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Resumo

O conhecimento da orientacgao ou atitude de um satélite, relativamente a um dado
referencial, é essencial para permitir o seu ajuste através de algoritmos de controlo
em cadeia fechada. Este conhecimento da atitude torna-se ainda mais relevante
quando os sistemas sao auténomos e o sistema de estimacao de atitude tem de ser
mais preciso e robusto, de modo a que os algoritmos de controlo possam actuar sobre
o satélite, sem intervencao humana a partir de estacoes terrestres.

Este trabalho foi motivado pela necessidade de obter um método de estimacao
de atitude e velocidade angular de um pequeno satélite em orbita a baixa altitude,
em particular o satélite portugués PoOSAT-1. Esta classe de satélites apresenta uma
série de caracteristicas tais como a limitacao em massa e volume, a nao linearidade
da dindmica e as medidas dos sensores de atitude que, para além de ruidosas, nem
sempre estao disponiveis, originando desafios interessantes para a determinacao de
atitude.

Os métodos de determinacao de atitude dividem-se em duas classes principais:
os métodos ponto-a-ponto e os métodos recursivos. Os métodos ponto-a-ponto sao
baseados nas medidas de pelo menos dois sensores de atitude, num dado instante
de tempo, enquanto a estimacao recursiva usa informacao de amostras sucessivas,
bem como o conhecimento da dindmica de atitude do satélite. Nesta dissertacao, é
estudada a possibilidade de aplicacao do método ponto-a-ponto por decomposi¢ao
em valores singulares (SVD), comparando-a com os resultados obtidos por um Filtro
de Kalman Estendido (EKF). Resultados da aplicagdo dos métodos & simulagao do
PoSAT-1, utilizando o seu sensor de sol e os seus magnetémetros, bem como a dados
reais do pequeno satélite POSAT-1 sao apresentados.

Palavras Chave: Estimacao de atitude, Quaternioes, Pequenos satélites, Filtro
de Kalman Estendido, Métodos Ponto a Ponto.
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Abstract

The determination of a satellite orientation or attitude with respect to a given
coordinate system, has a major role in guidance, navigation and control, especially
for autonomous systems which are less fault tolerant than ground-based systems.

This work was motivated by the need to develop a method to estimate both
the attitude and the angular velocity of a low orbit small satellite, in particular the
Portuguese satellite PoOSAT-1. This class of satellites has a number of characteristics
such as mass and volume constraints, non-linear equations of motion and noisy
measurements from the attitude sensors which are not available along the whole
orbit of the satellite.

Satellite attitude determination methods usually fall in one of two classes: point-
to-point and recursive estimation algorithms. Point-to-point attitude determination
is based on the measurements of two or more sensors in a single point in time,
while recursive estimation uses information from successive time points, as well
as knowledge about the spacecraft attitude dynamics model. In small satellites,
only a single attitude sensor is often available, due to cost and space constraints,
thus leading to the exploration of recursive estimation based solutions, such as the
Kalman filter. In this work, the results of using a point-to-point Singular Value
Decomposition (SVD) algorithm are compared to those obtained by an Extended
Kalman Filter (EKF), when applied to a simulation of PoOSAT-1. Results from the
EKF, applied to the small satellite PoOSAT-1 real data, is also presented.

Keywords: Attitude estimation, Quaternions, Small Satellites, Extended Kalman
Filter, Point-to-point Methods.
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Chapter 1

Introduction

1.1 Motivation

Estimating the orientation of a spacecraft with respect to (w.r.t.) a Coordinate
System (CS) is essential for most space missions in order to support an orbit ma-
noeuvre. Without an efficient attitude determination algorithm, the mission may
fail. This is even more important for autonomous spacecrafts, such as Low Earth
Orbit (LEO) satellites, GEOstationary (GEO) satellites, or interplanetary satellites.

Due to their typically low budget, small satellites suffer structure restrictions.
They have limited mass and volume, low cost components, low cost to launch, non-
optimal orbit insertion. Through the years, small satellites have provided a platform
for scientific research where new products or system concepts can be demonstrated,
making possible for small satellites to benefit from leading-edge technology. There-
fore, more and more small satellites can accomplish many functions of the con-
ventional satellites without the huge costs associated with it. An example is the
commercial Gemini geostationary minisatellite (to be launched in 2003 by Surrey
Space Center, UK) that will provide reliable and accessible communications services
for Nigeria and West African countries. Moreover, it is possible to have a quick turn-
around instead a decade of planning and building as it is typical with conventional
satellites.

Since small satellites are typically in LEO, the preferred attitude actuators are
those which generate a magnetic momentum that interacts with the Earth geomag-
netic field, thus generating a torque that rotates the satellite. These actuators are
cheap to build and have long service life since no fuel is used except for electric
power which is obtained from the solar panels. Also gas jets are becoming an option
for this class of satellites but their life is limited by gas availability.

This work is included in the ConSat! project which aims at studying the dynam-

!This work is supported by PRAXIS XXI program project PRAXIS/3/3.1/CTAE/1942/95,



1.2. HISTORICAL PERSPECTIVE

ics of bodies under the influence of gravitational, aerodynamic and control torques
in the particular case of small satellites. The work carried out in this dissertation
is included in the development of new approaches to the attitude control where
attitude determination is essential.

There are a reduced number of attitude sensors on-board small satellites: mag-
netometers; Sun sensors; GPS - Global Positioning System; Earth sensors; horizon
sensors; star sensors. None of these sensors provides directly either the attitude or
the angular velocity, except Star sensors that give the attitude of the camera w.r.t.
inertial CS. The study of the estimation methods suitable for these reduced attitude
sensors and coping with its noisy measurements and availability is part of this work.
Often only a single attitude sensor, the magnetometer, is available during the whole
orbit, leading to the usage of the recursive Kalman Filter (KF) to estimate the state
vector. The point-to-point methods are studied as an alternative to Kalman Filters,
to avoid their implementation complexity and the assumptions made on the process
model and perturbations. This is particularly true for non-linear systems, as it is
the case for small satellites, due to the need to linearize the KF around the system
trajectory at each step - Extended Kalman Filter (EKF). However these methodolo-
gies just estimate the attitude but it is also essential to have estimates from angular
velocity since usually small satellites do not have gyros on-board. Also, the fact
that the point-to-point methods, in order to work, must have available at least mea-
surements of two attitude sensors? in a single point in time, are also addressed in
Chapter 4, and then applied to PoSAT-1 satellite.

PoSAT-1, a small satellite launched in 1993 by Surrey Space Center and owned
by a Portuguese Consortium, offers challenging problems, with their sensor and ac-
tuator restrictions. The satellite has a gravity gradient boom for Earth stabilization
using minimum energy. Due to the solar panels, placed on its 4 facets, the satellite
is kept spinning slowly about the z-axis.

1.2 Historical Perspective

The main goal of the attitude determination system is to compute the attitude
of a body fixed CS w.r.t. a CS of interest, as well as the angular velocity, based on
noisy vector measurements taken in both systems.

There are two widely applied methodologies to the attitude determination prob-
lem: the Kalman filter and the point-to-point methods. Although both emerged
in the sixties, only recently point-to-point methods have been subject to intensive
research. In contrast, the Kalman filter has been applied successfully to many dif-
ferent estimation problems since it is well-suited to estimate state vectors of multi-

”Stabilization and Control of small Satellites”.
2Except the TRIAD point-to-point algorithm.
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input /output systems based in multi-sensor data. An historical perspective is made,
based on these two methodologies and considering also the attitude parameteriza-
tions used.

1.2.1 Iterative Methods

Kalman filter’s adequacy for real-time estimation is due to its recursive pro-
cessing of noisy sensor measurements to determine the successive minimum variance
state estimates. Assuming statistics of the system and measurements noise as known,
and taking advantage of the system model, the filter propagates the estimated state
from one time step to the next. Nevertheless, there are several problems associ-
ated with the application of Kalman filter to small satellites, explained in detail in
Section 3.1.2.

Beyond the choice of the filter, the attitude representation is another problem-
atic issue addressed by many authors and reviewed by Shuster [41]. Quaternion
representation is the most commonly used satellite attitude estimation because it
is not singular for any rotation. However it is subject to the constraint ¢’ g= 1 in
order to maintain orthogonality in the estimated attitude. This constraint must be
taken into account during the implementation of the EKF, otherwise the covariance
matrix becomes singular. Leffers et al. [27] described three different approaches
to circumvent the covariance matrix singularity caused by the quaternion attitude
representation. However, the angular velocities are obtained from gyroscopes, which
are often not used in small spacecrafts because not only they are generally expensive
but also they tend to fail. Also to overcome the quaternion problem, Bar-Itzhack et
al. [20] showed that normalization improves filter convergence and accuracy. Apply-
ing the covariance modifications described by Lefferts et al. [27], Psiaki and Martel
[31], using only magnetometer data, estimated the disturbance torques as well as the
attitude, angular velocity and the vector part of the quaternion, q = [ G G2 Q3 ]T
The scalar part of the quaternion ¢4 is obtained from the estimated vector part using
the quaternion constraint. However, their method offers coarse attitude information
only due to the low accuracy of the observations and the inaccuracy of the knowledge
of the Earth’s magnetic field, as stressed by the author’s.

Since the satellite attitude dynamics is a non-linear system with non-linear mea-
surements, the application of the Kalman filter is only possible after linearization.
This may lead to divergence problems in the error covariance matrix. Some solu-
tions were presented by Brown and Hwang [18] in order to handle this problem.
Also Bak [1] modelled some of the discrepancies between the process model and the
actual behaviour of the spacecraft and gathered them in the covariance error matrix
of an EKF using magnetic field measurements. Vathsal [53] expanded the process
and measurement models to second order. However, this approach increases the
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complexity of the filter and represents a computational burden. Usually, it is only
worthwhile to go for second or higher order techniques in case of extreme system
nonlinearities.

The process and measurement noise are assumed to be modelled by a zero-mean
Gaussian stochastic process with known covariance, but the covariance matrices
must be manually tuned, not necessarily to achieve optimal filter designs but some-
times to increase closed loop attitude control performance. Mook and Junkins [37]
developed a new approach, designated as the Minimum Model Error Estimation
(MME) method, where the model error is determined during the estimation pro-
cess. Crassidis and Markley [7] used this approach to estimate the attitude of a real
spacecraft without the utilization of gyro measurements. However, the MME filter
is a batch estimator. Inspired in their paper, and also based on a predictive tracking
scheme introduced by Lu [30], Crassidis and Markley [9] have proposed a predictive
filter where the model error is estimated as part of the solution. The filter may take
any form, even nonlinear, so the filter is free from covariance propagation, decreas-
ing the computational burden associated with it. Moreover, it can be implemented
on-line to filter noisy measurements, estimating quaternion attitude representation
and rate trajectories.

The Kalman filter used in this work is based on the approach of Psiaki and
Martel [31] but modified by Steyn [45] to be used for satellites with yaw spinning
instead of assuming only a 3-axis nominal Earth pointing satellite as done by Psiaki
and Martel. Also in this dissertation the Sun sensors are used to improve filter
accuracy. To avoid the covariance singularity the filter estimates the vector part
of the quaternion, reducing the rank of the covariance error matrix. The filter
covariance matrix for measurement is based in the error artificially introduced in
the SimSat?® simulator and is proposed an error covariance matrix for the process
based in the quaternion constraint (see 3.1.2).

1.2.2 Point-to-point Methods

A different approach to the attitude estimation problem consists on determining
the attitude based on a sequence of noisy vector measurements. Given a set of n > 2
vector measurements by b, in the body system, and a set of reference vectors
ri Iy in the orbit system, there is an orthogonal matrix A (the attitude matrix or
direction-cosine matrix) that transforms rotational vectors from the orbital to the
body coordinates. The problem of finding the best estimate of the A matrix was
posed by Wahba [54] who was the first to choose a least square criterion to define
the best estimate, i.e., to find the orthonormal matrix A that minimizes the loss

3SimSat is the simulation environment for LEO satellites implemented in Matlab/Simulink
language under the ConSat project.
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function
1 9

where w; is a set of positive weights assigned to each measurement and |.| denotes
the Euclidean norm. It was proved that the loss function can be rewritten as

L(A) = X — tr(AB)T (1.2)
with
i=1 i=1

The loss function will be minimum when the trace of the matrix product ABT
is maximum, under the orthonormality constraint on A.

The g method, introduced by Davenport [11], provides a quaternion-based so-
lution for the Wahba problem, where the attitude quaternion g which minimizes
the loss function is the eigenvector of a matrix K, corresponding to K’s largest
eigenvalue, Apax. Shuster [39] presented an implementation of the g method, the
QUartenion ESTimator (QUEST), which purpose is to determine Ap.x and the
corresponding q from the vector observations. This avoids solving the eigenvalue
problem explicitly. The main disadvantage of this method is that the measurements
are combined to provide an attitude estimate but the combination is not optimal in
any statistical sense.

The Singular Value Decomposition (SVD) method, which computes the attitude
matrix directly, is very simple and one of the most robust estimators minimizing
Wahba’s loss function, together with the g method. However, the g method is
faster then the SVD when three or more measurements are available [35]. The Fast
Optimal Attitude Matrix (FOAM), introduced by Markley [34], is a variation of the
g method which avoids the need to compute the eigenvectors and is faster than the
g method, though equally robust.

Shuster also derived a simple expression for the covariance matrix of the Three
Axis Attitude Determination (TRIAD) algorithm deduced by Lerner [28]. In the
latter, despite the simplicity of the attitude determination, the calculation of the
covariance matrix was rather complicated because of the need to compute numerous
partial derivatives as differences. Despite its popularity, the TRIAD algorithm* can

4TRIAD was implemented in many missions, for instance the Small Astronomy Satellite (SAS)
or the Atmospheric Explorer Missions (AEM).
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only be solved for two different attitude measurements. This represents an important
disadvantage when more measurements are available, since some accuracy is lost.
Actually, it is possible to combine the attitude solutions of the various observation
pairs. However, this solution tends to be too costly.

So, the point-to-point methods that use the vector measurements to obtain the
attitude at a given time point require at least two vectors (except the TRIAD) to
determine the attitude and they require weighting of the entire vector measurement.
All point-to-point methods fail when only one set of vector measurements is available
(e.g., magnetometer data only), which happens when a solar eclipse occurs. More-
over, they are single time point batch algorithm, where all measurements that are
taken at a previous time are ignored. Bar-Itzack [25] presented a recursive routine
derived from the QUEST which takes into account all the past measurements and
because of that even one measurement is enough to update the attitude. In order
to do so, the REQUEST algorithm uses the kinematic equation to propagate the
quaternion obtained from the past measurements until time ¢;, and uses it together
with the new measurements at time ¢;. In spite of this, REQUEST requires exact
knowledge of the angular velocity, relying on gyros measurements.

In general, all the point-to-point methods or deterministic methods compute
the attitude matrix efficiently and with much less computational load than the
EKF, because they do not use information from the dynamic and kinematic models,
avoiding the modeling errors that arise in EKF. Therefore, they are very attractive
to implement in small satellites with short computational resources. Nevertheless,
they all require two vector measurements in order to estimate the attitude. Some
researchers have used gyroscopes to obtain the angular velocity, but so far gyros
are seldom used in small satellites because they are usually expensive and are often
prone to failures, as referred before.

1.3 Goals and Contributions

The main goals and contributions of this work are:

e To analyse the several approaches to the problem of attitude estimation in
small satellites, especially recursive versus point-to-point methods.

e To determine the most suitable representation for satellite attitude, to be used
in the ADS and ACS.

e To implement an EKF and the SVD point-to-point method in the SimSat
simulator, coping with PoOSAT-1 characteristics.

e To introduce a method for the estimation of angular velocity when the SVD
algorithm is used.
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1.4 Thesis Outline

The present document is organized as follows:

Chapter 1, Introduction - an overview to the attitude determination of small
satellites is presented as well as the motivation to this work. Also a historical per-
spective about the two main methodologies used (KF and point-to-point methods),
considering the attitude parameterizations, is provided.

Chapter 2, Spacecraft Attitude Models - the Coordinate Systems relevant to
the estimation problem are described, as well as the several ways to represent the
attitude of a spacecraft, pointing out the most suitable to ADCS. A brief explanation
of the dynamic equations of a spinning rigid body is provided and subsequently
particularized to the small satellites external torques.

Chapter 3, Attitude Determination Methods - two methods representative
of the two main approaches to the estimation problem applied to small satellites
are explained. The algorithms used in this work are described, and the challenges
imposed by the state estimation of small satellites are also addressed.

Chapter 4, Simulation Setup - PoSAT-1, the main case study, is technically
described with attitude estimation in perspective. The attitude sensors availability
and efficiency, actuators restrictions and the control model used are also described.
The problems faced while implementing the EKF and SVD algorithms are described.

Chapter 5, Results - the results obtained from PoSAT-1 simulation with and
without a controller in the loop are presented. A statistical analysis of the several
tests performed to the simulation of PoSAT-1 and a comparison of performance
of the estimator algorithms, EKF and SVD is obtained. Based on magnetometers
and attitude estimate from a filter running on-board PoSAT-1 satellite, the EKF
presented in this work is applied and comments made concerning the problems
associated to the adjustments made to the initial KF formulation.

Chapter 6, Conclusions and Future Work - some conclusions are drawn, as
well as remarks for future work.



Chapter 2

Spacecraft Attitude Models

The orientation of a spacecraft must be known w.r.t. the Earth, the Sun or
the stars. Similarly, the sensor measurements, the local magnetic field, and the
local Sun model must have its orientation vector described w.r.t. a reference frame.
The Coordinate Systems relevant to this work as well as the parameterization of
its relations are defined in Section 2.1. The fundamental quantity that represents
the attitude of a spacecraft is the Direction Cosine Matrix (DCM), but there are
other parameterizations used in aerospace applications as well, described in Section
2.2. For all those cases, the parameters used are related to the elements of the
DCM. Each representation has its advantages/disadvantages. An analysis of those
advantages/disadvantages is performed in Section 2.3 and the most commonly used
parameterizations for the attitude determination problem is inferred.

Beginning with Newton’s second law, the dynamic equations of motion for a
spinning satellite w.r.t a fixed coordinate system is briefly obtained in Section 2.4,
followed by an introduction to the kinematic equations.

2.1 Coordinate Systems

Five reference coordinate systems (dextral orthonormal triad) are used through-
out this work. The most important ones are centered on the spacecraft and the others
express the satellite orientation w.r.t. the Earth. Two of those are considered to
be equal, control and body CS, since the only difference is in their axes of inertia,
which is not relevant for the purpose of this work.

Orbital Coordinate System (OCS) {i,, jo, k,}- its origin is placed in the mass
center of the spacecraft and it is attached to spacecraft orbit around the Earth. The
k, is pointing zenith, j, is tangent to the orbit opposite to the orbital velocity and
i, is orthogonal to the plane of orbit. L

Body Coordinate System (BCS) {iy, jy, ks }- its origin is placed in the center
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"~ Orbit

Earth

Figure 2.1: Orbital Cordinate System (OCS) and Body Coordinate System (BCS).

mass of the spacecraft and its axes are the principal axes of inertia. This referential
frame is attached to the body of the satellite, rotating around the axis with the
smallest moment of inertia, k;, i, and j, are aligned with the two remaining principal
moments of inertia of the satellite in order to form a right-handed triad. This is the
reference CS for attitude measurements and magnetorquers.

Control Coordinate System (CCS) {i., j., k. }- When the coordinate system
which origin is the satellite mass center does not include the principal axes of inertia,
an additional coordinate system must be considered which is usually denoted as the
control CS. For attitude estimation purposes this issue is not taken into account
since, for simplicity of the estimator algorithm, the approximation of considering
the principal axes of inertia along the body CS is made, in order to increase the
computational efficiency of the algorithm. So in this work, the CCS and the BCS
are considered to be the same. R

Inertial Coordinate System (ICS) {i;, j;, k;}- its origin is placed on the
Earth’s mass centre and it does not rotate with the Earth. The k; is along the
Earth spin vector and points from South to North. i; and j, Ji form a plane parallel to
the Earth’s equatorial plane, where i, i; is along the vernal equinox and j; complements
this right-handed triad. A

Earth-Centered Earth-Fixed (ECEF) Coordinate System {i;, j;, k;}- its
origin is placed on the Earth’s mass centre rotating with Earth, and it coincides with
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equinox

Figure 2.2: Inertial Coordinate System.

