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AbstratThe problem of traking a desired trajetory is of fundamental importane in real appliations where some(roboti) system is required to follow a pre-planned or pre-spei�ed path with time onstraints. Forunderatuated systems this problem is not always solvable sine the desired trajetory may not belong to theset of feasible trajetories for the given system. However real life appliations often only require traking ofsome of the variables, the most ommon example being a uniyle type robot following a preassigned 2D path.In this paper we study the problem of position traking for an underatuated rigid body in SE(3).
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11. IntrodutionTraking a desired trajetory is a frequent problem is ontrol and robotis, where a pre-planned path represent-ing the aomplishment of ertain goals must be enfored. This pre-spei�ed path may represent an optimalsolution for the problem, a required maneuver to be exeuted suh as doking of a vehile, or the outome ofsome higher-level ontroller.For fully atuated systems this problem is now well understood and solutions are proposed in standard textbookson nonlinear ontrol [12℄, [16℄ and [18℄. On the other hand traking for underatuated systems is a hallengingproblem from the theoretial point of view sine not all trajetories are feasible by the system, and the resultsdeveloped for fully atuated systems fail to apply. From the pratial point of view this problem is also of greatimportane sine the development of systems with less atuators allows for redutions in the ost of the overallsystem and in full atuated systems represents a valuable safeguard regarding malfuntioning of some of theavailable atuators.In this artile we will address a speial lass of this problem where the system in only required to trak someof the state variables, more spei�ally we will onsider underatuated rigid bodies on the speial eulideangroup SE(3) where it is only required that the system traks a referene position in three dimensional spae.The importane of this problem omes from the fat that often a mission is only spei�ed in terms of a desiredposition trajetory and no orientation information is available. This is the ase for underwater vehiles suh asbenthi labs that must follow a predetermined path towards the areas to explore or unmanned airrafts thatmust exeute pre-spei�ed surveillane missions. In fat the original motivation for this problem omes fromuniyle1 type vehiles moving in SE(2) that must follow ertain paths to aomplish team work tasks suh asplaying soer (www.roboup.org). Our motivation has also ompelled us to study only the kinemati versionof the problem sine it is suÆient for ontrolling uniyle type robots, extentions to dynamis where morediÆult phenomena our suh as non-zero side slip will be delayed to future ontributions.Traditional approahes to this problem involve linearization about the referene trajetory and methods fromlinear ontrol theory resulting in a global gain-sheduled ontrol law [13℄ or linear time-varying ontrol [21℄.Searh based methods to derive state variables and ontrol input values neessary to trak a desired referene areproposed in [4℄, [19℄, although only fully atuated systems are onsidered. Other approahes inlude adaptiveand feedbak linearization shemes [10℄, using onstant forward speed, thereby reduing the problem to ontrolthe attitude of the rigid body towards the referene trajetory [9℄. This approah was originally introduedin [17, 15℄ and sine then more advaned tehniques have also been applied to planar robots suh as partialfeedbak linearization and state di�eomorphism (hange of oordinates) and dynami feedbak linearization, [1℄[20℄. A survey of the various methods of ontrol and trajetory traking for mobile robots is given in [22℄ andfor oean vehiles in [10℄.Contrary to the desribed approahes in this paper we will address the problem from a oordinate-free per-spetive, therefore allowing a simpler and more general understanding and presentation of the results oftenobsured by the partiular hoie of oordinates hosen. This is speially evident on the literature regardingthe SE(3) ase, where the parameterizations may ontain singularities (Euler angles) or more variables thenthe dimension of the parameterized spae (Euler parameters or unit norm quaternions). This approah makesuse of several tehniques from di�erential geometry and has been strongly inuened by work on traking withsimilar approahes suh as [7, 5, 6℄. A good introdution to nonholonomi systems in the ontext of Riemannianmanifolds is given in [2℄.The paper is divided as follows: in Setion 2 mathematial results, onepts and notation used throughout thepaper are introdued. In Setion 3 the position traking problem is mathematially formalized and smooth-ness and boundedness assumptions are presented. An intuitive explanation is given for the ontrol strategy atsubsetion 3.3 whih is rigorously studied in subsetions 3.4 and 3.5. This subsetion ontain the main resultsof the paper. Setion 4 ontains the partiularization of the already developed results for the SE(2) ase andsimulation results follow in Setion 5. Finally onlusions are addressed in Setion 6 and an appendix ontainssome algebrai manipulations of the results presented in setion 3.2. Mathematial preliminaries2.1. The Lie group SE(3). Consider a three-dimensional rigid body freely moving in R3 , an inertial frame I�xed in spae and a body frame B �xed to the body. The natural state spae for this system will be the set ofall linear transformations from the frame I to the frame B, representing at eah instant of time the on�guration1Also known as di�erential drive type robots on some literature.



