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Abstract

We propose a solution to the n-frame correspondence
problem under the factorization framework. During the
matching process, our algorithm takes explicitly into ac-
count the geometrical constraints associated to the recon-
struction process. To this end, a rank constraint is imposed
on the measurement matrix.

Since our method relies solely on geometric constraints,
it is not dependent on corners as image features and can
consequently match generic points (e.g. contours). Outlier
rejection is integrated as a part of the actual matching pro-
cess.

In general the problem is formulated as combinatorial,
but we develop a method which can provide a solution with
a low computational complexity. Because of this, our al-
gorithm is able to handle high-dimensional matching prob-
lems that are common in real-life applications.

1. Introduction

Establishing correspondences between the features of a
pair of images has proven to be an essential task, deeply
related to the recovery of 3D shape from 2D images.
However, currently correspondence and reconstruction are
viewed as separate problems. For example, successful algo-
rithms like [3], [8], [9] or [10] assume that correspondences
have already been established. On the other hand, feature
trackers as [5] and stereo algorithms as [4] are not designed
with reconstruction in mind. We propose to design a corre-
spondence strategy that optimizes the reconstruction crite-
rion. In the factorization framework this criterion is trans-
lated into a rank constraint on the measurement matrix.

Important gains in reconstruction performance can be
obtained by performing correspondence in areas with poor
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texture. Because of this, traditional matching algorithms
such as [5] are dependent on specific patterns (e.g. corners)
in the image to identify and extract matching candidates. In
this context, matching image points in scenes that do not
present clear corners is of great difficulty. The use of geo-
metric constraints eliminates difficulties usually associated
with the selection of features in other methods. In particu-
lar, it allows the use of contour points as features, solving
a problem frequently encountered in some classical flow-
based methods.

Previous matching algorithms based on geometric con-
straints have used non-linear cost functions [6]. We formal-
ize our criterion in such a way as to allow a solution based
on the execution of a set of linear programs. This guaran-
tees that the algorithm is computationally feasible even for
large-scale problems. This aspect is particularly important
since it allows the use of the method for real life problems,
which are usually high-dimensional. Moreover, we provide
a multi-frame formulation for this problem.

Our aim is to present a geometric matching algorithm
based on a computationally feasible cost function, that is si-
multeaneously capable of handling a large number of image
points. Moreover, the algorithm should be able to reject a
significant number of outliers that usually arise in real-life
applications.

2. Problem formulation

In this text we propose a global method that is capable
of solving the correspondence problem in the factorization
context. Our objective is to successively align the observa-
tions on each frame of a video sequence in a matrix W so
that corresponding observations occupy the same column.
Note that the alignment of each frame is a combinatorial
problem. However, we will show that the solution to this
problem can be found by imposing rank constraints on W ,
resulting in an alignment of the features in the current (e.g.
most recent) frame with the matched points in the previ-
ously aligned images.



The matching candidates (feature points) in the current
frame do not have to obey to any particular constraint - in
opposition to feature points extracted in generic photome-
try based algorithms, they do not have to contain significant
texture. To emphasize this issue, we use contour points as
matching candidates. A feature of this type can potentially
be located on a region that does not provide enough photo-
metric information to allow for a correct match.

This paper presents a solution to the matching problem
using the orthographic [10] and paraperspective [8] camera.
Nevertheless, the procedure described herein is easily ex-
tendable to a generic affine camera model.

2.1. Feature representation

Observations on each frame are represented as a set of
image coordinates containing the orthogonal projection of
3D feature points in the scene. It should be stressed that
in this text the expression feature point applies to a generic
contour point and should thus not be limited to a corner
point. Assuming pf feature points, we represent the u and v
image coordinates of a frame f in the uf and vf vectors. We
assume that each set of pf feature points contains a certain
number of outliers except for the first, which contains only
the points that are to be tracked. The matrix corresponding
to the feature positions in frame f is thus represented by

wf =

[
uf

1 · · · uf
pf

vf
1 · · · vf

pf

]
(1)

Considering W1 = w1, Wf can be recursively defined as
in (2), where Wf−1 contains all correctly matched features
up to scene f − 1.

