reference trajectory for the SE(3) case r(t) = (cos({5), sin({5), %), t € [0, 100].
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Ficure 2. Tracking error (r(t) — =z(t)) for the SE(3) case, initial position z(0) =
(—10,—30, —5), initial orientation R = I3ys.

5. SIMULATION RESULTS

In this section some simulations results are presented for the SFE(3) and the SE(2) case. For the SE(3) the

used error functions and gains were ¢(z,r) = 1(z —r)"(z — 1), ¥1(a,b) = ¥2(a,b) = L(a — b)?, p1 = 10 and

p2 = 10. The metric scalar 8 was chosen to be unitary. With this values the desired reference was an helix

given by r(t) = (sin(75), cos(75). 15), t € [0,100], represented in figure 1.

The errors between the desired trajectory r(¢) and the real trajectory x(t) are represented in figure 2 for an
initial position of z(0) = (—10, —30, —5) and an initial orientation of R = I3y3.

Convergence is very fast and the reference trajectory is tracked with good precision, this motivates the use of
more challenging references such as:

(60 — ¢, 1) 31 <t <60

(t,1) 0<t<30
Mﬂ={
(=60 +1t,1) 61 << 100
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FIGURE 3. Tracking error (r(t) — x(t)) for the SE(2) case, initial position z(0) = (20, 100),
initial orientation R = —I5y».
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FIGURE 4. Tracking error (r(t) — z(t)), for the SE(2) case with bounded actuators, initial
position z(0) = (20, 100), initial orientation R = —Isyxs.

for the SE(2) case. Note that the reference is not twice differentiable violating the conditions of theorem 3.3,
this implies that the system will lose track of the reference at the points of non-differentiability as can be seen
in figure 3.

Even in this case the results are very impressive since the trajectory is retracked very quickly after being lost.
To turn the simulations more realistic the same trajectory was simulated with bounded actuators. The linear
and angular velocities are restricted to the set [—5, 5], the results are depicted in figure 4.

The convergence time is much greater and the initial part of the trajectory is not tracked at all as can be seen from
figure 5. This was expected since the initial condition is far from the trajectory, however at the points of non-
differentiability of the reference the results are very similar with the unrestricted actuators case, evidencing the
good performance and robustness for situations not explicitly taken in to account in the theoretical development.
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FIGURE 5. Reference trajectory and vehicle location for the SE(2) case with bounded actua-
tors, initial position z(0) = (20, 100), initial orientation R = —Isy».

6. CONCLUSIONS

In this paper we have studied the problem of tracking a desired position for an underactuated rigid body in
the special euclidean group. It is was shown that the problem is solvable using static state feedback on a open
and dense set of SE(3) even if roll control is not possible. The development of the control law was done in a
coordinate free way thereby avoiding the unnecessary complications often imposed by possible parameterizations
of SE(3). The need to decouple the position motion from the orientation motion led to a reduction of the set of
functions measuring the error between the rigid body desired and actual position. This is a direct consequence
of the also reduced set of left invariant metrics compatible with the kinematic connection on SE(3). Asymptotic
convergence towards the reference trajectory was shown and several simulations were included to shown the
algorithm good performance even with non-differentiable reference trajectories.

7. APPENDIX

7.1. Time derivative of V. We shall perform the detailed computations only on the first term of V since the
other term is similar.

d D D
— < X, X =< —X,. X X,, —X
(33) o <X X >=< 2 X X > 4 <X, 2 X >

Since X, = {0,7—A(d1¢(x,7))T} is already expressed in the inertial frame its covariant derivative is an ordinary
time derivative:

D

(34) DX = 0,5} = MO, (190, ) Tpizea} = MO, (0162 7) igea)

The last term can be written as:

d 02 p(x,
(35) MO, (@100, i) = Muaf0, 2B

92¢(a,r)

Ozixd

where represents the Hessian of ¢(z,r).

Finally the inner product can be computed, recollecting (34) and (35) we get:
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D 2y T 0°¢(x, 1)
(36) < EXT’X5 >= {0,7" — )\E(dl(b(ﬂf,’l")ﬂxfixed},)(% > _>\U4 < WXLl’XS >

by the same reasoning < %X,,XG > is:
*¢(,r)
J

D . d
(37) < EXT’XG >= {0,7" — )\E(dl(b(ﬂf,’l")ﬂffixed},)(ﬁ > _>\U4 < WX;;,XG >

The second term of (33) is given by:

<X, ZX5> = <X, V;X5>

(38) = < X, VyxiunXs >
= u; < XmVXi(g)X5 >

which by definition is given by:

D
<X, 2 X5> = w < X,, TE. X > +uy < X, TE X >
+uz < X,, TE Xy > 4uy < X, Th Xy >
= u < Xp, X > —uz < X, Xy >
(39)
by the same reasoning < X, £ Xq > is given by:

D
(40) < X,, %XG >=uy < Xp, Xy > —up < Xp, X5 >

Finally we get:

d . d T , ?¢(z,r)

E < XT,X5 > = < {0,7" - )\E(d1¢(m,r))\zﬁzed : T},X5 > —>\U4 < WX4,X5 >
(41) Fu; < X,y Xg > —ug < X;, Xy >
and

d N T , (1)

% <X, X5> = < {O,T - )\a(dlqﬁ(x,r))\zﬁzed -T‘},Xﬁ > —Aug < WX4,XG >
(42) +us < XT,X4 > —up < XT,X5 >
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