2(position and orientation) of the rigid body's frame B with respet to the inertial frame. This set is not only adi�erentiable manifold but also a group, therefore a Lie group [3℄, namely SE(3):SE(3) = ��R x01�3 1� : R 2 R3�3 ; x 2 R3 ; R�1 = RT ; det(R) = 1�(1)The tangent spae at the identity element of the group onstitutes a Lie algebra, se(3) de�ned as:se(3) = ��
 v0 0� : 
 2 R3�3 ; v 2 R3 ; 
T = �
�(2)Sine an algebra implies a linear spae struture, we shall onsider in this paper the following base for se(3):X1 = 26640 0 0 00 0�1 00 1 0 00 0 0 03775 ; X2 = 2664 0 0 1 00 0 0 0�1 0 0 00 0 0 03775 ; X3 = 26640�1 0 01 0 0 00 0 0 00 0 0 03775(3)
X4 = 26640 0 0 10 0 0 00 0 0 00 0 0 03775 ; X5 = 26640 0 0 00 0 0 10 0 0 00 0 0 03775 ; X6 = 26640 0 0 00 0 0 00 0 0 10 0 0 03775(4)2.2. Left invariant kinematis. The left translation map Lg (on any Lie group) is de�ned as:Lg : G! GLg(x) = g � x(5)Using the above de�nition we an de�ne left invariane of a vetor �eld by requiring that a left invariant vetor�eld X satis�es: X(g) = X(g � e) = TLgX(e)(6)where e is the group identity and TLg : TG ! TG is the derivative of the map Lg, using this fat theunderatuated rigid body kinemati equations take a speial simple form:ddtg = g � (X1u1 +X2u2 +X3u3 +X4u4)(7)where u1; u2; u3 ontrols roll, pith and yaw of the rigid body, respetively, and u4 ontrols the forward veloity.Note that the system is underatuated sine motion along the basis vetors X5 and X6 is not possible.2.3. Riemannian metris. A bilinear form on a vetor spae V over the real �eld is a multilinear map� : V � V ! R, it is alled symmetri if �(v; w) = �(w; v) and positive de�nite if �(v; v) � 0 and if equalityholds i� v = 0. � in also alled an inner produt on the vetor spae V and denoted by < :; : >. If we nowde�ne an inner produt at eah point p of a manifold M , that is �p : TpM �TpM ! R ensuring that �p variessmoothly from point to point (on any oordinate hart the funtions gij = �( ��xi ; ��xj ) are C1), we all � aRiemannian metri and M a Riemannian manifold.In the speial ase where the manifold is a Lie group G we an de�ne a metri at the identity element �e andleft translate it to the remaining points of the manifold [8℄ by requiring that:< L1(g); L2(g) >g=< gL1; gL2 >g=< g�1gL1; g�1gL2 >g�1g=< L1; L2 >e(8)



3for any left invariant vetor �elds L1 and L2.In this paper we shall assoiate a vetor f!; vg with eah vetor �eld L on SE(3) through the identi�ation:f(!1; !2; !3); (v1; v2; v3)g  ! L = 2664 0 � !3 !2 v1!3 0 � !1 v2�!2 !1 0 v30 0 0 0 3775(9)This identi�ation allows us to express a left invariant metri on SE(3) by:� = ��I3�3 03�303�3 �I3�3�(10)for a disussion on the possible metris on SE(3) and its relation with the kinemati onnetion we defer thereader to [23℄ and the referenes therein.2.4. Connetions. A C1 onnetion or ovariant derivative r on a �ber bundle E of rank n over a manifoldM is a linear map r : �(E)! �(T �M 
E) that veri�es the Leibniz rule:r(fX) = df 
X + frX 8 f 2 C1(M); X 2 �(E)(11)Let "1; :::; "n be a loal basis for the �ber over M, we an ompletely determined the onnetion by de�ning ann� n matrix of ovetors !kj on M by: r"j = !kj "k(12)sine for any setion of E, X = Xk"k, Xk 2 C1(M) its ovariant derivative an be omputed as:rX = r(Xk"k)= dXk 
 "k +Xkr"k by Leibniz rule= (dXk +Xj!kj )