ICS on the vernal equinox. However, Earth’s spin axis is not inertial but it rotates
about the ecliptic pole, a movement known as the precession of the equinoxes, slow
enough to have negligible effects on small spacecraft’s.

2.2 Rotation Vector and Frame

There are several methods to represent the rotation between two coordinate
systems:

e Direction Cosine Matrix

Euler Angle/Axis

FEuler Angles: roll, pitch, yaw

Euler Symmetric Parameters or Quaternions

Glibbs Vector

The most general representation of a rotation between two triads is the DCM.
It is also used to map vectors from one CS to another. Since the DCM is difficult to
handle, different approaches to attitude vectors representation arise in spacecraft,
and are used to parameterize the DCM. This is discussed in section 2.3.

2.2.1 Direction Cosine Matrix

Let §; and S’b be two CS (dextra,l orthonormal triad) whose constltuent vectors
are respectively dl, d2, d3, and b1, b2, b3 The direction cosine between b; and b
is A;;, (see Fig 2.3).
The rotation between the two triads §, and §4 can be written in terms of the
cosine of the angle between each of the positive §, constituents and each of the
positive §4 constituents.

10
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. =cos(bi,dj)

Figure 2.3: Direction Cosines angle between triad §, and §g.

by = cos(by,d;)d; + cos(f) d )&2 + cos(by, d3)ds
by = cos(by, d;)d; + cos(bg, dg)d2 + cos(B ds)d;
bs = cos(bg, dy)d; + cos(bs, dy)d; + cos(bs, ds)ds

Q_.) Q_.) Q_.)

d
d

Since the nine cosines have different values let us express in terms of A;;.
l:)l = All(:il + A12(:12 + A13(:13
132 = A12E11 + A22(i12 + A23(213
by = Aj3d; + Aszady + Aszds

The a;; are the elements of the Direction Cosine Matriz (DCM) A:

All A12 A13
A= A12 A22 A23 (21)
A13 A32 A33

This rotation matrix describes the triad §, in terms of the triad §y4, completely
specifying the relative orientation between the two coordinate systems.

3 = A3 (2.2)

So, the orientation of a vector r, expressed in terms of the triad §4 , r = r1d1 +
T2d2 + r3d3, can be expressed in terms of triad §, through the Attitude matrix,

r’ = Abrd (2.3)

Direction Cosine Matrix Properties

Since the DCM represents the rotation between two orthonormal frames the
elements of the DCM must satisfy the following conditions:

(A5)" AL =T and (A%)" = (A5~ (2.4)

11
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Figure 2.4: The orientation of a vector r, expressed in terms of the triad §g.

Theses properties is very useful, especially to map a vector r, from a triad §; to a
triad §4

rd = (AZ)T r’ = Alr® (2.5)
Also verified is
det ((Ag)TAg) = det (A%)" det(Ab) = det?(Ab) = 1 (2.6)

hence, det(A%) = +1. To preserve the lenght of vectors and the angles between
them, the determinant must be 1.

det(A%) =1 (2.7)

The orthonormal group of matrices that satisfies the previous relations is an
special orthogonal Lie group of dimension n(n —1)/2, SO(n). The attitude matrix
A, belongs to the especial orthogonal group of dimension 3.

2.2.2 Euler Axis/Angle

One usual representation of rotations, due to its clear physical interpretation,
is the Euler axis/angle. Using Euler’s theorem - “The most general displacement of
a rigid body with one point firved is equivalent to a single rotation of an angle about
some axis through that point” - and considering the angle as ® and the unit vector
é = [ é & &3 ]T about the z axis of rotation (see Fig. 2.5), the DCM can be
obtained for this rotation, as

cos® sind 0
A (P)=| —sin® cos P 0 (2.8)
0 0 1

12
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Figure 2.5: Angle/axis rotation about z.

Similarly, the rotation matrices for rotations about the x and y axis are,

[ cos ® 0 —sin ® |
Ay(P) = 0 1 0 (2.9)
sin® 0 cos ®

[ 1 0 0
A(®)=|0 cos® sin® (2.10)
0 —sin® cos ® ]

where all matrices have their trace equal to,
trace(A,) = trace(A,) = trace(4,) =1+ 2cos ® (2.11)

For a general axis &, ¢ = (ey, e, e3)T ,the direction cosine matrix may be expressed
in terms of the Euler axis/angle by,

cos @ + e2(1— cos ) ere2(l—cos®) +e;sin®  ejez(l—cos P) — e, sin®
A(D,e) = ere2(1—cos®) —eysin®  cos ® + e2(1—cos @) eze3(1—cos®) + e, sin P (2.12)
erez(1—cos®) —e,sin®  eseg(l—cos®) —e;sin®  cos® + e2(1—cos @)

1353 cos B+ (1 — cos ) eeT — sin ® [&x] (2.13)

where [éx] is defined by (2.31).
If sin ® # 0, then the unit vector & will be given by the following expression,

__ Ap3—Aszs
€1 = QSinE
e, = Az1—A1z (2.14)
2 2 sin :
er = Az=An
3 2sin ®

Then, the Euler angle ® and the unit vector & can be obtained from the actual
attitude matrix, Eq. (2.11) and (2.14).

13
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2.2.3 Euler Angles roll(vy), pitch(6), yaw(¢p)

Another set of parameters by which the orientation of a rigid body can be
specified are the Euler Angles. Given two CS, a rotating zyz and a fixed XY Z
system, the Euler angles give the orientation of zyz system relative to the fixed
XY Z system. There are different sequences of FEuler angles rotation. Only the
sequence adopted in this dissertation is described here. The three rotations are
presented in Fig. 2.6.

Figure 2.6: The Euler angle 1 — 2 — 3 rotation or Roll - ¢, pitch - # and yaw - .

1. A positive rotation ¥ about the z axis, resulting in the z'y'z" coordinate
systems where 2’ = .

2. A positive rotation # angle about the y axis, resulting in the 2" y" 2" coordinate
systems where vy’ = v/

3. A positive rotation ¢ about the 2" axis, resulting in the final "'y 2" system

"

"
where z =z

This order of rotation is often referred as the roll (¢), pitch (), yaw (¢) sequence
and is related to the xyz rotation or 123 sequence.

Each rotation can be expressed in terms of the Euler Angle/Axis presented in
section 2.2.2. So the roll, pitch, yaw sequence is the product of the three matrices
from Egs.(2.8) - (2.10), A,(v) A,(0) A.(¢) where the ® angle is different for each
individual rotation. The final product matrix is,

[ cosfcoso cos ¢ sin @ sin Y + sin ¢ cos ¥ — cos ¢sinf cosy + sinpsiny |
Algg(w,e,d)):[—sinqﬁcos@ —sin¢sinfsiny + cosgcosy  sin@sinfcosp + cos psiny J (2.15)

sin 6 — cos@sinvy cos 6 cos

14
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Any sequence of rotations can be expressed by a single rotation about the vector
€ through an angle ®.

2.2.4 Gibbs Vector

Using the ¢ angle and the unit vector & defined for Euler’s Theorem in sec-
tion 2.2.2, another attitude vector representation frequently used in a spacecraft, is
defined by

g1 = e; tan %
g2 = ez tan 3 (2.16)

g3 = egtan %
The DCM is given in terms of the Gibbs vector by

1 1447 + 93 +)!J§ 2(9192 4. 93) | 2(9193*923
_— 2(g192 — 93 1-97+95—9g 2(9293 + 31 (2.17)
2 2 2 1 2 3
L+9i+9:+9; 2(g193 + 92) 2(g2g93 — 91) 1—g? — g2 +g2

Alg) =

The Gibbs’ vector or the Rodrigues’ parameters provide a computational advan-
tage compared to the other representations, since it is a minimal parameterization
not involving trigonometric functions as in the Euler angles representation.

2.2.5 Euler Symmetric Parameters - Quaternions

Quaternions were first introduced by Hamilton in 1843 and belong to the espe-
cial orthogonal Lie group SO(3), [43] which can be identified with rotations in space.
They are composed of a scalar part ¢4, and a vector part of three unit vectors, ¢,
¢» and gz € N3. In particular, the unit quaternions form a unit sphere in $*.

g1, 42, 43, 44 l'= 1
Properties
A quaternion is represented by a scalar part and a vector part,

q=qs +d = (G, Q) = Qs + Q12 + @27 + g3k (2.18)

The quaternions represent a sphere in #*, where the radius is the module of the
quaternion. In particular, the unit quaternions satisfy the following constraint,

G+Ha+a+q=1 (2.19)

15
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where q4, q1, g2, g3 € R, and i, 7, k satisfy the conditions

1] =—5==%F
ik —kj—i (2.20)
ki=—ik =7

Quaternions having zero scalar part are called pure quaternions:
u=0=q=0+q, =0+ @i+ qj+ gk

The conjugate of a quaternion g, denoted by ¢*, similarly to the inverse of the
complex numbers, is defined by negating its vector part,

*

¢ =qs—dv=qs— il — @] — gk (2.21)

The inverse of a quaternion g, denoted by g}, is also obtained similarly to
complex numbers,

—1 T qs qv
9 GHE+E+aE d+E+aE+a
Since ¢¢ + q5 + 5 + q3 = 1, from Eq. (2.19), then
qg'=q (2.23)

It is convenient to express quaternions in terms of a 4 x 1 vector, for matrix
algebra application, to simplify the manipulation of equations.

q1
q2 q
— — 2.24
1 as { 44 } ( )
q4

Quaternionic Multiplication

Multiplication and division are new operations defined for quaternions. The
product of two quaternions, p and g, is performed like polynomial multiplication
considering them as hypercomplex numbers,

Pq = (psa+pii+p2j+psk)(q+ ai+ @i+ ¢sk) = (2.25)
= (PsGs — Pv ® Qu, PsQy + ¢sPv + Pv X Q)

where () denotes inner product and (%) denotes cross product.

16
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Taking the above relations into account,

P —p3 P2 DL @ B —@ a
D3 P4 —P1 P2 —q3 Qg4 q Q2

= or = 2.26

Pq —Py D1 Ps  P3 9 Pq q2 —q1 q4 g3 b ( )
—P1 —P2 —P3 P4 —q1 —Qq2 —Qq3 Q4

pg = E(p)gor pg=Q(q)p (2.27)

where Z(p) is the right operator and Q(p) is the left operator.

It should be notice that quaternion composition, established by [15], is given
by A(q)A(p) = A(pq). For the sake of simpler notation, it is more convenient to
perform a direct multiplication A(q)A(p) = A(q®p). Hence,

q® p=pq (2.28)

So the nomenclature used in this work is,

q@ p=Qqp=ZE(p)q (2.29)

For simplicity reasons the {2(p) and Z(p) matrices can be redefined as,

() = | Wloe Ll

—-q g4
(2.30)
E(p) — [ p413><3 + [pX] P ]
—PT y2
where,
0 —b. b,
bx]=| b 0 =b, (2.31)
~b, b, O

is a skew-symmetric matrix representing the cross product of two vectors, (see Fig.
2.7), ¢ =[x ¢, ¢;]" and b = [b, b, b.]",

cyb, — c.by

cxb = | ¢b,—cb, | =[cx]b (2.32)
czby — cyby

[cx]b = —[bx]c (2.33)

17
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cXb

Figure 2.7: Cross product of two vectors.

Attitude Matrix - A(q)

Respecting the constraint defined by Eq.(2.19), the quaternions can be defined
in terms of the Euler axis/angle by,

— )
g1 = 6182712

G = egsz’n%
(2.34)
3 = egsm%

— o
s = COS5

Substituting into Eq.(2.12), the DCM is expressed in terms of the quaternions,
denoted as Attitude Matrix, by

GGG+ 2(aetesq)  2(@g—q,q4)
Alg = | 2((e—0n) —d+G—G+aE 2(Res+a0) (2.35)
2(1q3+92q1)  2(@B—01q) —C—GE+E+E

= (gi— na1®) 1ss + 299" — 2q4 [gx]

where [qx] is the skew-symmetric matrix defined by Eq.(2.31).
However, there is a less cumbersome way to represent the rotation matrix. In
fact, the quaternion multiplication can be used to represent attitude in a given CS.
Given two successive rotations represented by quaternions, the total rotation
may be obtained through quaternionic multiplication. Let us consider two successive
rotations represented by the attitude matrix A(q) and A(q'). The total rotation is
given as follows:

A(q)A(g ) = Alq,) (2.36)

18
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This is equivalent to performing a direct quaternion multiplication,

’ 1"

A(q)A(d)=Alg®q) (2.37)
Therefore,
G=q®q (2.38)
and from Eq.(2.29),

AR

—43 Q4 4 92 /! 2.39
QQ/ —q1 CI;, 1 ( )
@1 92 —q3 4

_ Q(q )q”

This transformation matrix is easier to compute than the DCM since it only
requires four parameters g’, against the nine parameters A;;, of the DCM, and does
not involve trigonometric functions as in the DCM definition, Eq.(2.1).

So the quaternion multiplication provides a simple method to compute the total
transformation from body to orbit to inertial CS given the quaternion representing

the respective rotation,

¢ =

¢ =

= Q

R

®q (2.40)
(d)a (2.41)
(@) d, (2.42)

Recalling the DCM definition in Section 2.2.1 and the CS of interest defined in
Section 2.1, the rotation matrix that describes the orbit CS in terms of the body
CS is given as

[1]

Ald) =T 3 & ] (2.43)
where T’;, jijb,, Eg, are the constituent vectors of the z, y and z-axes of the orbit CS,

projected along the body CS. These unit vectors i qu, Eg, may be parameterized

by the quaternions,

07

. T

L= ¢33+ 2(na—asq) 2(q@as+02a1) | .

b= 2(00+e0) —d+E-d+a 2(@e—aw) ] . (2.44)
Ko = [ 2(q@gs—qoq1) 2(Qas+0:101) —i—a3+a3+4] |
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2.3. ATTITUDE PARAMETERIZATION ANALYSIS

2.3 Attitude Parameterization Analysis

Several ways to parameterize the attitude of a spacecraft were presented in
the previous section. A more complete survey of attitude representations can be
found in [41] or [55]. The most general representation of the orientation of a rigid
body is given by the DCM, (2.1). As referred before, this representation is not very
used since the orthogonality is difficult to maintain and the methods that provide
optimal orthogonalization require computationally expensive matrices. Also, the
redundancy of its nine parameters a;;, turn it into an unfriendly representation. So,
other ways to represent rotations arised, such as the Euler Azis/Angle, the roll pitch
and yaw Fuler angles, the Gibbs vector and quaternions. Among them, the quater-
nions are widely applied in attitude parameterization. This representation offers
several advantages when compared to the others: it is not singular for any angle, as
opposed to the Euler axis/angle, Gibbs vector or roll, pitch and yaw Euler angle rep-
resentations. Another reason is the fact that the kinematic equations are linear and
the computation of the associated matrix involves only algebra expressions, while
the Euler angles representation involves nonlinear computations, due to the use of
trigonometric functions, leading to additional computational burden. Moreover, the
attitude matrix expressed in terms of quaternions can be easily computed by (2.35),
while the Euler angles or Axis/Angle again involve trigonometric functions ((2.15)
or (2.12)), and also the product of rotations is relatively simple since it is expressed
in terms of quaternion multiplication.

However, the quaternions representation has the problem of not being a minimal
representation (i.e, with 3 parameters only), which is a drawback in quaternions,
leading to difficulties in maintaining the rotation matrix orthogonality. This issue
has to be addressed for filtering algorithms, increasing the associated computational
load. Also it has no clear physical interpretation, in opposition to the Euler angle
representation. So, usually the quaternions are used in the ADS and then trans-
formed into Fuler angle for results analysis as well as in this dissertation. In this
work, whenever the attitude matrix is referred, it means the DCM parameterized
by the quaternions.

2.4 Spacecraft Equations of Motion

Mechanics has two main points of view: Lagrangian and Hamilton. The La-
grangian approach is based on variational principles and it is what generalizes most
directly to the relativist content. The Hamilton mechanics is based directly on the
energy concept and is more closely tied to quantum mechanics.

A short overview of the dynamics of a spinning spacecraft, w.r.t. a fix CS, is
presented in the next section, based on the Lagragian approach.
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2.4. SPACECRAFT EQUATIONS OF MOTION

2.4.1 Dynamic Equations

Dynamics is the study of the motions of a particle or a system of particles due
to external forces acting in these systems. A spacecraft, and in this particular case
a satellite, is a moving body in space. Therefore, it is a body animated with a
certain velocity, ruled by the laws of Dynamics. The satellite is considered a rigid
body since it is assumed that the distance between any two of its elements of mass
remains fixed, not deformable or flexible among them but rigidly connected.

Newton’s second law for the translational motion ) | F = ma states that the sum
of the external forces > F acting on a system is equal to the total mass m of the
system times the absolute acceleration a of its center of mass.

CM/ 2=
o
/av

Figure 2.8: A rigid body with mass m has an acceleration a due to external force
F.

dv

& Newton second

Replacing the aceleration a by the derivative of the velocity,
law becomes

Y F= Y (2.45)

or

> F=—(mv) (2.46)
The vector mv is called the linear impulse or momentum L

247

Differentiating the linear impulse w.r.t. time ¢, and using the result in (2.45),
Newton’s second law becomes,

Y F=L (2.48)

If there are no external forces, then the total momentum applied to the system
of particles is constant,

Principle of conservation of linear momentum,

> F =0 = L =constant, (2.49)
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2.4. SPACECRAFT EQUATIONS OF MOTION

Figure 2.9: Angular momentum.

Considering a particle of mass m moving in a plane under the action of an
external force F (see Fig. 2.9), the external product between the position vector of
a particle with mass m and the linear momentum w.r.t. a fixed reference point {o},
is called the moment of the linear momentum or angular momentum H,

H = rxmv (2.50)
= rXxmr (2.51)

Differentiating the angular momentum w.r t. time, the angular momentum be-
comes,

H =r x mi + & X mi = r x mf (2.52)

Since S F = m#, H = r x Y. F. As the moment M of the force F about the
fixed point {o} is the result of the vector cross product between that force and the
position vector r where the force is applied, the equivalent law for rotational motion
is obtained,

> M=H (2.53)

and it states that the total moment » M of the external forces acting on the system
is equal to the time rate of change of the angular momentum H.

If the total of the external forces are parallel to the position vector r then the
angular momentum applied to the system of particles is constant,

Principle of conservation of angular momentum,

> "M = 0 = H =constant (2:54)

For a body in a tridimensional plane rotating around a fixed axis AA’, the
velocity is the cross product between the angular velocity w and the position of the
body w.r.t. the frame, v =% = w x r (see Fig. 2.10).
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2.4. SPACECRAFT EQUATIONS OF MOTION

Figure 2.10: Rate of change of a rotating vector.

The angular velocity of the body is a vector parallel to the axis of rotation of
the body, w = flj—fk. The angular momentum becomes,

H°=r x m(w X 1) (2.55)

Since in (2.55) H° is a vector with the same direction of w with the module
equal to Y mr? and recalling that the moment of inertia I = > mr?, the angular
momentum becomes,

H° = Jw (2.56)
Using this result and Eq.(2.53), Newton’s law for rotational motion becomes,
> M =H = I (2.57)

Consider now that there is a referential frame {o,,.} rotating with the body,
both the X'Y'Z and XY Z CS in Fig. 2.11 are inertial and the origins of X'Y'Z
and xyz are coincident. w is the angular velocity of the rigid body w.r.t. the frame
zyz. Then the absolute rate of change of the angular moment H w.r.t. the frame
X'Y'Z is,

Ol oyl o1

H™ =H" +QxH° (2.58)

and € is the absolute angular velocity of the rotating frame {o,,.} as viewed from
the frame {G}. Since the frame
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Figure 2.11: Rate of change of the angular momentum of a rotating rigid body.