Wf =

[
Wf−1[2f−2×p0]

wf [2×pf ]Pf [pf×p0]

]
(2)

Note that the outliers in wf have to be rejected before-
hand; moreover, the remaining points have to be aligned so
that corresponding features share the same column in Wf .
Both the alignment and the outlier rejection are achieved
through matrix Pf . Figure 1. shows how the correct Pf

allows the alignment of wf with respect to Wf−1 to be ob-
tained.

In (2), Pf is a rowwise partial permutation matrix that is
defined by the conditions in (3). In the remainder of the pa-
per, for the sake of simplicity, we will refer to these matrices
simply as partial permutation matrices.

Pfij = {0, 1}, ∀i = 1...pf , ∀j = 1...p0∑
i

Pfij = 1,∀j = 1...p0∑
j

Pfij ≤ 1,∀i = 1...pf∑
i,j

Pfij = p0

(3)
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Figure 1. Rowwise Partial Permutation Matrix

In the previous equation p0 identifies the number of fea-
tures that will be matched, i. e. not discarded. Note that
it is assumed that p0 ≤ pf - for this reason, Pf is usually
a rectangular matrix, since a row is added for each outlier.
Furthermore, it is assumed that these p0 features are visible
in every frame throughout the sequence.

2.2. Enforcing rank constraints

It has been shown in [10] and [8] that a measurement
matrix similar to the one presented in (2) is highly rank def-
ficient. More specifically, when including translation Wf is
at most rank-4 in either model.

Work on factorization algorithms such as the ones re-
ferred in the previous paragraph is based on the assumption
that a matching solution between the image points has al-
ready been found, so that image coordinates corresponding
to the same feature point occupy the same column. In the
presence of incorrect matches, the resulting Wf is (gener-
ally) of higher rank. Note that in the presence of a limited
amount of noise the rank-4 constraint may still be assumed
as valid, as shown in [6].

Our problem is thus equivalent to finding a matching
solution Pf for wf that generates a rank-4 Wf . Each
new frame that is added to the stacked measurement matrix
should thus be aligned so that the row and column spaces of
the resulting matrix remain 4-dimensional (assuming that
previous frames have been correctly matched).

The formulation of the matching problem as described
above has a drawback: Wf grows with the number of
frames, which means that an ever increasing amount of data
has to be stored. This problem can be avoided by substitut-
ing Wf−1 by a base for its row space. This alternative has
the advantage of making the size of Wf independent of the
number of frames (the base for the row space is of constant
size). However, experiments have shown that error integra-
tion into the base may lead to a decrease in performance in
comparison to the explicit use of Wf−1.



2.3. Generating the cost function

We consider the SVD decomposition of Wf

Wf = QΣV T (4)

and define Z as

Z = WfWT
f = QΣ2QT =

[
Wf−1W

T
f−1 Wf−1P

T
f wT

f

wfPfW T
f−1 wfPfP T

f wT
f

]
(5)

Recall that the aim of our algorithm is to find the match-
ing solution that creates the best rank-4 Wf in the least-
squares sense. This can be achieved by minimizing the sum
of all eigenvalues λi of Z, with the exception of the four
largest ones. The eigenvalues of Z can be obtained, by def-
inition, as the result of the following expression, where qi

represents the ith column of Q, i. e. the ith eigenvector of
Z:

λi = qT
i Z(Pf )qi, Pf ∈ Pf , (6)

where Pf represents the set of partial permutation ma-
trices of dimension [pf × p0].