 "j(13)In this paper we will only work with onnetions on the tangent bundle, so the de�nitions speialize to r :TM ! T �M 
 TM , and on a oordinate hart this map is ompletely de�ned by the Christofell symbols:r ��xi ��xj = �kij ��xk(14)Comparing (14) and (12) we realize that !kj = �kijdxi, therefore the onnetion an be loally haraterized by:rXY = ��Y i�xj Xj + �kijX iY j� ��xk(15)We say that a onnetion is torsion-free or symmetri if[X;Y ℄ = rXY �rYX(16)where [X;Y ℄ is the Lie braket between the vetor �elds X and Y . Given a Riemannian metri < :; : > we saythat a onnetion is ompatible with the metri if:LX < Y;Z >=< rXY; Z > + < X;rXZ >(17)



4Unfortunately a onnetion is not uniquely determined on a manifold however given a Riemannian metri, thereis one and only one onnetion ompatible with the metri and torsion-free. We defer the reader to [3℄ to furthermaterial regarding ovariant di�erentiation and Riemannian geometry.We shall be using the kinematis onnetion ompatible with the previously given left-invariant metri andwhose non zero Christofell symbols we reprodue here for ompleteness:�312 = �231 = �123 = 12 ; �321 = �213 = �132 = � 12�615 = �426 = �534 = 1; �624 = �435 = �516 = �1(18)2.5. Error funtions. We shall de�ne error funtions on Rn sine we are only interested in traking trajetoriesin R3 , for a de�nition of error funtions on abstrat manifolds the reader is deferred to [7℄. An error funtionis a map � : Rn � Rn ! R, suh that �(x; r) � 0 and �(x; r) = 0 i� x = r. We shall also impose thatd2�(x; r) = �d1�(x; r) where d1 is the exterior derivative with respet to x and d2 the exterior derivative withrespet to r. This will allow the time derivative of �(x; r) being expressed by the familiar expression:ddt�(x; r) = d1�(x; r) � _x+ d2�(x; r) � _r = d1�(x; r)( _x � _r)(19)We shall say that the error funtion is (uniformly) quadrati lower bounded if there is a salar b � 0 suh that:�(x; r) � bkd1�(x; r)k2(20)Note than in abstrat manifolds this ondition may only hold loally aording to the topology of the manifold.3. Traking for nonholonomi systems3.1. Problem formulation. The goal of this paper is to desribe an algorithm to trak a desired positionreferene r(t) disregarding however the rigid body orientation. Mathematially the position traking or positiontraking is de�ned as:A ontrol law u(g) solves the position traking problem if:� The traking error �(t) = �(x(t); r(t)) and the ontrols ui are bounded for all time.� The traking error asymptotially deays to zero, limt!1 �(t) = 0It is usual to inlude another requirement when only feasible trajetories are being traked, namely that �(0) =0 ) �(t) = 0. However this requirement may not be satis�ed if one wishes to trak trajetories not feasibleby all the states of the system. Suppose that �(0) = 0 and that ddtr(t) =2 SpanfX1; X2; X3; X4g under thissenario one an never guarantee that the error funtion will remain zero.3.2. Regularity and boundedness assumptions. We shall assume the following regularity and boundednessproperties:� �(x; r) 2 C2� r(t) is twie di�erentiable� supt2Rkr(t)k <1� supt2Rk _r(t)k <1� supt2Rk�r(t)k <1We assume that the referene trajetory be twie di�erentiable, this is not a restritive assumption sine it isdesirable that referene be as smooth as possible. Boundedness assumptions on the referene trajetory are alsostandard assumptions.