0zy- } Totates with the rigid body then
y
Q=w (2.59)

Using (2.57) and the CS defined in the previous section the dynamic rotational
equation of motion for an orbiting satellite is given by

> M = H+Q x HE (2.60)

Expressed in the coordinate axes zyz, defined before as the principal axes at the
center of mass of the rigid body, the products of inertia are all zero, I, = I, =
I, =1, =1, =1,=0 and the angular momentum H is parallel to the angular
velocity w. Using (2.56), (2.60) reduces to

Z Mx = Ippw, + (Izz - Iyy) Wyl
Z My = yywy + (Ixm - Izz) WoWy (261)
YoM, = Lw, + (Lyy — L) wawy

known as the Fuler’s equations of motion.
Solving these equations in order to the rate of change of the angular velocity, the
dynamic equation of motion becomes,

[y_y1 (Z My - ([CE zz) wzwx) (262>

we =IO M, — (1, — L)) wyw,)
: L
Wy = I (30 M. — (Iyy — Luw) wowy)

Considering the CS defined for this work in Section 2.1, i.e., the angular velocity
of body CS w.r.t. the inertial CS expressed in body CS, is expressed as w?,.
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2.4.2 Kinematic Equations

Kinematics studies the motions of a particle or a system of particles, relating
position, velocity, aceleration and time, disregarding the external forces that origins
the motion.

So, given the angular velocity expressed as a function of the external moments,
which are given by the dynamic equations, there is the need to relate the angular
velocity with the derivative of the rotation vector. Since the attitude is parame-
terized by quaternions, presented in Section 2.3, the kinematic equation gives the
mathematical relation between quaternions and angular velocity, [55],

£d(t) = 392w, ) (2.63)
with,
[ 0 wg,bo _wg,bo wg,bo
Q(wb ) = 1 _wg,bo 0 wx,bo w%,bo (2 64)
el 2 w;bo _wfc,bo 0 Wz bo ’
L _wg,bo _wg,bo _wl;,bo 0

where the angular rates components used are body CS w.r.t. orbit CS w? , because
the kinematic equations describe the rotation between the orbital axes and the
satellite axes. As such, one must relate the orbital and the inertial references,

wh = wh 4wl (2.65)
Wh, = Wi — W (2.66)
The vector w? = [wy 0 0 ]7 is the angular velocity of the orbit CS w.r.t.

inertial CS (see Fig 2.1) written in orbit CS. Hence, the unknown w?; can be written
in body CS through the transformation matrix A%(q), (2.43),

wh, = Ab(Qwl, = woll (2.67)

Hence, the angular velocity used in the kinematic equations is computed accord-
ing to,

wh, = wh — wol, (2.68)

Note that representing the angular velocity in terms of a quaternion, w =
[we wy w. O }T, the matrix Q(w ¢ ) from (2.64) is coincident with the left op-
erator €2(q) of a quaternionic multiplication defined in (2.30). Thus the kinematic
equation (2.63) can be written as follows,

Z4(t) = 1w g (2.69)
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2.4.3 Small Satellite External Torques

There are several external moments, » M, applied to the satellite body that
will influence its dynamic movement (see Eq.(2.62)). The external torques acting
on the spacecraft are: > M = Ny + Ny; + Neyi + Nopeer-

Gravity Gradient Torque, N,

For satellites at low orbit the main contribution to the external torques is the
gravity gradient torque, [55]

N, = 31% (kb x Ikb> (2.70)
where p is the Earth’s gravitational constant; R, is the position vector of the satellite
mass center w.r.t. to the Earth center; I = [ I, I, 1. ]T are the principal
moments of inertia. Since the elliptic orbit of the satellite is simplified to circular
for eccentricities close to zero, the Ry becomes the mean distance of the satellite to
Earth center Ry ~ Rcy. The =5£— element can be written as the square of the orbit

Ry
angular rate,
1
Since the DCM can be defined in terms of the unit vectors, /i\ob, ./j\ob, Eob, (2.44) of the

Ty, yp and 2, axes, and A° = [/17; B’) E’; ] , then the gravity gradient becomes,

(L — 1) A23(q) Ass(q)
Ngg = 3w} | (I — I.)Ass(@) Ar3(q) (2.72)

(I, — 1) A13(q) A2s(q)

Disturbance Torque, N

The Ny torque is the disturbance moment written in control CS due to aero-
dynamic drag and solar pressure, eccentricity of the orbit and other effects. The
aerodynamic torque is very important for spacecraft orbiting below 400 km [55].
Recent studies were carried out [1] analysing the importance of these several types
of contributions in the disturbance moment compared with the gravity gradient
moment.

Control Torque, N,
Another torque that must be considered is the control moment,
thrl = m(t) X € bmeas (273)

This torque is expressed in the CCS and is generated by the cross coupling between
the magnetic moment m(t) and the Earth’s magnetic field b,,.qs, measured by on-
board instruments.
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Momentum Wheel Torque, N e

Additionally, some satellites, like SUNSAT or China Tsinghua-1 microsatellite,
have included a wheel or disk in order to change the attitude of the satellite. These
can be included as an additional term in the dynamic equation of motion.

The wheel has an angular momentum, Liypee; = [Wiypneer- From (2.57), the dy-
namic rotational equations, of the rigid body is,

Z M? = IWpody + TWyheer = H+h’ (2.74)

Consider now two coordinate systems, one rotating with the rigid body and the
other fixed, as seen in dynamics subsection. The term due to the wheel has to be
taken into account in the dynamic equation (2.60), which results in

> MY =H+Q x Hg + h° + Q x h¢ (2.75)

Since hy is the spacecraft torque acting in the wheel, it is usually represented as
Nuneer and the Eq.(2.75) is rewritten as

> M = H%+Q x (H® + h%) + Nupea (2.76)
Using Eq. (2.59), recalling that the products of inertia are zero (see Section

2.4.1), and solving w.r.t. the derivative of the angular velocity w, the Euler equations
of motion become,

"bll;z = [_1 (Ngg + thrl + th - Nwheel - wgl X (Iwgl + Iwwheel)) (277)

where Npeer 1S the momentum wheel.
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Chapter 3

Attitude Determination Methods

A reliable, robust algorithm capable to estimate the satellite’s state is essen-
tial in autonomous spacecrafts such as small satellites. A control algorithm that
efficiently manoeuvres the satellite’s attitude requires the knowledge of the angular
velocity and quaternion estimates. The starting point for any attitude determination
method is to analyse the attitude sensors on-board small satellites: magnetometers,
Sun sensors, Earth sensors, horizon sensors, star sensors and Global Position System
(GPS). Gyros are also used to measure the angular velocity directly, however they
often fail to work, thus jeopardizing the ADS and the mission. Because of this,
gyros are often not even included in small satellites such as PoSAT-1, Orsted, Freja
or SUNSAT.

At least one attitude sensor must be permanently available along the whole orbit
for the estimator algorithm to work properly. One such sensor is the magnetometer.
This made magnetometers the most used sensors for attitude determination. To
avoid local measurability problems, the data from the magnetometers must be com-
bined with other attitude sensors data or with information from the satellite model.
This leads to two main methodologies to tackle the spacecraft attitude determination
problem:

e point-to-point or deterministic methods - estimate only the attitude, based on
vector observations from at least two attitude sensors, disregarding all the
information from the past measurements and/or from the satellite’s equations
of motion.

e recursive estimation methods - estimate the elements of the state vector from
magnetometers, taking advantage of the dynamic and kinematic models to
propagate the estimated state vector between measurements.

An optimal state recursive estimator, in the sense that it minimizes the mean
square estimation error when applied to linear dynamic systems is the Kalman filter.
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3.1. RECURSIVE ESTIMATION METHODS

However, as shown in Chapter 2, small satellite’s equations of motion are non-linear
and, in order to use a Kalman filter, its linearization must be made. Due to this,
the Kalman filter optimality and stability properties are not guaranteed. So, there
are other recursive non-linear estimators, like higher order filters, that try to handle
inaccuracies or simplification errors resulting from the linearizations or to model
the process and observation with non-Gaussian distributions (see Section 1.2). The
recursive methodology used in this dissertation is the EKF which application to the
small satellites is explained in next section.

The point-to-point methods are attractive for attitude estimation algorithms
since these problems are avoided and also there is no need to initialize the filter or
to guarantee symmetry and positive-definite state error covariance matrix. Since the
point-to-point methods are exclusively based on a set of noisy vector measurements
to determine the attitude matrix, there must be two sets of measurements from
different attitude sensors. As stressed before, magnetometers are always available
and Sun sensors which are less susceptible to errors than the Earth sensors, are the
most common sensors used on-board LEO small satellites.

Among point-to-point solutions to Wahba’s problem, (e.g. Quest, Davenport’s
g, ESOQ or FOAM), the Singular Value Decomposition (SVD) was chosen for this
work due to its robustness and low computational requirements when considering
two attitude sensors. However, problems arise when just one sensor is available, e.g.,
when the Sun is out of range of the Sun sensor or when the satellite is in the dark
side of Earth, that must be handled when SVD is used. This is described in more
detail in Section 3.2.

3.1 Recursive Estimation Methods

Recursive methods are suitable for nonlinear systems, especially for the small
satellites’ ADS in closed loop algorithms where the linearization is performed about
the filter’s estimates trajectory, that depends on the measurements data. Since
the trajectory is continuously updated, the algorithm parameters can not be pre-
computed once for the entire set of data as for the batch-algorithms. Also, the
Kalman filter is well suited to real-time problems because it directly estimates the
state vector at a single time, based on the measurements at that time and all mea-
surements up to that time with a fading memory. However, the Kalman filter just
guarantees optimal state estimate when applied to linear systems!. The state space
formulation for small satellites is non-linear both regarding the system and the obser-
vation models. Still, the Kalman filter can be used by linearization of the equations
that describe the system, addressed in the next section.

1See Appendix A for details.
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The EKF presented is based in the work of Psiaki et. al. [38], using Steyn
modifications [45], so that it can be used for spinning satellites and with Sun sensor
measurements.

3.1.1 Kalman Filter Applied to Small Satellites
State Vector

In this work the state vector includes all the state variables required to ensure
accurate spacecraft attitude determination. These variables are the angular velocity,
w, and the quaternions, q:

x(t)=[ w(t) qt)]" (3.1)

These state variables were chosen because: the quaternion, g, directly represents
the satellite’s attitude; the angular velocity, w, significantly affects the equations
of motion of the satellite and represents an important physical quantity. Other
variables might be included, e.g. sensor misalignments, disturbance torque (see
Section 2.4.3), noise, parameters that influence the sensor measurements or other
orbital parameters besides attitude. However there are guidelines, [55] to restrict
the choice of the state variables: these must be modelled for propagation which may
be impossible to achieve or too complex to perform; non-observable state variables
should not be considered or appropriate measurements should be added to make
the system completely observable; some may be highly correlated and therefore
redundant; whenever each parameter is added, the matrices rank increases thus
requiring more computer memory, reducing the efficiency of the estimator algorithm.
The criterion to choose the state vector depends on the attitude accuracy required
to accomplish the satellite mission. For instance, for PoSAT-1, which is on an
experimental mission, the minimum number of state parameters needed for the
control algorithm, coping with one sensor permanently available on-board, are the
quaternions and angular velocity.

System Model

The satellite is described by a continuous time non-linear model, defined as:

x(t) = f(x(t),u(t),t) + w(t) (3.2)

where w(t) is assumed to be zero mean Gaussian process noise with known covari-
ance,

w(t) ~ N{0,Q()}
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3.1. RECURSIVE ESTIMATION METHODS

u(t) is a deterministic control input vector and, f(x(t),u(t),t) is a non-linear con-
tinuous function which describes the time changes of the satellite state, given by the
dynamic and kinematic equations (2.62) and (2.63)

[ W, | [ ];;acl (Z M, — (I.. — [yy) wb,biwg,bi) ]
Wy IJyl (Z My — (Iz — I.) wz,biwg,bi)
W, I} (Z M, — (Iyy — Lpz) wl;:,bz‘wgb/,bi)
Gq | = 0 wg,bo _wz,bo wla)c,bo a1 (3.3)
QQ 1 _wg,co 0 wgc,bo wz,bo qz
Q3 2 wg,co _wg,bo 0 wg,bo qs
L q4 | B _wgr,co _wg,bo _wg,bo 0 44 J

Since the state differential equations as well as those relating the state and the
measurements, (described ahead) the Kalman filter is not applicable unless this
non-linear system is linearized about the current filter’s estimates, resulting in the
Extended Kalman Filter (EKF).

The linearization, by definition, is a small perturbation about an operational
point, which is the estimated state. The actual state x(t) can be defined as the sum
between the estimated state X(t) and a perturbation of the state 6x(t). Hence, the
state variable is defined as,

x(t) = x(t) + 6x(t) (3.4)
The non-linear model, Eq.(3.2), becomes,
R(t) + 6%(t) = f(X(t) + 6x,u(t), t) + w(t) (3.5)

Assuming that 6x(t) is small and approximating the first term on the right by a
Taylor’s series expansions,

fx(t) + 6x(t),u(t),t) = f(x(t),u(t),t) + % B ox(t) + h.o.t (3.6)
and retaining only the first-order terms,
f((t) +6%(t) = f(x(t),u(t),t) + % B ox(t) +wi(t) (3.7)

Since the X(t) satisfies the deterministic differential equation

R(t) = f(X(t), u(t),t) (3.8)

equation (3.7) becomes
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3.1. RECURSIVE ESTIMATION METHODS

_of

8x X=X

5% (t) 5x(t) + wi(t) (3.9)

Defining F(x(t),u(t),t) = % _zand replacing into Eq.(3.8) leads to the lin-

earized model to be used by the EKF:
ox(t) = F(x(t),u(t),t) + w(t) (3.10)

Linearization of State Vector

According to Eq.(3.4) the state vector can be defined as:

{w(t) ] _ {cb(t) +dw(t) } (3.11)

q(t) 4 +déq(t)

However some special care must be taken: the quaternion represents a rotation,
so the sum of two quaternions is no longer a quaternion. Since the small perturbation
is also a quaternion, the quaternion rules for multiplication (see Section 2.2.5), must
be respected. Defining the quaternion as a function of the quaternion perturbation
and the estimated quaternion, follows that:

g=909q®4q (3.12)

and the linearized state vector becomes,

2)- (5

q 0q® 4

Although (3.13) is the only representation with a physical meaning, since a
quaternion represents a rotation, (3.11) is also mathematically correct and works
in practice with good results. Furthermore, it is more robust to large perturbations
in the state vector, not causing the estimator filter to diverge. Divergence happens
when (3.13) is used, as shown by Steyn [45].

The linearized state vector, from Eq.(3.13), has dimension seven. However, the
unit constraint on the quaternion, Eq.(2.19), leads the state error covariance to be
singular, as addressed by Lefferts et.al. [27] and demonstrated by Bak [1],

wa O3><4
P = | . lpqq 0} (3.14)
% 0 0

The singularity is necessary because it preserves the quaternion constraint (2.19)
explicitly. However it is difficult to maintain due to the accumulation of round-off
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3.1. RECURSIVE ESTIMATION METHODS

errors. The best way to maintain the singularity is to represent the P matrix by a
smaller dimension matrix [27],

wa O3><3 ] (315)

P[6m6] - |: O3><3 qu

as well as the Kalman gain, Kg,¢), and the matrices involved in the EKF algorithm:
(see Section 3.1.1) Hisz),Q6z6) and Pieze)-

So, the state update, (A.7) X = %X, + Kjey, of the EKF must be computed
carefully. Instead of the seven elements, the perturbation state vector has been
reduced to six elements,

(5X:[5wx dwy Odw, 6qi 6o 6Q3]T (3.16)

and 0x will be updated according éx =Kjey.
Still, the perturbation of the scalar part of the quaternion must be computed.
From the quaternion constraint (2.19),

bqs = /1— 1 éq (3.17)

as suggested by Psiaki et. al. [38], Bak [1], and Steyn [45].
The state update of the quaternion is rebuilt according to,

i1 = 604, (3.18)
= [da dau] @y,
= [6q \/1—||5q||]T®Q,;+1
and using (2.29),

§in =G5 [ 6a vI=idan ] (3.19)

The state update of the angular velocity is computed as

Qi = @pyqtbw (3.20)

= [ @0 Dppnr @i | [ 6we bwy bw.]T (3.21)

Linearization of Dynamic Equations

The dynamic equations (2.62) must have the external moments explicit defined
in order to be linearized. Since the small satellite studied in this work is the PoOSAT-1
(see Section 4.2.2), the relevant external moments influence the dynamics as follows:
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W=1I"1 N+ Ny —w x [w), (3.22)

where w is the angular velocity of the body CS w.r.t. inertial CS expressed in body
CS, w?,, but here and henceforth denoted simply as w, for notation convenience,
unless referred otherwise.

The linearization of (3.22) leads to

bw = I1 (6N + 0Ny + (Hwx] — [wx]I) éw) (3.23)
where
0 (I, — L)w, (I,—1,)w,
[Twx] —[wx]|I = | (I, — I,)®. 0 (I, — I)w, (3.24)
(I, — I))w, (I — 1))@, 0

Linearization of Gravity Gradient Torque, 6N,, Recalling the gravity gra-
dient equation (2.70)

Ngg = 30}3 <Rb X Il;b>

the unit vector along the body, ky, can be written as k, = Ab( q)Ro according to
(2.3). The gravity moment (2.70) becomes,

N,y = 3w (A(q)fco X IA(q)RO> (3.25)

According to the definition of quaternion from Eq.(3.12) and based on (2.37),
the attitude matrix as function of the quaternion perturbation is

Alg) = A(6g® q) (3.26)
= A(%q)A(q)

Then, the gravity gradient can be written as follows
Ny = 33 (A6 A )k, x TA(BQ)A(G )k, ) (3.27)
which can be written,

N, = w2 (A(&,)R,, X 1A(5q>1‘<,,) (3.28)

34



3.1. RECURSIVE ESTIMATION METHODS

According to the definition of the quaternion in terms of the FEuler axis/angle
and since 6q is a small perturbation of the attitude quaternion

e1 sin Z% oq
| esin | | 6g2 | | 0q
oq= essin®® | 7| bgs | l 1 ] (3.29)
coS %‘I’ 1

Note that the DCM can be expressed in terms of a quaternion (see Eq.(2.35)),
A(Q) = (@G—nqi®)1 + 29q” — 2q4[qx] and from (3.29), neglecting second and
higher order terms, the DCM reduces to

A(bq) =1 —2[6gx] (3.30)

Replacing into (3.28), it follows

N, = 3w? [(1 —205qx]) ky x I (1 — 2[8gx)) ﬁb] (3.31)

and leaving out all the second and higher order terms, the linearized gravity gradient
torque obtained is

6N,y = 6w (—f{b x I [6qx]ky, — [6qx]k, x ]f(b) (3.32)
and using (2.33), leads to,
5N, = 6w? ([ﬁbx] I [be} 5q — [Ifq,x] [be} 5q> (3.33)
or,
§N,, = 6w ([be] I [be} - [If{bx] [ﬁbx]) 5a (3.34)
Hence, the linearized gravity gradient torque is

(A§3_A§3>([y_lz) —A13As(1,—1.) Ai3Ass(1,~1.)
0Ngy = 6wy |  Apdos(l—I,) (AL—A%L) (I —I,) —AwxAs(l.—1,) |dq
—Ay3A33(1,—1,) AgzAss(1,—1,) (Af?)—Ag?))(]x_]y)
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3.1. RECURSIVE ESTIMATION METHODS

Linearization of Control Moment 6N, The control moment from (2.73) is,
Ny = m(t) X bieqs (3.36)

The bneqs can be expressed as a function of the quaternion, by,..s = A%(g)b°.
Hence, the control moment equation becomes,

N = m(t) x A%(g)b°

The magnetic moment, which depends on the control law applied to the satel-
lite, is also expressed in terms of the quaternion and of angular velocity, must also
be partially differentiated w.r.t. the state. This means that each time there is a
magnetic moment actuating in the satellite the EKF must have access to the control
gains, which is inconvenient. For example, the Predictive stabilisation applied to
PoSAT-1 satellite in the SimSat simulator is based in one of the available magnetic
moments that minimize a cost function [47]. So there is no expression for the mag-
netic moment function. Besides, it is difficult to determine the control gain values
from the satellite’s real data, as happened with the real data used in this work from
the PoSAT-1 satellite.