It should be noted when minimizing the eigenvalues that
the values of each λi depend on Pf itself. Our matching
problem must thus be formalized as the search for the opti-
mal partial permutation matrix P ∗

f such that:

P ∗
f = arg min

Pf

(∑
i>4

λi(Pf )
)

=

arg min
Pf

(∑
i>4

qT
i Z(Pf )qi

) (7)

To solve the problem of the interdependency between Pf

and qnd = {q5, ..., q2f} our algorithm runs iteratively, alter-
nating updates on Pf and on qnd. At each iteration of the
algorithm a new Pf is calculated using the current estimate
of qnd. The qnd are then updated themselves by extract-
ing the eigenvectors of Z corrected according to the newly
found Pf . The algorithm will continue to iterate alterna-
tively in Pf and qnd until convergence is achieved. The use
of this formulation requires that an initial estimate of qnd be
provided to start the iterative procedure.

A note should be made on the size of Wf : when pro-
cessing the second frame (i.e. f = 2), W2 contains only 4
rows. Under normal conditions, this matrix would be rank-
4 for all P2. To circumvent this issue, we provide an ad-
ditional image, so that w2 is actually matched against two
aligned frames. The matching of these two frames can be
achieved, for instance, with the algorithm described in [6].
Under these circumstances W2 has 6 rows, so that only the
correct P2 will provide a suitable solution.

3. Recovering a matching solution

3.1. Solving for the permutation matrix

Given an estimate for qnd, the cost function we obtained
in the previous section is quadratic in Pf , as can clearly be
seen by observing the structure of Z from (5). However,
since Pf is a partial permutation matrix, the quadratic term
PfPT

f can be written as:

PfPT
f =




p0∑
i=1

Pf
2
1i 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0
p0∑

i=1

Pf
2
pf i




(8)

Taking into account that the elements of Pf are either
0 or 1, the kth term of the diagonal of the matrix in (8)
can be simplified to

∑p0
i=1 Pf ki. In practice, this leads to a

minimization procedure which is linear in Pf .
Given a matrix M , the vec operator stacks its columns in

order to form a vector. Rearranging Pf as x = vec (Pf ),
we can write a modified cost function as a linear function of
x. Given qnd, x can now be retrieved as the solution to the
following linear program:

x∗ = arg min
x

c.x

s.t.
x = vec (Pf ) , Pf ∈ Pf

(9)

The coefficient vector c of the linear program can be de-
termined by developing∑

i>4

qT
i Z(Pf )qi (10)

in order to the elements of Pf , given qnd. Since this ex-
pression is linear in Pf it is possible to rewrite it as a dot
product of two vectors c and x, where x gathers the ele-
ments of Pf as described in above. Under these conditions,
c is given by the sum of the ci in (11), each associated to the
ith non-dominant eigenvectors of Z:

ci = 2
[(

qT
1 Wf−1

) ⊗ (
qT
2 wf

)]
+

1[1×p0] ⊗
[(

wT
f q2

)T

•
(
wT

f q2

)T
]

(11)

where q1 represents the first 2f elements of the eigen-
vector and q2 the remaining two elements. The details of
the calculation of c are given in [7].

The formulation presented in (9) still remains an inte-
ger minimization problem and as such has no efficient so-
lution. However, it can be demonstrated that an equivalent



concave cost function can be built in the sense that it attains
the same values as the original for all possible Pf in Pf .
It is also known that the minimum of a linear function over
a compact convex set C is located at an extreme point of
C. Consequently, the constraint set of a minimization prob-
lem with a linear objective function can be relaxed into its
convex-hull, provided that all the points in the original set
are extreme points of the new set. In the present case, it can
be shown that the convex-hull of the set of partial permu-
tation matrices Pf is the set of rowwise substochastic ma-
trices Sf . This set can be defined by the second and third
equations in (3) and by the condition

Pij ≥ 0, ∀i = 1...pf , ∀j = 1...p0 (12)

The resulting problem is thus equivalent to the original,
but for this class of problems (linear programming prob-
lems) there exist several efficient algorithms that can pro-
vide an adequate solution.