53.3. Intuitive motivation. To ahieve exponential traking of the rigid body position it would desirable thatthe vetor �eld _x = X ould be hosen to be X = _r � �(d1�(x; r))T , where we use the metri (gij = �I3�3)on R3 to transform the ovetor d1�(x; r) in the vetor gij(d1�(x; r))j = 1� (d1�(x; r))i = 1� (d1�(x; r))T =�(d1�(x; r))T . Therefore, by using V1 = �(x; r) as a andidate Lyapunov funtion one imediatly sees that:ddtV1 = d1�(x; r) � ( _x� _r)= d1�(x; r) � � _r � �(d1�(x; r))T � _r�= ��d1�(x; r) � (d1�(x; r))T(21)whih is negative semi-de�nite, negative de�niteness is a onsequene of the quadrati nature of �, in fat usingthe inequality in (20): ddtV1 = ��d1�(x; r) � (d1�(x; r))T = ��kd1�(x; r)k2 � ��b �(x; r)(22)It is not always possible to freely assign the vetor �eld _x due to the kinemati restritions of the system,however the above observation suggests the following approah to solve the problem:� Use roll, pith and yaw inputs to align the vetor �eld Xr = �03�3 X01�3 0 � with X4.� Projet Xr on X4, to determine the forward veloity ontrol input.This approah will now be desribed in more detail.3.4. Orientation ontrol. To ensure that Xr belongs to SpanfX1; :::; X4g one must derive a ontrol law thatstabilizes the system in the following set 	 = fg 2 SE(3) :< Xr; X5(g) >g= 0; < Xr; X6(g) >g= 0g.We an build a andidate Lyapunov funtion measuring the \distane" to the set 	, let  i : R�R ! R i = 1; 2be two error funtions and onsider the following Lyapunov andidate funtion:V2 =  1(< Xr; X5 >; 0) +  2(< Xr; X6 >; 0)(23)After some tedious algebra presented in the appendix it an be shown that its time derivative is given by:ddtV2 = d 1�< f0; �r � � ddt (d1�(x; r))jTxfixedg; X5 > ��u4 < �2�(x; r)�xixj X4; X5 >+u1 < Xr; X6 > �u3 < Xr; X4 >�+ d 2�< f0; �r � � ddt (d1�(x; r))jTxfixedg; X6 > ��u4 < �2�(x; r)�xixj X4; X6 >+u2 < Xr; X4 > �u1 < Xr; X5 >�(24)This means that if we hoose �(x; r) in suh a way that < �2�(x;r)�xixj X4; X5 >= 0 and < �2�(x;r)�xixj X4; X6 >= 0 andas long as < Xr; X4 >6= 0 we an use u2 and u3 to exponentially steer the rigid body towards the set 	. Beforestating this result we will give a more useful haraterization of the allowed error funtions:Proposition 3.1. The requirement that < �2�(x;r)�xixj X4; X5 >= 0 =< �2�(x;r)�xixj X4; X6 > is satis�ed i� �(x; r) =12k(r)(x � r)T (x� r), where k(r) is a smooth funtion of r.Proof. �2�(x;r)�xixj X4 must not be a linear ombination of X5 and X6 whih in turn implies the following matrixequation k(x; r)X4 = �2�(x;r)�xixj X4, where k(x; r) is a smoothly varying salar gain (a funtion on R3 � R3 ). Thesolution is learly �2�(x;r)�xixj = k(x; r)I3�3. Integrating �2�(x;r)�x1x2 = 0 we get ��(x;r)�x1 = f1(x1; r)+f2(x3; r), note thatf1 or f2 annot be a funtion of both x1 and x3 beause it would violate �2�(x;r)�x1x3 = 0. Integrating one morewe get that �(x; r) = h1(x1; r) + h2(x2; r) + h3(x3; r). Now the diagonal of the Hessian of �(x; r) tell us that



6�2hi(xi;r)�xixi = k(x; r), sine �2hi(xi;r)�xixi is a funtion of xi and r it an be equal to a funtion of xj (i 6= j) and r i�k is a funtion of r alone. Using this fat we an integrate �2h1(x1;r)�x1x1 = k(r) to get �h1(x1;r)�x1 = k(r)x1+ g(r) andintegrating one more h1(x1; r) = 12k(r)(x1)2 + g(r)x1 + s(r). To determine the funtions g(r) and s(r) we usethe ondition d1�(r; r) = 0 ) �h1�x1 (r1; r) = 0 to onlude that �h1�x1 (r1; r) = k(r)r1+g(r) = 0 or that r1 = � g(r)k(r) ,this allow us to write h1 as h1(x1; r) = k(r)� 12 (x1)2 � r1x1 + s(r)k(r)�. Finally we use the negative-de�niteness ofthe error funtion one more to get h1(r1; r) = 0. Sine k(r) 6= 0 it follows that s(r)k(r) = 12 (r1)2.The error funtion an then be written in a more ompat form as �(x; r) = 12k(r)(x � r)T (x� r).Now we are ready to state the following result.Proposition 