To handle this problem, one may either neglect the linearization of the con-
trol moment, assuming that the process noise covariance matrix, ), will take it
into account or use an accurate control moment model in order to fully linearize
the magnetic moment. In this work, the linearization of the control moment was
neglected.

Replacing the results from the linearization obtained before into (3.23), the lin-
earized dynamic equations,

bw =I""[ [Twx] — [wx]I 6wiFy, | { ‘(55‘; ] (3.37)

Linearization of Kinematic Equation

From Equation (3.13), the quaternion is given as a function of the quaternion
error and of the estimated quaternion by the following expression:

q=0q®§ =>08qg=q®q " (3.38)
Representing the angular velocity in terms of a quaternion w = [ Wy wy w; 0 ]T
and from the definition of the quaternion product (2.29) used in this work, the kine-
matics equation (2.63) becomes:

) 1 1_
g = §Q(w)q: 5:(q)w (3.39)
1
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From the application of the chain rule to (3.38) follows,

) d ) . .
¢ == (bg®d)=06¢ ®4 +6q®§ (3.41)

Using the previous expression in the kinematic equations,
A L1
0qg ®q —|—6q®q:§'w®q (3.42)
Right multiplying (3.42) by § ~!, it follows immediately

.1 . N A
6q :§'w®q®q ' 6qe 4o q (3.43)

From the Kinematics,

. 1
q = §1b® q (3.44)
~ 1
qgoq ' = i (3.45)
and using (3.38), from expression (3.43) follows that,
.1 1 .
oq :§w®5q—§6q®'w (3.46)

Recalling that the angular velocity can be expressed in terms of a perturbation
w = @ + dw, follows that,

1 1 1
oq :§1E®6q+ §5w®6q—§6q®u”) (3.47)

Representing the quaternion multiplication with the help of the left and right
operators defined in Section 2.2.5,

20q = Qw)og+ Qoéw)dq— =(w)dgq (3.48)
| —fex] @ —[b@x] b wx] @
- l —&T at | oT 0 9| or o | %
—2[@x] — [6w>< oD
l 5o ] oq (3.49)

—2[@x] — [d@x])oq+ow
—6&7T8q
ond order terms (— [6&x]8q) and (—6@76q), follows

From (3.49) and (3.29), 6¢ = [ ( ] and neglecting sec-
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3.1. RECURSIVE ESTIMATION METHODS

1
64 = — [@x] b + 560, with 64, =0 (3.50)

The angular velocity, used in the kinematics (see Section 2.4.2), is defined as in
body CS w.r.t orbit coordinates expressed in terms of body CS,

1
64 = — [@},x] bq + 50@},, with 8ds =0 (3.51)

However, the angular velocity must refer to body w.r.t inertial CS. So replacing
(2.66) into the previous expression,

. R . 1. 1.
0q = — [wgix} oq + [wﬁix] oq + 55“‘321' — 55@3 (3.52)

From (2.67) @y, = Ab(q)@y,, resulting 6@); = Ab(8q)A%(Qwy; = Ab(8q)dg;

Using (3.30), the linearized angular velocity is 6&°, = (1 — 2[6qx]) &% = 1&°, +
2[@b. x]6q. Thus, (3.52) will become

64 = — [@h;x] 6q+ [@5;x] 6q + %m; — [@bx] 6q — 12, (3.53)

Since &, is constant for a circular orbit, then the it is considered to be included in

the noise, w(t) from (3.10). Hence (3.53) simplified, leads to
1
bé = Say; — [@hx] oa (3.54)

The linearization of the dynamic equations, (3.37), and kinematic equations
(3.54) are used in (3.10), leading to the following matrix,

I! ([[&"bzx] — [L:)biX] [) [_IGWOFgg

b

F(x(t),t) = %13X3 — @b x]

(3.55)

EKF Propagation

To propagate the state vector and the state error covariance matrix between
measurements, from one time step, t; to the next, t;.1, the transition matrix, ®y,
must be used (see Appendix A),

Koo = OpXyf (3.56)
P, = OP O+ Qs (3.57)
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3.1. RECURSIVE ESTIMATION METHODS

The transition matrix is obtained from the linearized dynamic and kinematic
equations (3.55),

(F(X(t),)AT)"
2!

Thus, a better way to propagate the state vector is to integrate numerically the
nonlinear dynamics (3.23), and to use a closed-form of the kinematic equations with
constant body rates, g1 = exp [$Q,AT] g;.

The most common one-step integration method used for spacecraft is the 4-stage
Runge-Kutta method, according to Wertz [55],

Q) ~ 1+ F(x(t),t)AT + (3.58)

h
Ry =R+ ¢ (ki + 2ka + 2ks + k) (3.59)
with,

kl = f(ili_7k)
h h

ky = f(f(;—f+§k1,/€+§)
h h
ks = f(x5+ §k2, k+ 5)

ks = f(X{+hks,k+h)

where f(X;,t) = f(®),t) is given by the dynamic equations of motion
D1 = [T (N + Nyg — w x Tw) dt + &} . Hence,

F@F8) =T (Nyy + Nygg — w x [w) (3.60)

is used for discrete propagation of the angular velocity. The propagation of the
quaternion, assuming that the angular velocity is constant over the sampling interval,
is made according to the closed form solution [55],

1
Qet1 = €xp {EQkAT] @ (3.61)
= [cos (kaT) 1+_i sin (kaT) Qk} ax (3.62)
2 Wi 2

where Wy, = /w2 + w2 + w2
Observation Model

The discrete nonlinear observation model has the form

Vi = hk(X(tk), tk) + v, with k=1, 2, ... (363)
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3.1. RECURSIVE ESTIMATION METHODS

where the measurement noise covariance matrix , is given by

R, ,i=j
E[Vkvﬂz{ Ok ,275; (3.64)

where ¢ is the row index and j is the column index.
Replacing the state variable definition (3.4) into the observation model

and assuming that éz(t) is small and using the Taylor’s series expansion of the first
term retaining only the first-order terms, the following expression is obtained:

(R(1) + 8x(04), )~ Ii(R(1) 1) + | 8x() (3.66)

X=X

Defining Hy, (X)) = 22 s> the linearized measurement model is

So the linearized innovation error model to be used is,

Since a cross product between parallel vectors is null, and from y,,.q.s = A(q)y°,
the innovation error is defined as

e = Ymeass X Ao(@)V7 (3.69)

b b

= ymeas,k X Yk
where y? . is a vector whose elements are the measurements obtained from the
attitude sensors and y? is the vector computed from a model of the measurements,

named as the reference vector.
For an error free measurement and reference vector,

ylr)neas,k = Ag(‘lk)yz (371)

Thus, the cross product between the normalized measurement and the normal-
ized reference in body coordinates gives the innovation error,

Cr = yg@eas,k X Ag(qk)yz

3.72
€r = y?neas,k X yz ( )
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3.1. RECURSIVE ESTIMATION METHODS

Considering that there is noise associated with the measurement and the refer-
ence vector, the expression becomes,

ygjneas,k = AZ(‘]IC)YZ + Vi
Recalling the definition of quaternion (3.12)

Yoeask = A0 G ® o)y + Vi (3.73)
and using (2.37),
Ymeask = Ao(0@) Ao (G)yR + Vi (3.74)
Knowing that $* = A%(§)y°, the previous expression becomes,
Yimeask = Ao(6@)F5 + Vi (3.75)
The innovation error from (3.72) becomes,
er = A(0@)9 X §7 + Vi X 97 (3.76)
Hence,
er = A(6Q)F; X i + Vi (3.77)
where Vi, = v, X §2. Solving the previous expression, it follows that,
()" + @) —dkg) i
ex=2| gk () (@) gt | At (378)
by it @)+ @),
Defining
@)+ @) i) bt
Heg0) =2 =gy @)+ (@) —dk (3.79)
~ibit ot @) @),

where §2 = [ T @2 T } The innovation error may be written in terms of the
state vector as follows,

er = [ Oxz Hy(3) ] Oxp + ¥y, (3.80)
where,
Hi(Ri) = [ O3x3 Hi(37%) ] (3.82)

A summary of the EKF algorithm applied to small satellites, as presented before,
follows:
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3.1. RECURSIVE ESTIMATION METHODS

EKF Algorithm

Between measurements

PROJECT AHEAD

1.

Propagation of the state variables x;_ , = [ Wi Qe ]T through Runge-
Kutta methods (3.59), (3.60) and (3.61),

@pyr = @F +%(k1 + 2ky + 2ks + ky). where k; = f(@] k), ke = f(OF
By, k+8), ks = f(@F +5ko, k+5), ka = f(&F + hks, k+h) and f(@&, )
_[71 (th'rl + Ngg —w X Iw>

Q1 = [COS (QRQAT) 1"‘* sin (kaT) Qk} @, Where 0 = /w2 + w2 + W?

||—|—

. Compute F(x(t),t) with (3.55).

Compute transition matrix, &, ~ 1 + F(X(t),t)AT + M

. Propagation of the state error covariance matrix (3.57), P, = ®,Py®} +

Qr+1

Across measurements Yyeqs/k+1

. Compute y,’;+1 = Ai’,(dk)yzﬂ

Compute from (3.82) H,,

. Update the Kalman gain (see Eq.(A.7) in Appendix A),

Ky = Pk+1Hk+1 [Hk+1pk+1H k1T Rk+1}

. Compute the Innovation Error (3.69), €xr1 = ¥2 .00 ki1 X Yoi

Compute the perturbation update (3.16), 6xx11 = Kypi1€p11

. Update estimate (3.20), @, = @1 + 6wy

. —( A 0Qk 11
Update estimate (3.19), Gy = Z(G1)0qe+1 where g1 = l \/m

Compute H,' 1 as H, in step 1 but, Ypoay/k+1 18 computed using the updated
state, Qi1

Compute the state error covariance matrix (see Eq.(A.7) in Appendix A),

T
Pktrl [1 KkHHk ] Pk+1 [1 - KkHHle} + Kk+1Rk+1Kg+1
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3.1. RECURSIVE ESTIMATION METHODS

3.1.2 Extended Kalman Filter Intrinsic Problems

The Kalman filter is optimal only when applied to linear dynamic systems.
Nevertheless, it can still be used for non-linear systems by linearizing equations that
describe the system. However several problems arise:

e the linearization of the process and the measurement models may introduce
significant errors;

e the properties of the Kalman filter can not be guaranteed for the EKF, which
may lead to divergence of the state estimate error;

e the process noise is treated as Gaussian with known variance which is not
usually an accurate description of the estimation errors;

e the process error matrix, (7, is manually tuned to reach confidence in the filter;
e the initial state, x,, and state error covariance matrix, P,, are required.

The initialization of the state vector and the P matrix, may be a problem. If
the starting point is unknown, the initial state vector is in general very different
from the true state, causing the covariance matrix to jump from a large value to
a small value or close to zero in one step, often causing the algorithm to diverge.
In practice some batch work must be done to obtain a suitable initial P matrix
that will not cause the EKF to diverge. Also the symmetry of the state error
covariance matrix must be assured while the EKF algorithm is running in order to
avoid divergence problems due to numerical inaccuracies. For a real satellite which
is supposed to work for long periods, it is desirable to implement algorithms that
handle numerical instability with a special concern and are equivalent to the Kalman
filter algorithm. According to [14] the most numerical stable algorithms for Kalman
filter implementation are given by [4] and [51].

The modeling of a spacecraft is a complex issue because the external forces must
be taken into account in the satellite equations of motion, according to Newton’s
law. LEO satellites have the influence of external torques (owing to solar pressure,
solar heating, aerodynamic drag) which are non-linear and vary along the orbit
and altitude. In practice they are disregarded due to its difficult modelling which
would greatly increase the complexity of the process model. However, they influence
the accuracy of the estimated angular velocity during the propagation (2.62) where
they are explicit expressed. Also, the linearization of the equations that describe
the system is an approximation that is going to introduce errors in the estimates
calculation.

Some of the problems discussed previously were addressed by different authors.
Instead of neglecting second and higher order terms coming from the dynamics lin-
earization, Vathsal [53] considered terms up to second order. This approach increases
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the complexity of the filter and its computational burden. It is only worthwhile to
go for second or higher order techniques in case of extreme system nonlinearities.

Another approximation is to assume Gaussian noise with known variance for the
observations and the process, which is not an accurate description of the estimation
errors. In addition to this, the products of inertia are considered all zero because
principal directions are assumed to be aligned with control CS due to the space-
craft geometry [55] and there is some uncertainty in the calibration of the principal
moments of inertia. In practice, these are systematic errors that cannot be mod-
elled using Gaussian white noise, deviating the estimate from its true parameters.
To avoid these problems, the state error and process noise covariance matrices are
tuned with the filter in the attitude closed control loop, to compensate the resulting
errors. So, a set of 6x6 elements, from P, matrix, plus 6x6 elements from the @
matrix and 3"x3" for the R matrix, where n is the number of available sensors, must
be determined before the EKF can be used. Since these are symmetric matrices,
the number of elements is reduce to @ for each P,, () matrices, and w for
the R matrix.

Traditionally, all elements were manually tuned which is time consuming, prone
to subjective error and complex, since the state variables affect each other. Taking
advantage of the symmetry of the state error covariance matrix and of the PoSAT-1
geometry, a reduced group of parameters has to be tuned. Small satellites with
gravity gradient stabilisation usually have a preferred spin axis, z axis. Thus, it is
reasonable to assume identical covariance errors for the angular velocities w.r.t. =
and y axis. Using this, the number of elements reduce once again to 17 elements for
each matrix P, and Q.

Instead of manual tuning, [56] used a genetic algorithm to tune the process noise
covariance matrix (), the measurement noise covariance matrix R and the state error
covariance matrix P, at the same time, with the EKF inside the closed control loop,
and evaluating performance by measuring the accuracy of the resulting attitude
control loop. The total number of elements to be computed is 13 for P, and ) and
w for the R matrix, where it was assumed that the ¢; and ¢ had identical
covariance errors as well as ¢z and q4. It was necessary to group the parameters
to reduce the number of parameters to be found and doing so making the tuning
problem manageable. However, this still means many parameters to be tuned and
a lot of batch work has to be done in order to find out all parameters needed to
correctly run the EKF.

A different approach was taken by Bak [1], who defined the measurement noise
covariance matrix, R, by,

Riot(trt1) = Bon(trsr) + A(Qy 1) Bo(trr) A(@ry)

where R,, is the sensor noise and Ry is the geomagnetic field model errors. Also,
the process noise covariance matrix was modelled taking into account some of the
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discrepancies between the process model and the actual behaviour of the spacecraft
and was gathered in the following process noise covariance matrix,

_ Qwi + Qw + Qws 03X3
Q N O3X3 qu (383>

where (),,; reflects the uncertainty of the moments of inertia and the noise acting
on the angular velocity rates which makes this matrix to depend on the actual state
of the satellite. The @,, indicates the influence of the aerodynamic drag. ),s and
(05, are diagonal process noise parameters, empirically determined to compensate
linearizations and inadequacies in the propagation of the state. This is a good
approach to the problem of modelling a non-linear system to be used in the EKF
since there are very few parameters to be determined. Thus, the process noise
covariance matrix does not need to be tuned exhaustively. However these parameters
are dependable of the satellite features like calibration of the inertias moments and
it takes some time to find out the values suitable to the algorithm.

Also, Steyn [45] has suggested a process error covariance matrix, where the angu-
lar velocity is kept constant during the entire life of the satellite and the quaternion
error is proportional to the other elements of the quaternion due to the quaternion
constraint,

diag (aw O wsOw ) O3x3
— x Yy z . . 4
Q Osxs Kodiag(1 - 2.1 — @1 - ¢2) (3:84)

where 0, 0y, , 0., are tuned for a specific satellite. As explained before due to the
geometry of the satellite usually o, = 0y, # 0y, and k, is empirically determined.
Again the measurement noise covariance matrix was set as a diagonal matrix. For
this noise covariance matrices there are 4 parameters to be determined, which is a
reduced number comparing with the 32 elements of the covariance usually manually
tuned. One may say that these are not the best covariances matrices to get good
state estimates results but it is a very good starting point to have the EKF running

properly.

3.2 Point-to-point Approaches

The deterministic or point-to point methods consists of determining the attitude
matrix, A, on a set of noisy vector measurements. Given a set of minimal two,
n > 2, vector measurements taken by the attitude sensors on-board the satellite,
Yheasi-Yineasn » thus written in body CS and the correspondent set of reference
vectors, y{...yo, obtained from the model of the same attitude sensors, thus written
on orbit CS. There is a matrix denoted by A, that represents the rotation between

45



3.2. POINT-TO-POINT APPROACHES

1200 T T T

1100 -~

1000~

qmethod

floating point operations
» o @ ~ ® ©
o [=] o (=3 o o
o o o o o o
T
1 1

@
S
S

N
=3
S

number of observed vectors

Figure 3.1: Execution Times for Robust Estimation Algorithms (reprinted from
[35]).

both orbit and body CS, (in Section 2.2.1), hence relating both vectors,

Yoneas = A0y° (3.85)

Thus the problem resumes to find the orthogonal attitude matrix A, only based
on the measurements. Wahba [54] was the first to choose a least square criterion to
define the best estimate of A,

1 . 2 b o
L(A) = 3 ;:1 Wi N Y preasi — AYi (3.86)
where 11 . 11 denotes the Euclidean norm.

So the point-to-point methods consist of alternative approaches to the solution of
the problem posed by Wahba in order to determine the best attitude matrix A. Many
algorithms were introduced as, described in Section 1.2, but according to Markley
and Mortari [35] the most robust, reliable and accurate point-to-point estimators
are the g method and the SVD, because all, but these two, involve potentially
numerically unreliable procedures [35].

Also, the Davenport solution has proven to be more efficient than the SVD
method except for the two attitude sensors case, as depicted in Fig. 3.1 [35].

Taking that into account for the PoSAT-1 case study in this dissertation, where
there are only two available attitude measurements, the SVD was chosen in this
work.
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The derivation of the SVD algorithm is given in appendix B, but the algorithm
can be summarized in the following set of equations:

B = Zwiygleas,iygT (387>
=1
B = USVT

The U and V matrices are orthogonal and
S = diag(s1, $2, 83) (3.88)
with B singular values s; ,s5 and s3 ordered as:
51> 89> 83>0 (3.89)

The attitude matrix is given by,

- 1oy 0 T
Aopt—U[ 0 det(U)det(V)]V (3.90)

For the computation of the state error covariance matrix

o = det(U)det(V)s3
P=U [diag( L ! L )] Uur (3.91)

so+0? s1+o? s1+82

The SVD algorithm is very simple to implement, compared to the EKF, since
there is no need to give initial values to any state error covariance matrix and to the
state vector, to tune any process noise covariance matrix, to linearize the dynamic
and kinematic equations of motion, or to assume the process and measurements
noises as Gaussian with known covariances. Therefore, the problems described pre-
viously are avoided as well as the time consumed to solve them. Also, for different
satellites, the EKF covariance matrices must be re-tuned while the SVD algorithm
does not. On the other hand, one may say that some useful information from the
system model is lost, in the SVD method, but since the system model is non-linear
and has to be linearized, it is better to ignore it than to introduce misleading infor-
mation to the filter.

Nevertheless, a problem arises when the satellite is orbiting in the dark side of
the Earth or when the Sun is outside the field of view of the Sun Sensor. At this
point no attitude sensors are available except only for magnetometers, therefore the
point-to-point methods are incapable of determining the satellite’s attitude because
they depend on the availability of two measurement vectors. So the propagation
of the attitude must be done through the kinematics, but since these gaps are
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small periods of time, the incurred error is very small and easily corrected when
the SVD algorithm is operational again. The same applies when the estimator
attempts to work without the Sun sensor. These issues are addressed in chapter 4,
where the SVD algorithm is presented in detail for PoOSAT-1. Another critical issue
is to obtain estimates of the angular velocity which are needed for some control
algorithms. Thus, the angular velocity, not given by any point-to-point method,
is obtained through kinematic equations, using the quaternion estimates resulting
from the SVD algorithm, as explained next.

Angular Velocity calculation
From the kinematics,

1
q= EQ(w) q

To manipulate the equation, the angular velocity is represented in terms of a

quaternion w = [ Wy Wy wy; 0 }T, and using the definition of the quaternion
product (2.29), the kinematics (2.63) becomes:

. 1
q = §w ® q
Multiplying both terms by the inverse of the quaternion, the expression can be
written as follows,

w=2¢4R q " (3.92)

where from (2.23) the inverse of the quaternion is given by ¢~ = [ -1 —G2 —q3 Q }T
Using again the definition of the quaternion product (2.29),

w=22(q")q (3.93a)

The discrete expression to be applied between measurements, t; and ¢z, with
a sampling time of AT is given by,

Wy, = QE(qtk+1>q-tk+1 (394)

The derivative of the quaternion, g, is obtained adding a pole, a, to the ’derivator’
system that obtains ¢ from ¢, to damp the high frequency noise. The transfer
function - is discretized using the bilinear transform, where s « ﬁzﬁ The
discrete expression to be applied between measurements with a sampling time of

AT is given by the difference equation

q.tk: = (1 — CLAT) qtk—l — CLATq.tk_Q + qtk: — qtk—l (395)
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In addition to this, the propagation of the quaternion between measurements
requires the knowledge of the angular velocity and since no gyros are on-board of
many small satellites, it is imperative to have angular velocity estimated besides the
attitude. These issues will increase the computational load of the SVD algorithm
implementation but no additional errors are introduced in the algorithm that will
affect its performance estimating the attitude. It can be seen as a complementary
algorithm that can be used in small spacecrafts for which the knowledge of angular
velocity is essential.
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Chapter 4

Simulation Setup

To validate the estimation algorithms described in Chapter 3, a simulated LEO
satellites environment, SimSat, is used, where all parameters are controlled and
known, as described in Section 4.1. PoSAT-1 was used as the benchmark of the
SimSat simulator since it is representative of the small satellite class with hardware
constraints, reduced power supply, restrictive actuators and noisy attitude sensors
that are not always available, common to most small satellites, and it is addressed
in Section 4.2.1. Furthermore, all conditions needed to run the EKF and the SVD
algorithms are described, as well as the disturbance variables added on purpose to
increase the difficulties of the estimator. Afterwards, the real data obtained from
PoSAT-1 satellite is presented, and explained in detail how to handle it, in Sections
4.2.3. Also, the actions performed over the real data to reduce errors and obtain
better results are addressed.

The tests performed over the simulated PoOSAT-1 are presented in 4.3 and the
most important aspects and goals that the tests were meant to stress are explained.
Also, the tests applied to the real data of PoSAT-1 satellite is explained in this
section. Moreover, the statistical information used to analyse the performance of
the estimators algorithms, EKF and SVD, for the simulation case and for the real
data is defined and explained in Section 4.4.

4.1 SimSat Simulator

SimSat is a MATLAB/Simulink program developed under the ConSat! project
which aims at reproducing a realistic environment, as perceived by the ADCS of
spacecrafts, in the particular case of small satellites. Since the first year of the
project, several researchers and students have been studying and modelling all en-
tities which interact with small satellites in order to simulate the evolution of the

!Supported by PRAXIS XXI program project PRAXIS/3/3.1/CTAE/1942/95.
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satellite attitude motion and its time-varying behaviour [48], [49] [50]. The imple-
mentation of dynamic and kinematic equations of motion of a satellite is described
in [44]. The SPG4 propagation model, suitable for prediction of near Earth satellites
position and velocity was implemented. PoOSAT-1 was used as a case study for the
SimSat simulator, where POSAT-1 sensors [48] and actuators were realistically simu-
lated as well as the Earth’s orbit geomagnetic field. One of the major problems that
ADCS face is that, besides being noisy, the sensors are not always available depend-
ing on the relative position of the satellite, the Sun and Earth, [56]. Several control
algorithms are available for use in the Consat simulator [46] in order to choose the
most adequate to each mission phase for small satellites. The algorithm used in this
work is the Predictive Control since it is an attitude stabilisation algorithm suitable
to stabilise and control the spin of a small satellite using only magnetic actuation
[47] and achieved very good performances [46] [47]. The ADS based in an EKF with
the initial state error covariance matrix, process noise covariance matrix and the
measurement noise covariance matrix tuned through genetic algorithms [6] and an
SVD algorithm implementation as well as a comparison between both EKF and SVD
were introduced in [36]. Also the SimSat graphical interface was implemented by
Tavares [50] and improved by Clements et. al. [5]. There is still room for improve-
ment in the SimSat, where new approaches to the attitude control algorithms as well
as new attitude estimation algorithms, can be developed, validated and compared
to other algorithms based on the simulations.

4.2 PoSAT-1 Experiments

A brief explanation of the PoSAT-1 small satellite in terms of hardware, struc-
ture, geometry and power supply is presented next. Also, the PoSAT-1 attitude
sensors are described, since the estimation algorithms are based on their measure-
ments, as well as POSAT-1 actuators. To accomplish the controller requirements the
attitude estimator system needs to estimate the full attitude and angular velocity
[47]. The PoSAT-1 simulation environment is explained and the setup parameters
presented, in Section 4.2.2, as well as the estimator algorithms EKF and SVD. The
real data obtained to be used by the estimator is described in Section 4.2.3. Since
it was only possible to get Sun sensor measurements from PoSAT-1 just the EKF,
described in Appendix A.7, is applied to POSAT-1 real data.
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4.2.1 PoSAT-1 Technical Data

PoSAT-1? is the first Portuguese satellite in orbit, developed in a technology
transfer program between the University of Surrey and a Portuguese industrial and
educational consortium lead by INETT. It is an experimental small satellite for tech-
nology demonstrations, scientific and educational purpose, which has benefited from
previous research on UoSAT satellites. It is an Earth Observation satellite which
carries a wide and narrow angle CCD camera with a resolution of 200m/pixel to
take Earth pictures.

PoSAT-1 was launched along with the primary payload, SPOT-3 satellite, by
Ariane-4 ASAP-4 V59 launch vehicle from Korea, French Guiana on the 26"* Septem-
ber 1993 at 01:45:00 UTC, along with six other micro-satellites, into an 822x800 km,
with 98.6° inclination.

PoSAT-1’s on board computer is based on an INTEL 80C186 processor running
at 8 MHz with 512 Kbytes of RAM, interfacing with 16 Mbytes RAMDISK. Its
secondary computer is based on an INTEL 80C188 processor running at 8 MHz
with 512 Kbytes RAM. This limited on-board computing power justifies the quest
for ADS algorithms which are moderate consumers of CPU power.

Figure 4.1: PoSAT-1 design.

2Some of the information was obtained from the INETI Aerospace Lab (Instituto Nacional de
Engenharia e Tecnologia Industrial), at http://www.laer.ineti.pt/posat and Surrey University, at
http: /www.ee.surrey.ac.uk.
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Figure 4.2: Expanded view of PoSat-1.

The satellite is parallelepiped in shape with dimensions 35x35x58 ¢cm? and has a
final mass just under 60 kg, with one mass tipped boom for passive stabilisation and
an orbit in altitude around 800 km. It has solar panels mounted on the four sides.
To assure the mean temperature of 10°C at the battery modules and a distribution
of Sun irradiance onto the solar panels, in order to optimise their efficiency, PoSAT-1
has to perform a very slow spin about its z-axis. The magnetorquer used is composed
of three wire coils around the satellite geometrical axes. During the sampling period
each coil may be fired, one at a time in one direction, xy, ¥y, or z;, for up to three
seconds with positive or negative polarity and 0.1 second resolution. PoSAT-1 has an
internal and an external 3-axis fluxgate magnetometer. The internal magnetometer
was used only until the deployment of the gravity gradient boom. PoSAT-1 has two
Sun sensors with each sensor having two channels. The PoSAT-1 microsatellite has
an experimental GPS Navigation Unit. It consists of one GPS antenna mounted on
the face of the satellite and a receiver which interfaces with the transputer processing
unit.

PoSAT-1 Attitude Sensors

The attitude estimation is supported by various data measurements. For very
high attitude accuracy, it is important to use the most accurate attitude sources but
there are advantages and disadvantages associated to each sensor, especially in small
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satellites with so few available resources. PoOSAT-1 has the following attitude sensors:
two single-axis sun-sensors; two Sun detectors; one Earth underneath detector; two
horizon sensors, two magnetometers and one currently non-functional star sensor.

Sun Sensor

This sensor reads the angle between the spin axis of the satellite and the Sun
or the Sun-angle shown in, Fig. 4.3. PoSAT-1 has two single axis analogue Sun

Figure 4.3: Motion of a nutating Spacecraft. The body cone rols on the spacecraft
cone for Iy = I, > I3. P3 is the principal axis of inertia, w is the instantaneous
rotation axis, 6 is the nutation angle and H is the angular momentum.

sensors. The exact design is unknown to the author, so the implemented model of
the Sun sensors had to be based in common designs [55] and on telemetry from them
[5]. The technical documentation states that each of the two cells per sensor has a
total field view of 120° and based on the telemetry data the angle of inclination of
the sensors, a = 30° and the Field Of View (FOV) limits of each cell of the sensors
is 60°, is derived in [5].

field of view

Figure 4.4: Single axis analogue Sun sensor.

Since the Sun is not visible during parts of the orbit, the Sun sensor information is
not always available due to the satellite libration or the satellite orbiting in the dark
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side of the Earth. This leads to the Sun sensor being the second sensor measurement
option in the EKF.

Earth Horizon Sensor - EHS

This sensor determines the current view of the Earth, given the relative position
of the sun, Earth and the satellite. The problem is that the camera has a narrow
field of view, which difficulties Earth localization. Furthermore, it can be looking
into space or the Earth’s dark side. Moreover, the sensors may be albedo or infrared
(IR) based sensors. These features make the sensors susceptible to errors due to
strong variation in albedo for different refracting surfaces or by the temperature of
the earth’s surface and by the chemical composition of the atmosphere. These add
errors to the EHS model, making it difficult to model. It was checked from telemetry
data that the EHS is very sensitive to attitude and to atmospheric conditions, [5].
It is available in the light side of Earth and even so sometimes pointing into space.

GPS Antenna

When switched on, the Global Position System (GPS) is used mainly to time
synchronisation and on-board orbital position determination, as well as velocity
with high accuracy. In order to include GPS information in the EKF, the number of
states has to increase causing a shortage in the program size, memory requirements
and also processing time. This is the reason why GPS information has been left for
future work.

Star Sensor

The Star sensor camera was not included in the simulator because the data rate
is too low to be used in the control loop except for calibration purposes. So, the
camera is not being used for any ADCS purpose but only to take pictures of Earth.

Magnetometers

PoSAT-1 has three external magnetometers sensors which, when combined, are
used to measure the local geomagnetic field vector (magnitude and direction). This
data is compared to a model of the geomagnetic field in order to determine the
attitude. Using magnetometer information has the big advantage of being available
throughout the whole orbit as well as the low power requirements, lightweight and
inexpensive. However, is not very accurate due to errors in the IGRF models. There
are factors that the models do not take into account like the influence of solar activity
[55]. However, they are widely used for attitude determination as the main sensor
due to its availability.
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PoSAT-1 Actuators

The passive stabilisation of the satellite is based on the deployed gravity gra-
dient boom, which generates a stabilising moment, (2.70) and magnetorquers (elec-
tromagnetic coils) on each of the satellites sides which interact with the Earth’s
geomagnetic field creating a magnetic moment, (2.73) to damp the libration mo-
tion. Earth’s magnetic field was simulated using a spherical harmonic IGRF model
[55]. The satellite design of PoOSAT-1 and other satellites of the UoSAT class, have
restricted the values of the control magnetic moment to only three different values of
positive /negative polarity. Combining this restriction with the single-coil-actuation
the available set of magnetic moments is reduced to only 18 different values (6 for
each axis). In addition to this for each actuation on a coil there must be at least
a back-off time of 100 seconds to recharge the power supplies. In practice it means
that the actuators have a maximum duty cycle of 3%, since the maximum actuation
time is only 3 seconds.

4.2.2 PoSAT-1 Simulations

PoSAT-1 is the case study simulated in the SimSat program with a sampling
time of 1 second. All the details related to the implementation of PoSAT’s envi-
ronment, e.g. orbit parameters, attitude sensors, inertial parameters or systematic
errors introduced on purpose to increase the difficulties of the estimators, are ex-
plained in the SimSat Simulator Setup Section. The simulation setup conditions
used for both algorithms, EKF and SVD, which are presented in the FEstimation
Algorithms Setup Section, as well as other issues related to the estimation algorithm
implementation. Also, a detailed explanation of how problems were solved in the
implementation of the algorithms is included.

Attitude Sensors Simulation Setup

The PoSAT-1 attitude sensors simulated in SimSat are the magnetometers and Sun
sensors. Magnetometers have its measurements always available. The magnetometer
measurement is simulated as the rotation from OCS to BCS of the local magnetic
field, given by the geomagnetic field at some point in orbit, mapped by the true
attitude matrix. The Earth’s magnetic field, is simulated according to the Inter-
national Geomagnetic Reference field (IGRF) model [55]. The spherical harmonic
IGRF model is calculated till 10* order. Results obtained from the simulator by
comparison between the real data and simulated can be found in [48]. The Sun
sensor is modelled according to the position of the Sun and Earth as seen from the
satellite as described in [5].

Two non parallel directions are needed to uniquely determine the orientation of

56



4.2. POSAT-1 EXPERIMENTS

a satellite from space, usually a known direction measured by the attitude sensors
and a direction given by a model of the sensor based in the satellite’s position
(reference vector). The magnetometer reference vector is modelled as the IGRF
model computed till 4" order and the magnetometer measurement is computed in
the SimSat and also modelled as the IGRF model computed till 10* order. Thus,
the difference between the measurement given by the magnetometer sensor and the
magnetometer reference vector, simulates the real error. For the Sun sensor model a
random noise with a normal distribution with a mean of 0.0 and a standard deviation
of 1.0 x 107° is added, to the measurements of the simulated Sun sensor [5].

Equations of Motion Simulation Setup

The attitude motion of the satellite is modelled according to the Euler equations
of motion (2.63), (2.62). Where, the external torques simulated for the PoSAT-
1 are the gravity moment (2.70) written in control CS and the control moment
which results from the interaction between the geomagnetic field and the satellite’s
magnetic field (2.73). Besides these, other important external torques acting on
a spacecraft are solar radiation pressure and aerodynamic drag. According to the
discussion carried out in 2.4.3, these torques are neglectable. Thus, for PoSAT-1
satellite, the dynamic equations reduce to the following expression,

wh =17 (Nygg + Negrt — wh x Iw’gi) (4.1)

A spacecraft orbiting around Earth has an elliptic orbit, according to Kepler’s
first law because the satellite continuously interacts gravitationally with the Earth.
For LEO satellites, where the satellite’s mass is neglected compared to that of Earth,
the orbit eccentricity is very close to circular orbit, e = 0. Because of that, the orbit
simulated in SimSat is circular.

Due to PoSAT-1 axially symmetric geometry, the body CS axes are along the
principal moments of inertia axes resulting in null products of inertia. The principal
moments of inertia tensor has the following values:

Ly = I, =119.1#1I,. =0.784 (4.2)
I Ip=1lp=14=1,=1I,=0 (4.3)

Ty

Since these are approximately values and the deployment of the boom along
the z,-axis causes changes on it and to introduce some uncertainty, the moment of
inertia tensor was simulated in SimSat using the following inertia matrix ,

119.14 +£0.05  £0.0005 +0.0005
I= 4+0.0005  119.06 £0.05  40.0005 | kg.m? (4.4)
40.0005 4+0.0005  0.78 4 0.05
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Orbital Parameters Simulation Setup

The orbit generation in the SimSat was done with the United States Space Command
(USSPACECOM) SGP4 mathematical model for prediction of satellite position and
velocity. The orbit determination of the PoSAT-1 was obtained from a NORAD
Two-Line Element (TLE) (Appendix D) which has the format shown in Table 4.1.

PoSAT-1
1 22829U 93061G 98051.65721957 +.00000069 +00000-0 +44725-4 0 6120
2 22829 98.5167 125.5480 0009163 216.4411 143.6151 14.28203542229593

Table 4.1: Two-Line Element of PoSAT-1 used in SimSat environment.

The TLE gives the following Keplerian orbital elements, (Appendix C), valid for
a certain time (Epoch), Table 4.2.

Epoch | 1998/02/2015:46:23.7709 UTC

1 98.5167°
Bstar | 0.000044725
Q 125.5480°

e 0.0009163
Wy 216.4411°

M, 143.6151°
MM | 14.28203542 revs/day

Table 4.2: NORAD elements used of the PoSAT-1 simulation in Simsat.

Since the eccentricity is very close to zero the orbital geometry of the satellite
is considered to be circular. Thus the angular orbital rate, w, of PoOSAT-1 for this
epoch, is approximately constant and given by,

27

= MM -——— 4.
o 216060 Y/* (45)

= 1.038618925x10 *rad/s (4.6)

and the period,
1
T=——"——=~6050 sec
wo [revs/s]
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Extended Kalman Filter Simulation Setup

The EKF is implemented according to the algorithm described in Section 3.1.1. The
only remarks concern the principal moments of inertia used,

I =diag ( Lo I,y L. )=diag(119.1 119.1 0.784 ) (4.7)

according to (4.2), and the calculation of H matrix (3.82) which is expanded to a
rank of 6x6 in order to incorporate also the Sun sensor measurement, S,,cqs ,when
this sensor is available

w0 RG] "

H,($%) is computed according to (3.79).

EKF Initial Conditions Setup

According to the discussion in 3.1.2, and after some batch work in the simulated
environment it was concluded that the initial state error covariance values suitable
to the angular velocity are 1072 and for the quaternions 10. Thus, the P, matrix is
diagonal with elements:

P, = diag (107*,107%, 107%, 10, 10, 10) (4.9)

The initial attitude variable has been set up for two different situations, see
Section 4.3. An error is added to the true initial state of the angular velocity

T

wh=Ag)[wo 0 0] (4.10)
and to the initial roll, pitch and yaw true angles. The other situation is for the case
that the angular velocity and Euler angles were kept equal to its true value.

EKF Measurement noise Covariance Matrix Setup

The measurement noise covariance matrix (3.64) for magnetometers was calculated
based in the root mean square error between the measurements taken with the IGRF
10" order model and 4" order model in 20 simulations of 16 orbits each. Thus, the
measurement noise covariance matrix obtained, assuming non-correlated parameters
is the following,

Ry, = diag (1072, 1077, 107?) (4.11)
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When the Sun sensor measurements are available the measurement covariance
Rb O3><3
O3x3 R
covariance matrix for Sun measurements was calculated based on the root mean
square error between the measurements taken from the Sun sensor model and its
measurements for 20 simulations of 16 orbits each, leading to the following values,

matrix is expanded to a 6x6 matrix, Ry = . The measurement noise

R, = diag (1.0, 1.0, 1.0) (4.12)

This variance values are worse than the magnetometers, since the Sun sensors
data is considered to be less precise than the magnetometers, as results from com-
paring the PoOSAT-1 telemetry and the Sun sensor model data in [5].