3.2 (Exponential stabilization in 	). For all initial onditions in the open and dense2 set � =fg 2 SE(3) : < Xr; X4(g) >g 6= 0g and all the error funtions of the form �(x; r) = 12k(r)(x � r)T (x � r) theontrol law: u1 = 0u2 = ��2d 2� < f0; �r � � ddt (d1�(x; r))jTxfixedg; X6 >< Xr; X4 > �2 > 0u3 = �3d 1+ < f0; �r � � ddt (d1�(x; r))jTxfixedg; X5 >< Xr; X4 > �3 > 0(25)exponentially stabilizes the system (7) in the set 	.Proof. Consider the Lyapunov andidate funtion (23), its time derivative is given by (24), substituting theontrol law (25) and taking in to aount the speial form of the error funtion, one gets:ddtV2 = ��3(d 1)2 � �2(d 2)2(26)whih is negative semide�nite. Negative de�niteness is proved with an argument similar to the proof of (21),let b 1 , b 2 be the quadrati lower bounding onstants for the funtions  1,  2 as de�ned in (20), respetively.It follows that: ddtV2 � � �3b 1  1 � �2b 2  2(27)To show that trajetories never leave the set � it is enough to onsider that _V2 � 0, therefore the projetion ofXr over X4 never dereases and thus an never be zero.RemarksThe speial form of the error funtion is not neessary to stabilize the system in the set 	, however it is veryuseful sine it deouples the attitude ontrol from the position ontrol. It will allow us to hose a ontrol law foru4 in the next setion without disturbing the attitude kinematis. However it redues the set of possible errorfuntions, forbidding the use of di�erent weights for the error along di�erent diretions (one is fored to usek(r) in all diretions). This an also be seen as a diret onsequene of the redued set of metris ompatiblewith the kinematis onnetion.Control law (25) fores u1 to be zero, implying that it is not neessary that the rigid body possesses rollontrol to stabilize it in 	. However roll ontrol an be used if pith or yaw ontrol fails, onstituting auseful redundany. What is more useful in ertain situations is to be able to hose whih atuators to use foroptimizing fuel onsumption or other optimality riteria during the mission, however this approah will not befurther addressed in this paper.2The set � is open sine its omplement is the pre-image of the set f0g (losed in the usual topology of R) by a ontinuous(smooth) funtion. To show that it is dense in SE(3) it suÆes to show that its omplement is ontained in its border. This istrivial attending that the pre-image of any open set in R ontaining 0 also ontains other points of �, by de�nition of  .



7Note that ontrol law (25) uses the aeleration of the referene trajetory whih is not usual in trajetorytraking. This an be easily explained if one realizes that the attitude ontrol is traking veloities in tryingto align Xr with X4, therefore sine (25) an be viewed as a generalized PD ontroller it needs aelerationinformation to aomplish this goal.Unfortunately ontrol law does not guarantees onvergene for all initial onditions, but only for an open anddense set of SE(3), however this is the best that an be ahieved sine SE(3) is not a simply onneted spaeand this is a topologial obstrution to the existene of global stabilizing ontrol laws.3.5. Position Control. Sine the orientation of the rigid body is onverging to the set 	 by the ation ofontrol inputs u2 and u3, it remains to ontrol the forward veloity through ontrol input u4. The ontrol lawfor u4 should be proportional to a measure of the alignment between Xr and X4, this an trivially be ahievedby projeting the referene vetor �eld Xr on X4, resulting in:u4 = < Xr; X4 >< X4; X4 > = 1� < Xr; X4 >= � < Xr; X4 >(28)Combining (28) with (25) we an asymptotially trak the desired referene, this onstitutes the main ontri-bution of the paper:Theorem 3.3 (Asymptotial position traking). For all initial onditions in the set � and all error funtionsof the form �(x; r) = 