EKF Process noise Covariance Matrix Setup

The process noise covariance matrix used is the one adopted in [45] and explained
in Section 3.1.2,

Q = diag (107°,107°,107%,107°(1 — ¢7), 107%(1 — ¢3), 107°(1 — ¢3))  (4.13)

SVD Magnetometers and Sun sensors Setup

Determining A,, - The SVD method needs at least two noisy vector measurements
to determine the estimate of the Attitude matrix. Assuming that the Sun sensor
is available, the observation vector is composed by the measurements of both the
magnetometers and the Sun sensor, aneas = [ brcas  Smeas } Thus, the Attitude
matrix is obtained, according to the SVD algorithm presented in Section (3.2), as
follows: from (3.87) computing the B matrix with the measurements of the sensors
and the respective reference vectors,

B = buneas (b°)" + Simeas (8°)" (4.14)

then, the B matrix is transformed, through the singular value decomposition method,
in the Uy, S, and V, orthogonal matrices which will allow the computation of the
attitude matrix (3.90) and the state error covariance matrix (3.91).

Determining q - the quaternion estimate must be obtained from the attitude
matrix. A set of four solutions can be determined from (2.35) considering for the
first set that g, is the first to be found; ¢; for the second set; g, for the third set and
g3 for the last set. As for the first set,

qi = :l:05\/1 + AH —+ A22 —+ A33
q% = 025(A23 - A32)/qi
q% = 025(1431 — Alg)/qi
q31’ = 025(A12 — AQl)/Qi

(4.15)
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However numerical inaccuracies may arise when ¢4 is very small. One way to
overcome this is to compute the maximum of 1+ A; — Agg — Azz, 1 — Ay + Agy — Ass,
and 1 — Ay, — Ay + Asz and based on this, switch among solutions, as suggested by
Sidi [42]. The three other solutions are,

g3 = £0.5y/1 — A1 — Agp + Asz

4.16

g3 = 0.25(Ags + Asy) /3 10
gt = 0.25(A1y — Agy) /g

@5 = £0.5y/1 — Ay + Ay — Aszg
¢ = 0.25(A1 + Az1) /@3 (4.17)
qg’ = 025(1423 + A32>/Q§ .
3 = 0.25(As1 — Ays) /g2

gi = +0.5y/T+ A — Ay — Agy
@ = 0.25(A1z + As1) [} (4.18)

g5 = 0.25(As + As1)/qi
qz = 025(1423 — Agg)/q%

However due to the inaccuracies of the attitude matrix, the sign of the quater-
nions changes suddenly when the algorithm is running, as can be seen from Fig.
4.5.

In order to avoid this problem, a constraint is added to the algorithm results that
converts the attitude matrix into the quaternions, forcing the sign of the maximum
(@1, G2, g3, q4) to be the same as the previous. For instance from Fig.4.6 shows
that the vector element of the quaternion ¢z, which is the maximum quaternion
component, changes its sign from one step time to the next.

Determining w - Since some algorithms need the angular velocity and to
achieve proper quaternion propagation between two sampling times, when the SVD
does not have two attitude sensors available, the angular velocity is computed, us-
ing as initial condition the inverse of the kinematic equation, in Section 3.2 - Eq.
(3.93a),

w=22(¢") §
where ¢ is obtained from Eq. (3.95), in Section 3.2.

SVD in the absence of Sun sensors

If the satellite is hidden behind the Earth not seeing the Sun or if the attitude of
the satellite does not permit the Sun sensor to have any sunlight passing through the
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quaternions, Simulation n°® 951
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Figure 4.5: The picture shows the quaternions obtained from the attitude matrix
estimates using (4.15) - (4.18). The blue line is referred to the estimates and the
red line is referred to the true data. For visualization of the SVD method, a signal
indicating when Sun sensor measurements are available is high and low otherwise,
originating a square wave in all plots.
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(o= - 0.551
g2 =+ 0.327
Gs = + 0.643
s =-0.418
G =- 0.517 bt
(o =+ 0.419
Gs = + 0.507
a=-0.446 |
k =+ 0.551
= - 0.327
gs=-0.643

QW=+0418 'ty

Figure 4.6: From t; to t;, the sign of the maximum value found can not change.

PoSAT
1 22829U 93061G 00307.69679095 +.00000744 +00000-0 +31149-3 0 8437
2 22829 98.3895 0.6205 0009063 194.5985 165.4938 14.28865027370367

Table 4.3: The Two-Line Element of PoOSAT-1 used for real data experiments.

lit of the sensor, then the SVD method is not able to estimate the Attitude matrix.
However the estimates from the angular velocity and the attitude are needed for the
ADCS to carry on. Thus the choice is to propagate the state variables through the
equations of motion (4.1) and (2.63).

4.2.3 PoSAT-1 Real Data Experiments

In this section the real data obtained from the PoSAT-1 satellite is presented.
The Keplerian orbital elements used to generate the reference vectors needed for
the estimator algorithm and other relevant parameters are addressed. Since only
magnetometer measurements were obtained from PoSAT-1, only the EKF is applied
to the data. Practical issues related with the way the real data was treated and the
EKF algorithm setup are also explained.

Orbital Parameters

The orbit determination of PoOSAT-1 has been obtained from a NORAD TLE
(Appendix D) which has the following format,
The TLE gives the following Keplerian orbital elements, (Appendix C), valid for
a certain time (Epoch),
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Epoch | 2000/11/02 16:43:23 UTC

i 98.3895°
Bstar | 0.00031149
Q 0.6205°

e 0.0009163
w, 194.5885°

M, 165.4938°
MM | 14.28865027 revs/day

Table 4.4: NORAD elements used of the PoSAT-1 real data.

The angular orbital rate, w, of PoOSAT-1 at these epoch, is approximately given
by,

2m
= MM -——rad 4.1
wo 216060 “4/* (4.19)
wo =~ 0.00104 rad/s (4.20)
and the period,
1
T = — — ~6046.75 sec (4.21)
wo [revs/s|

Real Data

The real data from PoSAT-1 starts at UTC 2000/11/02, 00:00:34, and lasts for
84960 seconds or about 14 orbits, with a sampling time of 20 seconds. The non-
normalized data obtained is the magnetometer measurements plotted in Fig. 4.7 and
the average magnetic moment in Fig. 4.8. The electromagnetic coils are actuated,
m,,.,, for a period of time (firing duration), different from to the sampling time.
Thus, the magnetic moment used to compute the control moment in Eq. (3.36),
must be computed as an average of magnetic moment fired by the coils plus its
firing duration per sampling time,

firing duration 1
maveg(t) = mmax(t) = %

max (T 4.22
sampling time M (1) ( )

Gyros are not available on-board PoSAT-1 so, there is no reference vector con-
cerning the angular velocity and by which the estimated angular velocity can be
compared with.
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Figure 4.8: PoSAT-1 real vector magnetic moment m [Am?], from all coils, starting

at 2000/11/02, 00:00:34.
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PoSat-1 Real data at 02/11/00 00:00:34
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Figure 4.9: PoSAT-1 real attitude, Euler angles: roll, pitch and yaw, at 2000/11/02,
00:00:34.

The orbit determination of the PoOSAT-1 was computed 60168.7 seconds before
NORAD epoch and 84960 seconds afterwards in order to obtain the IGRF 10%
order reference field components starting at the same time as the rest of the data,
2000/11/02, 00:00:34 for 14 orbits, see Fig. 4.10.

The star sensor is not being used to compute the satellite attitude, however the
PoSAT-1 has an on-board ADCS, [16]. It is implemented an EKF based only in
magnetometers data. Its design assumes that the roll () and pitch () angles,
according to the CS defined in Section (4.2.3), are small and the equations are only
valid for LMZ body axes. This CS is defined as a non-spinning CS and it is identical
to the two sequence Euler rotation 21 where the first rotation is the pitch (6) angle
around the y-axis and the second rotation, the roll (1) angle, is around the z-

axis. The state vector estimated is x = [ v 0 ¢ 0 ]T and for an axially
symmetric satellite which experiences small pitch and roll angles the equations of
motion are set to the following:

. . NMT
Y = —4(1— k)W + kwep + ; + w,
) oy
6 = —3(1—Fk)w?0+ kw0 + ? + w, (4.23)
.. . MT t
¢ = —wo+ “— +w,
I
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PoSat-1 Real data at 02/11/00 00:00:34

Bxo [micro Tesla]
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Bzo [micro Tesla]

Orbits

Figure 4.10: PoSAT-1 IGRF 10" order reference field components [uT], at
2000/11/02, 00:00:34, in orbital CS.

where [y = I, = 1, # I, k = %, NJMT is a torque induced by the magnetorquers

only, and w = [ Wy Wy W, }T 1S a zero mean noise vector.

Thus, estimation of the roll, pitch and yaw angles were supplied to be used as
comparison with the EKF estimates described in this work (Fig.4.9). The data
supplied has a different CS from the one defined in Section 2.1 which is presented
in Fig. 4.11. The Euler angles roll (¢), pitch (6) and yaw (¢) are rotations about
the z-axis, followed by a rotation about the y-axis and end with the z-axis like in
Section (2.2.3). However, the sequence of rotations used is Euler-213. This means a
sequence of positive rotations about the y-axis followed by the z-axis and end with
the z-axis in the new CS. Thus, the DCM matrix is,

cos ¢ cos 6 + sin ¢ sin 1 sin 6 cos¢sinty  — cos ¢sinf + sin ¢ sin ¢ cos 6
A213(0,%,¢9) = | —singcosf + cospsinysin® cos¢pcosyy  sin¢gsinf + cos psiny cos (4.24)
cos 1 sin O —siny cos 1 cos 6

EKF Changes

The average magnetic moment is used, from (4.22), together with the magnetometers
sensor measurements to obtain the control moment (2.73) to be used in the EKF,

Netrt = ma’ueg(t) X bi)neaslo_(i (425)

The magnetometer measurements and the respective reference vector are then
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7 Orbit

Figure 4.11: Orbital Cordinate System (OCS) and Body Coordinate System (BCS)
for PoSAT-1 real data.

normalized,
bt = M b° = b’ (4.26)
meas b o’ nbe '

meas

to be used in the innovation step of the EKF algorithm (3.69).

The CS defined in Section 2.1 has been changed to the following: the inertial z
axes is pointing in nadir direction, the = axis is tangent to the orbit with the same
direction as the orbital velocity and y completes the orthogonal CS. The angular
velocity of the orbit CS w.r.t. inertial CS written in body CS, (2.67) for this CS
definition is

wfiz- = Ag(‘l)""gi = Ag(‘l) [ 0 —w, 0 } = —WoJo (4-27)

hence, the angular velocity used in the kinematic equations is computed accord-
ing to (2.68),
Why = W + wolo (4.28)

For a circular orbit the £; element from the gravity gradient torque (2.70) can
be approximated to a constant denoted by square of the orbit angular rate, w3. For
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elliptical orbit and because we are dealing with real data from a satellite the position
vector of the satellite mass center w.r.t. Earth center, R, is computed based in the
propagation of the NORAD elements of the satellite for the time by which the data
is collected. Thus, instead of having w3 in the gravity gradient, the R, is computed
for each time step through the SGP4 model.

EKF Setup

The principal moments of inertia used are equal to those presented in Eq. (4.7).

Initial Conditions

According to the discussion in (3.1.2), the initial state error covariance matrix is
diagonal with elements:

P, = diag (1072, 1072, 107", 10*(1 — ¢7), 10*(1 — ¢3), 10*(1 — ¢3)) (4.29)

The initial attitude angular velocity has been set up to

wh=[0 0 0]" (4.30)

while the quaternion was added an error of 50% to the first value given by the
roll /pitch/yaw angles,

v, =—0.91°-1.5,60,=1.6°-1.5, ¢, =136.1°- 1.5 (4.31)

0o = —

and from (4.24) and (2.35) the quaternions have the following values,

q= [ —0.0230 —0.0073 —0.9775 0.2094 ]T (4.32)

Measurement noise Covariance Matrix

The measurement noise covariance matrix (3.64) for magnetometers was used as in
Eq. (4.11).

Process noise covariance matrix

The process noise covariance matrix used is the one adopted by [45] and explained
in Section 3.1.2, but with o, 0,,, 0,, tuned for the PoSAT-1 real data and £,
parameters,

Q = diag (1077, 1077, 107°, 107*(1 — ¢7), 10741 — ¢3), 107*(1 — ¢3))  (4.33)
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Estimator only Estimator in the Loop
Without/SS With/SS Without/SS With/SS
EKF EKF SvD EKF EKF SvD
Init 1 A B C D E F SimSat
Init 2 c | w U7 s | «x |77 } Simultion
POSAT-1 zz

Table 4.5: The several tests performed to the data in this work. The shortname Init
is referred to the initial conditions proposed.

4.3 Tests

A set of simulation tests were set up to obtain the attitude estimation perfor-
mance in different scenarios for the EKF and SVD point-to-point methods and to
compare them. The tests are divided in two main groups: open loop and closed loop.
In open loop, the satellite has no control moment actuating on it and it experiences
a motion ruled by the equations of motion. In this case the estimators attempt to
follow the real attitude and angular velocity. In closed loop the estimator feeds the
control with estimates of the satellite state. The Predictive Controler, vd. (4.1),
which is influencing the state of the satellite, aims to damp or eliminate the satellite
libration disturbed by a large initial angle w.r.t. the local vertical, see Tables 4.8 and
4.9. For this stability test, the satellite already has its boom deployed in the zenith
direction but has libration movement and spins. For the estimators the closed loop
is more demanding since the control algorithm is not aware of the real state but fed
by the estimator algorithm results. From the estimation algorithm standpoint the
goal is to follow the true state as accurately as possible with or without the control
influence.

For each of these groups described before, there is the need to analyse when both
magnetometers and Sun sensors are available because it restricts the applicability of
the estimators. With both attitude sensors available, the SVD and EKF algorithms
are able to work, but when only magnetometers measurements are available the
range of estimators algorithms is reduced to the EKF. Thus, the EKF based on
both attitude sensors have to be compared with the SVD and also be compared
with the EKF based only on magnetometer measurements, as summarized in Table
4.5.

The EKF tests were also divided according to different initial conditions of the
state vector. Two initial conditions were considered for them: initial values of the
state variables without error and with an error added to the angular velocity and
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roll /pitch/yaw at the same time, in order to test the capability of the estimator
algorithms to follow the true state, in Table 4.6.

Init. 1: Wy = Wirne and VY,,00,0, = ¢true79truea¢t1-lle
Init. 2 : w, = Error, - Wywe and ¥, 0,, ¢, = Errorguer * (U iues irues Pirae)

Table 4.6: The initial state conditions applied to the PoSAT-1 simulation.

The values for the errors, Errorgye and Error,, will be presented in the next
Chapter. The SVD algorithm does not need to be tested with an error added to the
initial state vector since the state vector does not need to be initialized.

Also, common to each simulation test, a batch of ten different initial conditions
for orbit propagation are used and also initial values for roll angle were randomly
obtained in the interval [0°,360°], while the yaw angle is chosen to be zero, as shown
in Table 4.7. The starting conditions for pitch angle and for angular velocity were

Orbit n° 1 2 4 5 6 7 9 10
Day 1 1 1 1 1 1 1 1 1 1
Hours 1 8 19 0 3 4 4 14 6

Minutes 23 28 30 14 20 51 46 29 31 46
Seconds 22 8 28 12 0 29 10 28 57 18
Roll - ¢ 3017 7.0 2453 136.6 299.5 181.0 2554 1544 109.7 68.3

Table 4.7: Initial orbit conditons for January, 1997.

set up as in Table 4.8, and when the Predictive control is being used the desired

Initial Condition
v = 60°
wh =1[0.001037 0 0.02 |rad/s

Table 4.8: Initial pitch and angular velocity.

angle v and angular velocity are set up as in Table 4.9.
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Desired Condition
v=0°
wh =[0 0 0.02]rad/s

Table 4.9: Desired pitch and angular velocity for the closed loop tests.

4.4 Performance Criteria

Since the quaternions have no clear physical meaning, as opposite to the Euler
angles, the quaternions are then transformed to Euler angles (4.43), according to the
sequence of rotations considered, for this work and for the simulation case, defined
in Section 2.2.3.

There are several ways to analyse the state estimates coming from the algorithms.
The state vector considered is the angular velocity and the quaternions, in Section
3.1.1. As explained before, the attitude estimates are presented in terms of the Euler
angles, because they have a clear physical representation, instead of the quaternions.
The Euler angles are obtained through the quaternions in several ways, and the one
adopted in this work for the simulation case is described in Section Quaternions to
Euler Angles. For the SimSat simulation, the performance of the EKF and SVD
filters is evaluated according to the RMS of the error between the true angular
velocity and the true roll, pitch and yaw Euler angles obtained from the equations
of motion and the estimates computed by the estimator algorithms. For the EKF
a standard deviation for both angular velocity estimates and roll, pitch and yaw
Euler angles are obtained from the state error covariance matrix. However, the
SVD algorithm gives only the error covariance for the attitude matrix so, in this
case, only the roll, pitch and yaw Euler angle errors are bounded by the standard
deviation.

Another parameter used to analyse the accuracy of the algorithms is the Euler
angle error plot, which is based in the computation of the attitude matrix. This
information is needed to better show the error incurred by the SVD, since it does
not run continuously during a whole orbit.

For the EKF, results obtained from real PoSAT-1 satellite data, the true attitude
and angular velocity is unknown so it is not possible to obtain neither the Euler angle

nor the angular velocity and Euler roll, pitch and yaw errors but only a comparison
with the EKF running on-board of the PoSAT-1 [16].

Pointing Accuracy

The angle v, or pointing accuracy of the satellite several times plotted in the
results, is the angle between the local vertical and the boom axis, Fig. 4.12.
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Figure 4.12: v angle represented in the satellite.

Small Angle Approximation

For a small angle approximation, the Euler angles may be obtained directly from
the quaternions,

S 2

=
11 1R 1R

(4.34)

— N [

2

Angular Velocity Error

The error in the angular velocity is calculated as the root mean square error
(RMS),

Eu. = Jim 235 0.(0) — (1)
By = lim A58 0,(0) —,0) (43)
Eu. = lim \[295.(0) ~ 0.(0)

Euler Roll, Pitch and Yaw Error
The Euler angle errors are calculated considering the small angle approximation

(4.34) and taking the RMS which is twice the difference between the real and the
estimated quaternion,
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By lim  [23° (w(t) - 010))
By lim %i (6 —01)) (4.36)
By~ T 23 (o(t) ~ (1))

I
I,

Euler Angle Error

Given the true attitude matrix, Atme, and the estimated attitude matrix obtained
from the estimation algorithms, A an error matrix, A, denotes the error between
estimated matrix and the true one,

Atrue = AA
A’Zi = AtrueAT

From the error matrix, the Euler angle error can be computed according to (2.11),

trace(A) = 14 2cos(x) (4.37)

X = acos <%> (4.38)

Recalling that the attitude matrix represents a rotation between two CS, this
statistical information tells how far the estimated attitude matrix is from the right
solution, i.e. the correct transformation.

Standard Deviation

The angular velocity and Euler angle errors defined before can be bounded by
a standard deviation, o; which provides realistic error estimates assuming that the
measurements are uncorrelated. The standard deviation is calculated from the cor-
responding diagonal elements of the state error covariance matrix, P,

0 =/Pij (4.39)

Since the diagonal of the error covariance matrix is defined as Pj; = Eleje]]

where e = x —  is the error of the corresponding parameter, for the angular velocity,

P,

Waz, yy, 2z E[(ww% vy, 2z — Waz, yy, ZZ)(wa vy, 2z — Waz, yy, ZZ)T]

E[ el ]

€
Wz, yy, 2z " Wez, yy, 2z

O-W:cx, Yy, 2z = \/ waa:‘ Yy, 2z (4'40)
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and for the Euler angles,

PQ17Q27Q3 = E[<q17 q2,43 — qu7 qA% Q3>(Q17 q2,43 — qua éQa %)T] (441)

Using the small angle approximation from (4.34),

0, 0,06 4,0, )0,
qu,qz,qs = E[(¢2¢—w2¢)(¢2¢_¢2¢

1 1
D T — -
1 [%ﬂ@ew,qﬁ] 1 v0e

0’¢705¢ = \% P¢707¢ = V 4P¢117‘127¢]3 = 2 V PQ17Q27!13 (4'42)

The Euler angles are computed in terms of the elements of the attitude matrix
that maps any vector from the OCS to the BCS, Eq. (2.35), or in terms of the
Euler angles depending on the sequence of rotations used. For the 123 sequence,
from Eq. (2.15) the following relation can be established between quaternions g=

[ qGi 92 43 Q4 ]T and Euler angles, v, 6, ¢:

)']

Aszz ) ?
§ = atan2 (As,), 90° < 6 < 90° (4.43)

¢ — atan2 (—Q—) L 0° < ¢ < 360°

b = atan2 (—A—) 0° < 4 < 360°

where atan2(Y, X) is a Matlab functionis the four quadrant arctangent of the real
parts of the elements of X and Y. —7 <=atan2(Y, X) <= .

For the PoSAT-1 real data the sequence of Euler rotations 213 was considered.
Thus, a different relation can be established between the attitude matrix (2.35) and
the Euler angles from (4.24),

A
0 = arctan2 (i) ,0° < 0 < 360° (4.44)
A33
= arcsin (—Azz), —90° < < 90° (4.45)
A
¢ = arctan? (i) ,0° < ¢ < 360° (4.46)
A22

Considering other elements in the attitude matrix, different expressions can be ob-
tained relating quaternions and Euler angles.

[6)



Chapter 5

Results

In this chapter, the results obtained for the conditions set up in the previous
chapter are presented. The results are described according to the Tests description
done in Section 4.3, summarized in Table 4.5. For each test, ten experiences were
performed according to Table 4.7 and numbered. The results of the most significant
experiences are presented.

Each test is analysed acording to the performance criteria defined in Section 4.4.
Besides accuracy and computational load, one of the goals of the EKF tests is to
study the effect of the covariance matrix parameters tuning on the estimator results.

5.1 PoSAT-1 Simulation

5.1.1 Test A

The RMS was obtained from a set of three orbits for each of the ten different
orbital conditions described in Table 4.7. The three orbits were established because
it was verified during the several experiences that a minimum number of three orbits
was required for the control loop to achieve its goal. So, the RMS obtained for this
test, according to Eq. (4.35), is for w, and w,, 9.71x107° rad/s and 9.63x107° rad/s,
respectively. These values are very similar, as expected, due to the satellite geometry.
For the w,, the RMS obtained is 1.58x107* rad/s. For the Euler angles the RMS
obtained according to Eq. (4.36), is 2.89°, 1.99°, 3.02° for roll (1), pitch (6) and
yaw(¢) respectively. Since the EKF computes the process error covariance matrix
for the angular velocity and for the quaternions then the RMS can be bounded by
the standard deviation computed by Egs. (4.40) and (4.42).

In Fig. 5.1 the angular velocity and in Fig. 5.2 the roll (), pitch () and
yaw(¢) angles are plotted for one of the ten experiments. Also in Fig. 5.3 and 5.4,
the evolution of the angular velocity and roll (1) pitch (0) and yaw (¢) Euler angles
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sqrt(P)= error wx, wy, wz, Simulation n° 4
T T T

0.05 i

2.956e-005

-0.05)

WX err:

0.05

-0.05]

wy err= 3.068e-005

NN TSNP NV

5.148e-005

o

wz err
o
[
j

0 0.5 1 1.5 2 25
Orbits

Figure 5.1: Test A. RMS (black line) of the angular velocity error [rad/s| bounded
by its standard deviation (blue line).

can be seen for three orbits. From the graphics, the estimates (blue line) almost
coincide with the true value (red line) all the time. Moreover, the evolution of the
Euler angle error as defined in Eq. (4.38) is shown in Fig. 5.5. Notice that the
estimator and system initial conditions are exactly the same in Test A, hence the
initial error is zero and the maximum error is about the same for the Euler angles
RMS previously referred. The evolution of the angle v in Fig. 5.6, shows the absence
of control leading the satellite to a libration movement around the local vertical.

5.1.2 Test D

In closed loop, the EKF results are, as expected, worse than those in open loop,
since the closed loop is a more demanding situation. These results can be compared
through the RMS obtained for the angular velocity: w, and w, is 3.77x10~* rad/s
and for w, = 4.456x10~* rad/s. The RMS for the Euler angles is: ¢ = 7.65°,
0 = 3.89° and ¢ = 6.62°. This test is exemplified by the experience plotted in Figs.
5.7 - 5.10. To improve the results of the estimator, all subsystems, estimator and
control algorithm must be tuned in closed loop.

From Fig. 5.10 it is evident that the control algorithm is working since the
libration of the satellite is being reduced over time.
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Figure 5.2: Test A. RMS (black line) of the Euler angles [°] error is bounded by its

standard deviation (blue line).

rad/s].

Figure 5.3: Test A. Estimation results (blue line) and the true values of the angular

velocities (red line).
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Roll, Pitch, Yaw, Simulation n° 4
T T T
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Roll err
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25

Figure 5.4: Test A. Estimation results (blue line) and the true values of the roll (v),
pitch (0) and yaw (¢) Euler angles (red line). In the y-axis label is the RMS for the
Euler angles [Roll/Pitch/Yaw err=°].
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Figure 5.5: Test A. Euler angle error.
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Figure 5.6: Test A. The v evolution.
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Figure 5.7: Test D. Estimation results (blue line) and the true values of the angular
velocities (red line). The y-axis label is the RMS for the angular velocity [wy., .
err=rad/s|.
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Figure 5.8: Test D. Estimation results (blue line) and the true values of the roll (v),

pitch (0) and yaw (¢) Euler angles (red line). In the y-axis label is the RMS for the
Euler angles [Roll/Pitch/Yaw err=°].
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Figure 5.9: Test D. Euler angle error.
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Figure 5.10: Test D. The v evolution.

5.1.3 Test G

An error of 50% was added to the initial angular velocity and to the initial 1),
6 and ¢. The initial conditions of error covariance matrix, P, , are changed, i.e.,
it is maintained exactly equal to the one used in Test A. Despite the 50% error in
the initial conditions, the EKF was able to converge but the results of the estimator
algorithm are poor compared with the results from Test A. The RMS for the angular
velocity is: w, = wy, = 1.05x1073 rad/s and w, = 2.51x1073 rad/s and for the Euler
angles is: ¢ = 25.27°, § = 12.85°, ¢ = 29.56°. This test is exemplified by the
experiences plotted in Figs 5.11 - 5.13, that stress the initial error and the estimated
state variables quick convergence to the true values.

However, this is a sensitive issue because both the convergence and the estimator
result quality are dependable of the initial P,. If the values of its diagonal are
decreased it can cause the algorithm to diverge or to take longer to converge. On
the other hand, the results are also influenced by the initial error for some time, as
can be checked by comparing the accuracy obtained between Test A and Test G.
This is due to the fading memory characteristic of the EKF.

5.1.4 Test J

As in Test G, an error of 50% had been added to the initial angular velocity
and to the initial ¥, 8 and ¢. If the RMS error increased comparing Test G to Test
A, then for closed loop the RMS error increased even more. As explained before the
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Figure 5.11: Test G. Estimation results (blue line) and the true values of the angular
velocities (red line). The y-axis label is the RMS for the angular velocity [wy., .
err=rad/s]|.
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Figure 5.12: Test G. Estimation results (blue line) and the true values of the roll

(v), pitch (0) and yaw (¢) Euler angles (red line). In the y-axis label is the RMS
for the Euler angles [Roll/Pitch/Yaw err=°].
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Figure 5.13: Test G. Euler angle error.

RMS error increased when error is added to the initial state, comparing Test G to
Test A, and for closed loop too, comparing Test A to Test D. Thus, for this Test
is expected a worse performance than for Test G or even for Test D, due to fact of
closing the loop and adding error to the initial state variables, as stressed before.
The RMS for the angular velocity is: w, = w, = 1.1x1073 rad/s and w, = 2.7x1073
rad/s and for the FEuler angles is: ¢ = 28.46°, § = 13.71°, ¢ = 24.46°. In Figs. 5.14
- 5.16 are plotted, for one of the ten experiments, an experiment that exemplifies
this Test.

5.1.5 Test B

The EKF results adding the Sun sensor measurements are about the same as
for the Test A. In fact, it is known that the more measurements available, the better
are the estimates obtained by the Kalman filter. It must be stressed that for this
Test the initial state vector is known for the filter. This can be visualized comparing
Figs. 5.3 - 5.4 with Figs. 5.17 - 5.18.

5.1.6 Test E

The EKF results improve with the presence of the Sun sensors data in compar-
ison with the Test D. This results can be compared by the RMS obtained for the
angular velocity: w, and w, is 3.4x107* rad/s and for w, = 3.0x107* rad/s. The
Euler angles: ¢ = 5.63°, § = 6.45° and ¢ = 3.20°. In Figs. 5.19 - 5.21 are plotted,
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Figure 5.14: Test J. Estimation results (blue line) and the true values of the angular

velocities (red line). The y-axis label is the RMS for the angular velocity [wy., .
err=rad/s]|.
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Figure 5.15: Test J. Estimation results (blue line) and the true values of the roll

(v), pitch (0) and yaw (¢) Euler angles (red line). In the y-axis label is the RMS
for the Euler angles [Roll/Pitch/Yaw err=°].
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Figure 5.16: Test J. Euler angle error.
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Figure 5.17: Test B. Estimation results (blue line) and the true values of the angular
velocities (red line). The y-axis label is the RMS for the angular velocity [wy., .
err=rad/s]|.
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Figure 5.18: Test B. Estimation results (blue line) and the true values of the roll
(v), pitch () and yaw (¢) Euler angles (red line). In the y-axis label is the RMS
for the Euler angles [Roll/Pitch/Yaw err=°].

for one of the ten experiments, an experiment that exemplifies this Test.

5.1.7 Test H

When the Sun sensor measurements are available for the EKF besides the mag-
netometers, the results improved considerably comparing with those obtained from
Test G. This is evident in the RMS obtained: w, = 9.13x10~* rad/s, w, = 9.56x10~*
rad/s and w, = 1.76x1073 rad/s and for the Euler angles is: ¢ = 6.46°, § = 3.77°,
¢ = 6.24°. The experiment that exemplify is in Figs. 5.22 - 5.24 comparing with
Test G in Figs 5.11 - 5.13.As stressed before, the statistical characteristics of the
Kalman filter improve with more measurements available. This is not so evident
when Test A is compared with Test B but the improvement in Test G is compared
to Test H is more evident due to the error in the initial conditions. The filter recov-
ers from the error added to the initial state vector in Test H considerably, than in
Test G, as can be compared by Fig. 5.24 and Fig. 5.13. It is to notice that Test G
and H have exactly the same orbit parameters, defined in Table 4.7.

An error in the initial state variables is more likely to happen in real situations
and this initial error is reflected for a long time in the estimator algorithm results be-
cause of the EKF fading memory, hence two or more measurements help to improve
the filter performance.
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Figure 5.19: Test E. Estimation results (blue line) and the true values of the angular
velocities (red line). The y-axis label is the RMS for the angular velocity [wy., .
err=rad/s]|.
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Figure 5.20: Test E. Estimation results (blue line) and the true values of the roll
(v), pitch () and yaw (¢) Euler angles (red line). In the y-axis label is the RMS
for the Euler angles [Roll/Pitch/Yaw err=°].
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Figure 5.21: Test E. Euler angle error.
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Figure 5.22: Test H. Estimation results (blue line) and the true values of the angular

velocities (red line). The y-axis label is the RMS for the angular velocity [wy., .
err=rad/s]|.

89



5.1. POSAT-1 SIMULATION

Roll, Pitch, Yaw, Simulation n°® 126
T T T

Roll err=9.693°

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Pitch err=5.715°

7.832°

Yaw err:
KN
o
o
———

L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 14
Orbits

Figure 5.23: Test H. Estimation results (blue line) and the true values of the roll

(v), pitch (0) and yaw (¢) Euler angles (red line). In the y-axis label is the RMS
for the Euler angles [Roll/Pitch/Yaw err=°].
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Figure 5.24: Test H. Euler angle error.
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Figure 5.25: Test K. Estimation results (blue line) and the true values of the angular
velocities (red line). The y-axis label is the RMS for the angular velocity [wy., .
err=rad/s|.

5.1.8 Test K

In the same way that Test H have better results than Test G, the Test K
present better results than Test J, due the presence of the Sun sensor measurements.
However the errors increased then those obtained from Test H, because the estimator
is in the loop and the control algorithm depends on the estimator results, which is a
more demanding situation. Once again this results are supported by the RMS of the
variables states: w, = 9.51x107* rad/s, w, = 1.05x10® rad/s and w, = 1.37x1073
rad/s and for the Euler angles is: ¢ = 6.97°, 6§ = 3.89°, ¢ = 6.58°. In Figs. 5.25
- 5.27 are plotted, for one of the ten experiments, an experiment that exemplifies

this Test. It is to notice that Test K and J have exactly the same orbit parameters,
defined in Table 4.7.

5.1.9 Test C

Just for visualization of the SVD method, a signal indicating when Sun sensor
measurements are available is high and low otherwise, originating a square wave
in all plots. Figures 5.29 - 5.31 show that, when the satellite is hidden from the
Sun, ”behind” the Earth, the attitude estimation and angular velocity are obtained
exclusively from propagation of the satellite attitude dynamics. In these orbit seg-
ments, the error of the quaternion estimate raises dramatically. This is so because
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Figure 5.26: Test K. Estimation results (blue line) and the true values of the roll

(v), pitch (0) and yaw (¢) Euler angles (red line). In the y-axis label is the RMS
for the Euler angles [Roll/Pitch/Yaw err=°].
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Figure 5.27: Test K. Euler angle error.
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Figure 5.28: Test C. RMS (black line) of the Euler angles [°] error is bounded by its
standard deviation (blue line) which only is computed on SVD is running.

the model of the Sun sensor is based on the estimates of the previous attitude which
already has error due to propagation. So the attitude obtained by the algorithm
is also influenced by the error. This is also due to the fact of the error of the an-
gular velocity, since as can be seen by the kinematics equation, the quaternion is
influenced directly by the angular velocity.

However, when the Sun is in the FOV of the sensor the quaternion is becoming
close to the true value and the error incurred by the SVD it is very low (Fig. 5.32
and a detail of the Fig. 5.31) when compared to the EKF results in Fig. 5.5 - Test
A. Tf the RMS is computed for the whole orbit, with the SVD running only when
the two sensors are available, the RMS errors will be: w,, = 1.09x107% rad/s and
w, = 9.46x10~* rad/s and, for the Euler angles, v = 40.1°, § = 15.6°, ¢ = 38.3°.
Still, the angular velocity has a very good accuracy compared with the EKF'. Hence,
if the RMS is only computed for when the SVD is running the results for the Euler
angles improve considerable, aprox. ¢ = 0.52°, § = 0.55°, ¢ = 0.52°.

There are some points in orbit, when the Sun sensor measurements is available,
where the angular velocity error is very high. This is so because the angular velocity
is calculated based in the derivatives of the quaternions and if the quaternions have a
smal error it will be amplified when the angular velocity is being computed. However,
the angular velocity estimate along the z-axis is very good since it is a constant.
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Figure 5.29: Test C. Estimation results (blue line) and the true values of the angular
velocities (red line). The y-axis label is the RMS for the angular velocity [wy., .

err=rad/s|.

Simulation n® 303
T

—
8 100
<)
ﬁ 0 i L
S .100F
L L L L L L
0 0.2 0.4 06 0.8 1 12 14
7 50f o
]
&
s, ML ntpl
~
S
] / N
-50 L L L L L L
0.2 04 06 08 1 12 1.4
—_ T 7
4
g 100
b
s 0 .
z
S 100+ f
L L L Il L
0 0.2 0.4 06 0.8 1 1.2 14

Figure 5.30: Test C. Estimation results (blue line) and the true values of the roll
(v), pitch (8) and yaw (¢) Euler angles (red line).
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Figure 5.31: Test C. Euler angle error.
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Figure 5.32: Test C. Euler angle error. Detail of Fig. 5.31.
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Figure 5.33: Test C. The v evolution. Estimated (blue line) and true (red line)
values of 7.

5.1.10 Test F

For Test F the results are similar to those from Test C since the SVD is not
recursive but relies on the attitude sensor measurments on each time point to com-
pute the estimates to that point disregarding all past information. This Test is
exemplified by the experiences plotted in Figs. 5.34 - 5.35. It is evident the angular
velocity correction when the SVD algorithm is available, about the 2.5 orbits in Fig,.
5.34.

5.2 PoSAT-1 Real Data

The results obtained using PoOSAT-1 real data presented in Section (4.2.3) are
represented in the Figs 5.37 and 5.36 for angular velocity and Euler angles respec-
tively. The estimator algorithm used was the EKF defined in Chapter 3 with the
modifications explained in Chapter 4. The results are compared with the results
from the EKF implemented on-board PoSAT-1.

The RMS obtained between the estimates from the EKF and the estimates from
the estimator on-board are for the Euler ¢ and 6 angles are 5° — 6°, which is
about the results obtained for EKF applied to the simulation of PoOSAT-1 in SimSat.
However, for the yaw angle the diference between the two algorithms is bigger due
to the spinning of the satellite, = 40°. The EKF presented in this work does not
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Figure 5.34: Test F. Estimation results (blue line) and the true values of the angular
velocities (red line). The y-axis label is the RMS for the angular velocity [wy., .
err=rad/s|.

Figure 5.35: Test F. Estimation results (blue line) and the true values of the roll
(v), pitch (8) and yaw (¢) Euler angles (red line).
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assume small Euler angles aproximation as opposed to the EKF implementd on-
board PoSAT-1. The great advantage of this simplified algorithm, according to [16],
is to significantly reduce the matrix computation demand to the computer on-board.
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Figure 5.36: Test ZP. EKF estimates, for aprox. 7.2 orbits, of the Euler angles (blue
line) in comparison with the estimates of the EKF on-board of the PoSAT-1 satellite

(red line). The magnetometers are the only data supllied to the filter.
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Figure 5.37: Test ZP. EKF estimates of the angular velocity [rad/s] from PoSAT-1
real data for 14 orbits. Magnetometers measurements are the only data supplied to
the filter.

Estimator only Estimator in the Loop
W/B/p |  Withow/SS With/SS Withow/SS With/SS
EKF EKF SvD EKF EKF SVD
Init 1 2.991.99°/3.0° OA 0.52°/0.55°/0.52°  7.793.996.6° 5.69/6.5%3.2° | 1.291.4°/0.64°
Init2 | 25.3912.8%29.6°

PoSAT-1 6°/5%40°

| 658w |77 ] 85013245 | 693966 |

Table 5.1: RMS summary of the maximum Euler angles for all Tests.
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Estimator only Estimator in the Loop
Withow/SS With/SS Withow/SS With/SS

[rad/s] EKF EKF SVD EKF EKF SVD

W 9.7E-5 OA 1.1E-3 3.8E-4 34E-4 6.0E-4

Init 1 W 9.6E-5 OA 1.0E-3 3.8E-4 34E-4 8.1E-4

W, 16E5 OA 95E-4 4564 30E-4 A=
| o T1E-3 SE4 7777771 LIES 9.5E-4 W
Init 2 W T1E-3 964 | ] LIES T1E3 | 4
W, 251E-3 I 1.8E-3 //////////////%/ 2.7E-3 I 1.4E-3 V %
POSAT-1 ... @@ @ @ @ @@ @

Table 5.2: RMS summary of angular velocity error for all Tests.
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Chapter 6

Conclusions and Future Work

In this work a point-by-point (SVD) and a recursive estimation (EKF) methods
for attitude determination were tested both on simulated and real data from small
satellites. In order to analyse the accuracy of attitude and angular velocity and be
able to compare between both algorithms, a set of perform criteria was set up in
chapter 4. Even so, the comparison had to be performed with special care because
the SVD is not always running due to the temporary unavailability of the Sun sensor.