12k(r)(x� r)T (x� r), ontrol law (25) and (28) makes the system (7) asymptotially trakthe desired referene r(t).In order to prove the result we will need the following standard lemma whose proof an be founded in [14℄Appendix A.2.Lemma 3.4. Let f(x) : D ! Rn ; D � Rn be a loally Lipshitz vetor �eld on D. If the solution x(t) is boundedand belongs to D for t � 0, then its positive limit set L+ is a nonempty, ompat, invariant set. Moreover,x(t)! L+ as t!1.Proof. The proof will be done in several steps. First we will show that the trajetories of the system are bounded.Next we shall use Lemma 3.4 with Proposition 3.2 to show that the trajetories of the system onverge to thelargest invariant set in 	. Finally it will be shown that the largest invariant set in 	 is the desired referener(t).Boundedness of trajetoriesThe trajetories of the rotation matries (living in SO(3)) are bounded sine SO(3) is a ompat spae. Weonly need to show that position of the rigid body is also bounded. We shall use the fat that the trajetories ofthe system _x0 = X(x0) = _r � d1�(x0; r) are bounded sine ddt� � 0 as shown in (21). Furthermore boundednessof x0(t) implies that there exist non-negative salars 1, 2 and 3 for eah initial ondition suh that x0i(t) < i.The position of the rigid body is governed by:_x = � < X(x); R2410035 > R2410035(29)where R is the rotation matrix assoiated with the group element g. R �1 0 0�T is just the �rst olumn iof the matrix R, and sine R is an orthogonal matrix, the vetor i has unitary Eulidean norm. This last fatimplies that eah element of i veri�es �1 � ii � 1. Having this in mind one an write (29) has:



8 x(t) = x(t0) + Z tt0 � < X(x0(�)); i(�) > i(�)d�= x(t0) + 264R tt0 X(x0(�))T i(�) i1(�)d�R tt0 X(x0(�))T i(�) i2(�)d�R tt0 X(x0(�))T i(�) i3(�)d�375= x(t0) + 26666664R tt0�X1(x0(�))i1(�) +X2(x0(�))i2(�) +X3(x0(�))i3(�)�i1(�) d�R tt0�X1(x0(�))i1(�) +X2(x0(�))i2(�) +X3(x0(�))i3(�)�i2(�) d�R tt0�X1(x0(�))i1(�) +X2(x0(�))i2(�) +X3(x0(�))i3(�)�i3(�) d�
37777775� x(t0) + 264R tt0 X1(x0(�)) +X2(x0(�)) +X3(x0(�)) d�R tt0 X1(x0(�)) +X2(x0(�)) +X3(x0(�)) d�R tt0 X1(x0(�)) +X2(x0(�)) +X3(x0(�)) d�375� (1 + 2 + 3)2411135(30)Using a similar argument one an show that trajetories are lower bounded by �2 + 3 1 + 3 1 + 2�T .Convergene to the largest invariant set in 	The system (7) with ontrol laws (25) and (28) is loally Lipshitz sine the boundedness assumptions (3.2) on�(x; r) and r(t) easily imply that � _g�g is ontinuous on �. Therefore on any ompat neighborhood the derivativeof _g with respet to g is bounded, implying loal Lipshitz ontinuity. By applying Lemma 3.4 we onludethat the positive limit set is an invariant set. From (23) we know that trajetories approah 	 asymptotially,therefore by Lemma 23 they approah the largest invariant set ontained in 	.The largest invariant set in 	To study the largest invariant set in 	 we start by noting that g 2 	 ) X4 = �Xr for a salar � and theposition kinematis is simpli�ed to _x = _r��(d1�(x; r))T . Therefore the largest invariant set in 	 is the desiredreferene r(t) as shown in (21). 4. The SE(2) aseThe SE(2) ase will now be derived as a partiular ase of the ontrol laws already developed. We will onsiderthat the rigid body is only allowed to move on a horizontal plane, therefore u1 = 0 and u2 = 0. Consideringthe following base for the Lie algebra se(2) of SE(2):X1 = 240�1 01 0 00 0 035 ; X2 = 240 0 10 0 00 0 035 ; X3 = 240 0 00 0 10 0 035(31)we get the simpli�ed ontrol law:u1 = ��d � < f0; �r � � ddt(d1�(x; r))T g; X3 >< Xr; X2 > ; � > 0u2 = � < Xr; X2 >(32)where all the funtions are the 2D analogues of the already desribed ones.
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Figure 1. Referene trajetory for the SE(3) ase r(t) = �os( t10 ); sin( t10 ); t10�, t 2 [0; 100℄.
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Figure 5. Referene trajetory and vehile loation for the SE(2) ase with bounded atua-tors, initial position x(0) = (20; 100), initial orientation R = �I2�2.6. ConlusionsIn this paper we have studied the problem of traking a desired position for an underatuated rigid body inthe speial eulidean group. It is was shown that the problem is solvable using stati state feedbak on a openand dense set of SE(3) even if roll ontrol is not possible. The development of the ontrol law was done in aoordinate free way thereby avoiding the unneessary ompliations often imposed by possible parameterizationsof SE(3). The need to deouple the position motion from the orientation motion led to a redution of the set offuntions measuring the error between the rigid body desired and atual position. This is a diret onsequeneof the also redued set of left invariant metris ompatible with the kinemati onnetion on SE(3). Asymptotionvergene towards the referene trajetory was shown and several simulations were inluded to shown thealgorithm good performane even with non-di�erentiable referene trajetories.7. Appendix7.1. Time derivative of V. We shall perform the detailed omputations only on the �rst term of V sine theother term is similar. ddt < Xr; X5 >=< DdtXr; X5 > + < Xr; DdtX5 >(33)Sine Xr = f0; _r��(d1�(x; r))T g is already expressed in the inertial frame its ovariant derivative is an ordinarytime derivative: DdtXr = f0; �rg � �f0; ddt (d1�(x; r))jTxfixedg � �f0; ddt (d1�(x; r))jTrfixedg(34)The last term an be written as:�f0; ddt (d1�(x; r))jTrfixedg = �u4f0; �2�(x; r)�xixj X4g(35)where �2�(x;r)�xixj represents the Hessian of �(x; r).Finally the inner produt an be omputed, reolleting (34) and (35) we get:



12 < DdtXr; X5 >=< f0; �r � � ddt (d1�(x; r))jTxfixedg; X5 > ��u4 < �2�(x; r)�xixj X4; X5 >(36)by the same reasoning < DdtXr; X6 > is:< DdtXr; X6 >=< f0; �r � � ddt (d1�(x; r))jTxfixedg; X6 > ��u4 < �2�(x; r)�xixj X4; X6 >(37)The seond term of (33) is given by:< Xr; DdtX5 > = < Xr;r _gX5 >= < Xr;rg(Xiui)X5 >(38) = ui < Xr;rXi(g)X5 >whih by de�nition is given by:< Xr; DdtX5 > = u1 < Xr;�k15Xk > +u2 < Xr;�k25Xk >+u3 < Xr;�k35Xk > +u4 < Xr;�k45Xk >= u1 < Xr; X6 > �u3 < Xr; X4 >(39)by the same reasoning < Xr; DdtX6 > is given by:< Xr; DdtX6 >= u2 < Xr; X4 > �u1 < Xr; X5 >(40)Finally we get:ddt < Xr; X5 > = < f0; �r � � ddt (d1�(x; r))jTxfixed � _rg; X5 > ��u4 < �2�(x; r)�xixj X4; X5 >+u1 < Xr; X6 > �u3 < Xr; X4 >(41)and ddt < Xr; X5 > = < f0; �r � � ddt (d1�(x; r))jTxfixed � _rg; X6 > ��u4 < �2�(x; r)�xixj X4; X6 >+u2 < Xr; X4 > �u1 < Xr; X5 >(42) Referenes[1℄ B. d'Andrea-Novel, G. Campion, G. Bastin, Control of nonholonomi wheeled mobile robots by statefeedbak linearization. International Journal of Robotis Researh 14(6) (1995) 543-559.[2℄ A. M. Bloh, P. E. Crouh, Nonholonomi Control Systems on Riemannian Manifolds. SIAM Journal onControl and Optimization 33(1) (1995) 126-148.[3℄ W. M. Boothby, An Introdution to Di�erentiable Manifolds and Riemannian Geometry (Aademi Press,New York, 1975).[4℄ D. P. Boyle, G. E. Chamito�, Autonomous Maneuver Traking for Self-Piloted Vehiles. Journal of Guid-ane, Control and Dynamis 22(1) (1999) 58-67.[5℄ F. Bullo, R. Murray, A. Sarti, Control on the sphere and redued attitude stabilization. Nonlinear ControlSystems Design, Tahoe City, CA (1995) 495-501.
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