The EKF produces, as expected, the most accurate results, at the cost of in-
creased use of computational resources, due to the computation of the linearized
dynamics at each orbital location and due to the manipulation of matrices with
high rank. The SVD requires the permanent availability of two sensors, but only
magnetometers and Sun sensors are available on-board PoSAT-1, thus leading to
the requirement of propagating the attitude dynamics and kinematics while the Sun
sensor is unavailable. This produces worse results than if SVD had two sensors avail-
able along the whole orbit as shown in Chapter 5. Even so a more carefull analysis
of the SVD results shows that the error obtained is very small and just about the
same as the EKF, plus the advantage of the SVD algorithm is not influenced by
initial errors and it’s algorithm does not depend of the control moment applied to
the satellite, since, disregards the equations of motion. On the other hand, the EKF
algorithm is influenced by the initial state error and it is strongly influenced by the
tuning of the covariances matrices and by the control.

The EKF was applied to the real data of PoSAT-1satellite. As expected, the
results obtained from the PoSAT-1 simulation were better compared to those com-
ing from the PoSAT-1 real data for two main reasons. First, the attitude sensor
measurements are sampled at a larger rate in PoSAT-1 satellite, AT = 20 sec com-
pared to the AT = 1sec sampling period for the SimSat simulation. This allows the
PoSAT-1 to change its movement considerably from one sample to the next while
for the simulated PoSAT-1 having the data sampled in a short period gives almost
a continuous function of the POSAT-1 behaviour through time. Also the results of
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the PoSAT-1 are compared to a very simplified EKF, valid only for small pitch and
roll angles, while the results from the EKF applied to the PoOSAT-1 simulation are
compared to a simulated attitude.

The choice of either EKF or SVD algorithms for aplication in a real satellite
depends mainly on the accuracy required to accomplish the satellite mission. Over-
all, the EKF and the SVD (whenever both sensors are available) have very similar
results, so if attitude sensors are available along a whole orbit a good choice would
be the SVD (or another point-to-point algorithm depending on the number of at-
titude sensors available). The SVD does not have problems of divergence and does
not require covariances matrices tuning. It also does not require initial conditions
to start running the algorithm. However, the lack of attitude sensors available is a
considerable disadvantage. One may say that the EKF accuracy presented in this
work could be much better if the covariance matrices were better tuned. But, as
stressed before, the covariance matrices presented, especially the process noise co-
variance matrix, are very simple, without exaustive tuning, and still the results are
good.

Future work includes:

e to improve the performance of the SVD algorithm during the periods of orbit
for which only magnetometers are available.

e to validate the SVD algorithm with real data from a small satellite.

e the use of measurements from another sensor always available in space for
small satellites, GPS combined with the magnetometer measurements [52] or
[10], to improve the SVD performance and to obtain a more fair comparison
of the two methods in the way that the SVD would be running the whole orbit
and not just parts of it.

e regarding the previous suggestion, to analyse the possibility of using other
point-to-point method besides SVD, concerning when more than two attitude
sensors are available.

e to implement a equivalent Kalman filter that handles numerical instability as
described in Section 3.1.2, in order to upload the algothim to the real satellite.
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Appendix A

Discrete Kalman Filter

The Kalman filter is the optimal (in the sense of minimizing the estimate vari-
ance) linear estimator of the state of a multiple-input/output linear system using a
dynamical model of the process and a model of the sensor measurements.

In this appendix, the discrete-time version of the filter is summarized, following
the derivation in [18] and [13].

A.1 Process Model

Given a linear system model, on a priori estimate, X, , of the system state at
time t;, the measurements, y;, assumed statistics of the system noise and mea-
surement errors, plus initial condition information, the Kalman filter processes the
measurements data at each step in order to update the state estimate X;. Given a
continuous process described by

x =Fx+ Gu (A.1)

where the u is a forcing function whose elements are white noise, and assuming
that the continuous process is sampled at discrete times to, t1, ..., tx_1, tg,-...., an
equation relating the samples of x may be written using state space methods

X(ti1) = ®(tpon tr)x(ty) + / Bt TGl (A.2)

tg

or, in an abreviated notation,
Xk+1 = (I)ka + Wi (Ag)
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A.2. MEASUREMENT MODEL

where @, is the transition matrix and the wy is a white sequence with known co-

variance,

R k)

Projed Ahead Update
estimate

Figure A.1: Continuous process sampled at discrete times and an discrete measure-

ment model.

A.2 Measurement Model

The process measurements are taken as linear combinations of the system state

variables and occur at discrete points in time
yi = HiXp + Vi

where the covariance matrix for the wy and vy are given by

Ry, i=j
R ey

wy, and v are assumed to uncorrelated: E [kag] =0 for all j and 1.

A.3 Update estimate

Defining the estimation error to be

+ ot
€. = X —X;
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A.3. UPDATE ESTIMATE

where the %X, denotes the a priori estimate of the system state at time ¢; and X,
denotes the a posteriori estimate.

The a posteriori estimate, X, can be updated based on the use of the mea-
surements y;, and given a priori estimate, X, at time ¢y.

where K. ,; and K}, are time varying gain matrices, yet unspecified.
Substituting Eq. (A.8) into Eq. (A.9) and using Eq. (A.5) the result is,

e =X [1 ~ K, — Kka} + Kpep — Kpvy (A.10)
Calculating the mean value of the previous equation,
Elef] = E [xk [1 K- Kka” B [K,;e,;] — B[Kvi] (A.11)

By definition Elv] = 0. If E [e, ] = 0, the estimator will be unbiased (i.e., E [e]] =
0) for any state vector x;, only if K ,; = 1— K} Hy. So the updating estimate equation
(A.9) is given by

where the optimal gain matrix K is chosen in order to minimize the elements along
the major diagonal of the error covariance matrix P,", because the error covariance
matrix provides an indication of the accuracy of the estimate produced by the filter.
The expression (y, — HyX;, ) is known as the error innovation,

e, =y, — Hix;, (A.13)

So the previous expression follows,

The state vector can also be computed in terms of the perturbation 6xy, defined
as the term Ke;,

)A(k++1 = Ry + 0Xpia (A.15)
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A.4. COVARIANCE MATRIX AND OPTIMAL GAIN MATRIX

A.4 Covariance Matrix and Optimal Gain Matrix
From the definition of covariance of the error,
P =Elefef"] = E[(x; — &) (xx — %) (A.16)

Replacing the Eq. (A.5) into the Eq. (A.12) and substituting the resulting expres-
sion for #; in the Eq. (A.16), the equation becomes

P]: = E[(Xk — )A(]; — Kk(Hka + Vi — HkX];))(Xk — )A(]; — Kk(Hka + Vr — HkX];))T]
(A.17)

Since e, is uncorrelated with the measurement error vy, the previous equa-
tion becomes,

Pl =(1— KyHy)P; (1 — K, H,)" + Ky RK} (A.18)

Since the elements along the major diagonal of P, represent the variance of
the estimation error for the state variables, the trace of P, has to be differentiated
to obtain the updating equation for the optimal gain matrix.

Od(trace P,
% — _2(HP)" + 2Ky (Hy PoHy + Ry) (A.19)
k
and be equal to zero to obtain the optimal gain matrix
Ky =P, H.T[H, P, H." + Ry (A.20)

Substituting the optimal gain equation into Eq. (A.18), the covariance equa-
tion becomes,

Pf=[1-KyH_|P, (A.21)

The expression from Eq. (A.18), is called the Joseph Form, and is usually
used in the algorithms instead of Eq. (A.21), because it has a natural symmetry
avoiding divergence problems in P matrix and is the only one valid for optimal
or suboptimal gain matrix. However when the gain is optimal the results of both
expressions are identical.

A.5 Propagation of the state variables

Between measurements it is desirable to obtain an estimate and the error co-
variance matrix, since the optimal gain depends on the error covariance matrix, at
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A.6. PROPAGATION OF THE ERROR COVARIANCE MATRIX

a later time, tx.1, in order to make optimal use of y;, in Eq. . The updated estimate
is projected ahead via the transition matrix which relates the state-vector at time
tr with the state vector at tx.1,

X, = PraX,_, (A.22)

assuming that the wy is zero mean and is not correlated with any of its terms.

Assuming that F' is constant over an interval of interest (k, k + 1), then the
transition matrix is simply the matrix exponential of F'AT, where AT is the sam-
pling period,

(FAT)?  (FAT)?
TR

O, =T =1+ FAT + (A.23)

A.6 Propagation of the Error Covariance Matrix
To project the error covariance matrix, P, , let us write P, by definition
P, = Ele,e;”] (A.24)
Substituting Eq. (A.8) into the previous,
Py = Bl(x — %0)(x — %)) (A.25)
and using Eq. (A.22) the error covariance matrix becomes

P = E[(Pexp + Wi, — Ok (Prxs, + Wi — Bp%; )" (A.26)

[P = ®1BF + Qy | (A.27)

A.7 KF Algorithm
Between measurements
PROJECT AHEAD

1. Propagation of the state variable (A.22), X, = Pk

(FAT)?
2

2. Compute transition matrix (A.23), &, ~ 1 + FAT +

3. Propagation of the error covariance matrix (A.27), P, = @1 P ®L + Qp
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A.7. KF ALGORITHM

Across measurements y1

. Update Kalman gain (A.20), Ky = Py HE ([He Py HE 4 Ria] ™
. Innovation Error (A.13), exy1 = Yr1 — Hrp1X, 4

. Perturbation update (A.14), 6xp11 = Kypi1€p41

. Update estimate (A.15), X, = X1 + 6Xppa

. Update the error covariance matrix (A.18),

Ph,=01—KpH) Py [1— Kip1Hi)" + Ky R KT

Follow to the project ahead X;7,, = % and P, = P,

Compute Kalman Gain: Yice1
Ky =P H II+1(H ke P H :+1 +Re) * l
Project ahead:
Ry =D X7 Update estimate from measurement
P, =® PR ®; +Q, R = Kior + Ky (Vi = HicaXicaa)

e |

Compute Kalman Gain:
P = (1 = KyuHpu) P (I - Ky H kﬂ)T * )2k++1

T
+ Kk+1Rk+1Kk+1

Figure A.2: Kalman filter loop.
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Appendix B

Singular Value Decomposition

(SVD)

The deterministic or point-to-point methods consist of determining the attitude
based on a set of noisy vector measurements. So, given a set of n > 2 vector
measurements by,...,b,, in the body system and a set of reference vectors ry,...,r,
in the orbit system, there exists an orthogonal matrix A that transforms rotational
vectors from the orbital to the body coordinates. The problem of finding the best
estimate of the A matrix was posed by Wahba [54] who was the first to choose a
least square criterion to define the best estimate, i.e, find the orthonormal matrix
A that minimizes the loss function

1 n
L(A) = 23w by Ax | B.)
i=1
where || . || denotes the Euclidean norm and w; are a set of positive weights assigned

to each measurement and assuming that at least one observation is available, the
weights can be normalized yielding to

Then after some manipulation the loss function can be written as following,

L(A) =1=> wb]Ar;=1—TR(AB") (B.3)
=1
where
B = ZwibiriT (B.4)
=1
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B.1. SVD SOLUTION TO WAHBA’S PROBLEM

B.1 SVD Solution to Wahba’s Problem

In this section we follow the description of the method in [33].
There always exist the matrices U, S and V such that

B=USVT (B.5)

The matrices U and V' are orthogonal matrices and S a diagonal matrix with singular
values of Y

S = diag (s1, $2, 53) (B.6)
with
S1 Z S9 Z S3 2 0 (B7)

It has the equivalent to write the proper orthogonal matrices

U. = Uldiag(1 1 detU )] (B.8)
Vi = Vi[diag(1 1 detV )] (B.9)

and
w=uTAvT (B.10)

It is possible for any proper orthogonal matrix to be expressed in terms of the
Euler axis/angle representation, from (2.12)

W = 1acos® 4 (1 — cos ®) 88" — sin & [6x] (B.11)

where @ is the rotation angle, & the unit vector and [éx] the skew-symmetric matrix
(2.31). Knowing that det(U)det(V) = 41 the matrix S can also be define,

S = [diag( S1 Sy dss )} (B.12)
In terms of these matrices, Eq (B.5) can be written as follows,
B=USV!I (B.13)

Substituting this into Eq (B.3) and using the cyclic invariance of the trace and
Eq. (B.11) gives

L(A) = 1-TR(SW) (B.14)
= 1-TR(S) + (1 —cos®) [s2 + ds3 + (s1 — $2) 5 + (s1 — ds3)&fB.15)
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B.1. SVD SOLUTION TO WAHBA’S PROBLEM

Remembering (B.7), the loss function is minimized for ® = 0 , which gives W =1
L(Agp) =1 - TR(S/> =1—5— 83— 83 —ds3 (B.16)
Thus from (B.10)

Aopt = UIVJ,- (Bl?)
= Uldiag(1,1,det U det V)] VT (B.18)

Hence, the SVD solution to Wahba’s problem is,

_ 1o O2x2 T
Ao =U | (0 det(@) det(V) |V (B.19)

B.1.1 Covariance matrix

It is of statistical interest to compute the covariance of the attitude estimate,
which is a measure of the estimation errors coming from the measurement and
reference vectors,

Slia 0 0
P=U| 0 = o0 [U" (B.20)
1
0 0 po
where
o =det(U) det(V)Ss (B.21)

As stressed by [33] the uniquess of the solution is closely related to the rank of
the matrix Y, which is equal to the number of non-zero singular values (number of
linearly independent reference vectors). If the rank of Y is less than two, ss = s3 = 0,
and the attitude matrix is not unique.
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Appendix C

Keplerian Orbital Elements

A set of five constants and one quantity which varies with time, are needed
to accurately describe the size, shape and orientation of an orbit and the position
of a satellite in that orbit at a given epoch' (time), called Keplerian elements® or
Classical Orbital Elements which are:

a semimajor axis

e eccentricity

i : inclination (C.1)
2 : right ascension of the ascending node
wp @ argument of perigee

6 : true anomaly

In the Keplerian model, the satellites orbit in an ellipse with the center of the
Earth at one of the ellipses’s focus points. The position in the orbit closest to the
Earth is called perigee and the position furthest from the Earth is called apogee.

C.1 Orbit size and shape

a - semimajor axis describes the size of the ellipse and it is half the distance be-
tween apogee and perigee. By Kepleer’s third law of planetary motion, the
orbital period is computed from the semimajor axis. Sometimes, instead of

'Epoch is a number indicating the exactly time in which the Two-Line Orbital Element Set
Format (Appendix D) is obtained. This element gives the time for which the orbital elements are
correct.

2For a better understanding of this issue, see [3] and [55].
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C.2. ORBITAL ORIENTATION

a—semimajor axis

e— eccentricity =c/a

b — semiminor axis

C — center of ellipse

F, — one of thefocii of the ellipse
6 - true anomaly

Perigee
4 Line of
apsides

Figure C.1: Definition of the orbit size and shape parameters.

the semimajor axis the mean motion (M M) is given, which is the orbital
frequency and the reciprocal of the period.

The mean motion is the average rate of satellite motion. The mean motion is
usually given in revolutions per day for Earth satellites.

e - Eccentricity determines the shape of the orbital ellipse. Formally, this is ratio

between distance from the center of the ellipse (which isn’t the center of the
Earth) to the focus of the ellipse (which is the center of the Earth) and the
semi-major axis. An ellipse with an eccentricity of 0 is a circle, and when e is
near 1, the ellipse is long and skinny.

C.2 Orbital orientation

7 -

Inclination describes the orbit ellipse plane’s tilt angle w.r.t. the plane of
the equator and it varies from 0° to 180°. Inclinations of near 0° are called
equatorial orbits, and those near 90° are called polar orbits. By convention,
orbits that go the same way as the Earth rotates (prograde or counter-clockwise
from above) have inclinations of 0° to 90°. Satellites that orbit retrograde,
opposite to the rotation of the Earth, have inclinations great than 90°. For
example, a satellite with an inclination of 180° is in an equatorial orbit going
east to west.

Right Ascension of Ascending Node is another angle that aligns the orbit ellipse
in space. The intersection of the orbit plane and the equatorial plane is called
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C.2. ORBITAL ORIENTATION

periges

T satellite (r, 8) /

descending node

agualorial
plana

Rl Ilna uf

v -/
/‘n vernm\“_'—‘———
apoga equinax

Figure C.2: Definition of the orbital orientation parameters.

the lines of nodes. The point where the satellite’s orbit crosses the equator
going south to north is called the ascending node. The one on the opposite
side of the Earth, where the satellite passes into the Southern Hemisphere is
called the descending node. Since the orbit is fixed relative to the stars and
not to the surface of the Earth, the astronomical coordinate system of right
ascension and declination is needed to measure the position of the ascending
node. Right ascension is an angle measured in the equatorial plane from a fixed
point in space, called the point of Ares (which is also the point of the vernal
equinox, where there Sun crosses the equator in the spring). Declination is
the angle measured up from the equatorial plane, just like inclination.

True Anomaly is the angle measured in the direction of motion from the perigee
to the satellite’s position at the given epoch time. Mean anomaly (M,)
describes what the satellite’s true anomaly would be if it were in a circular
orbit where the satellite moves at a constant rate around the orbit. In this case
the angle woud point directly at the satellite. A satellite in a non-circular orbit
doesn’t move at a constant velocity so thios relation does not hold. However,
no matter what eccentricity, the M, at the perigee will be 0° and at the apogee
180°. Kepler’s equation relates the true anomaly and the mean anomaly for
an eccentric orbit.
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C.3. ORBITAL POSITION

C.3 Orbital position

wp - Argument of Perigee, determines the position of the orbital ellipse in the orbital
plane. The angle between the major axis and the line of nodes is the argument
of perigee. This is measured in the plane of the orbit. It ranges from 0° to
360°, and is 0° when the perigee is at the ascending node and 180° when the
satellite is farthest from the Earth when rises up over the equator.

C.4 Peturbations

Reality is more complex than the Keplerian model, so the models used to determine
the satellites orbit in space include small corrections called perturbations which add
extra parameters. These parameters, besides the keplerian elements are stored in
various different formats where the Two Line Element (TLE) is the most common,
(Appendix D). The peturbations are due to the lumpiness of the gravitational field
and to the drag (Bstar) on the satellite due to the atmosphere.

Bstar - is the drag caused by the Earth’s atmosphere causing the satellites to spiral
downward. This element is one half the first time derivative of the Mean
Motion and tells us the rate at which the Mean Motion is changing due to
drag or other related effects.
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Appendix D

NORAD Two-Line Element Set
Format

Two-line Orbital Element Set Format is a file with a special format, shon in
Table D.1, generated by NASA and distributed by NORAD, to store the general
elements to obtain the location of any resident space object.

These element sets are periodically refined so as to maintain a reasonable
prediction capability, but it must be reconstructed by the United States Space
Command (USSPACECOM) SPG4 mathematical model in order to obtain good
predictions.

The element data are the six classical orbit parameters (COP), (Appendix
C): e— eccentricity; i— inclination, — right ascension of the ascending node, w,—
argument of the perigee, M,— mean anomaly, M M— Mean Motion and an extra
orbital parameter, Bstar— drag related parameter. All the orbital parameters are
correct for a certain Epoch time. Data for each satellite consists of three lines in
the following format:
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4—/—4 Twenty four character name
AAAAAAAAAAAAAAAAAAAAAAAA

1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN
2 NNNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NNNNNN

1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN

\’\fd =

Column 1920 Column 5461
EPOCH YEAR (last two dgits of yea). BSTAR drag term if GP4
Column 21-32 general perturbation theory
EPOCH (Julian Day and fradional portion o is used.
the day). [Bstar=0.NNNNN*10™]
2 NNNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NNNNNN
Column 3542

Right Ascension ,[Arggm?r;t E:3)]f Perigee | Mean Motion [viv revs/day]

of the Ascending o deg

Node[  degrees] Column 27-37 Column 4451

7Eccentricity Mean Anomaly [V, degrees)
Column 09-16

- [e=0. NNNNNNN]
Inclination[i degrees]

Figure D.1: The description of the compact form of the two-line element (TLE)
format. It consists of three lines, where the first is the satellites’s name and the next
two lines correspond to the data in a rigid format.
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