This method of solving the integer optimization problem
has originally been presented in [6].

3.2. Processing Image Sequences

In this section we show that using the framework de-
scribed in the previous sections it is possible to process an
image sequence automatically by providing the initializa-
tion vectors for the first match only.

To bootstrap the matching of a frame in the sequence
an estimate of the non-dominant eigenvectors of Z is re-
quired. However, since the matching solution to this new
frame is as yet unknown, this calculaton cannot be per-
formed directly. Instead, a rough estimate of the position
of the feature points in the new frame is calculated by as-
suming an identical movement in 3D space relative to the
previous frame. This estimate can then be used to recover
an approximation to the non-dominant eigenvectors of Z .

The key assumption in this process is that the movement
between consecutive images is small and smooth, so that
qnd is sufficiently close as to provide a good initialization.
As can be seen in section 4., this assumption is true for most
video sequences that have been built with a reasonable sam-
pling rate.

When determining the correspondence for the first
frame, no previous motion information is available and the
above mentioned method to determine the eigenvectors can
consequently not be used. In this case, it becomes neces-
sary to estimate the initialization vectors for the first frame
(which is often possible if some a priori knowledge is avail-
able) or to provide them externally, using an algorithm such
as the one described in [6].

3.3. Correcting Matching Errors

When determining Pf , it is possible that a matching er-
ror occurs. This error will not only lower the quality of the
solution in the frame where it occurs - since it is propagated
into the algorithm it can also induce further errors in subse-
quent frames.

To prevent this error integration process, we use a cor-
rection algorithm that identifies mismatched features by re-
projection. From previously matched images, a base for
the row space of Wf can be calculated. Correctly matched
features in the present frame are then used to calculate a
corresponding base for the column space through a least-
squares algorithm. The knowledge of corresponding bases
for both the row and column spaces allows the recovery of
the mismatched features.

This process is similar to that described in [1] for han-
dling occlusions. Note that the algorithm is able to recover
a complete set of features even if correctly matched features
are marked as mismatched. We use the corrected matrix to
generate new initialization vectors, with which we will re-
run the matching problem until a stable matching solution
is found.

4. Experiments

We tested our algorithm on two sets of data - the syn-
thetic ’Sphere’ sequence and the ’Hotel’ sequence. The
latter (real) sequence was originally obtained from CMU’s
Image database (http://vasc.ri.cmu.edu/idb/ ) and its images
can be considered orthographic for all practical purposes.

In this set of experiments we intend to demonstrate the
algorithms ability to successfully track a rigid object in
a video sequence. In both experiments, the algorithm is
initialized by the user: in the ’Sphere’ Sequence theoret-
ical values are used, while in the ’Hotel’ sequence initial
matches are selected manually for initialization. The match-
ing solution to a frame will typically result in a linear pro-
gram with tens of thousands of variables, that can take some
time to solve. In order to speed up the process, we use a pri-
ori knowledge, by assuming that there is a limited dispar-
ity between consecutive images. This allows us to rule out
matching solutions that would result in a very large move-
ment of the features - in practice, this is equivalent to forc-
ing some of the entries of the partial permutation matrix to
0. In this way, an important reduction of dimensionality is
achieved. It has been verified that this reduction does not
affect the final result, but only the time required to obtain it.

4.1. Sphere sequence

A sequence of 100 images of a translating and rotat-
ing wireframe sphere is used. The matching candidates



are points on the meridians of the sphere. Two equidistant
points are selected on each of the sphere’s eight meridians
as the points to be tracked - the structure of the sphere can be
seen in Figure 2. No noise has been added to this sequence
and its main purpose is to validate our method.

Note that with this set of matching candidates only two
corner points are present - the poles of the sphere. Due
to this fact, an algorithm dependent on corner points would
not be able to return a solution suitable to be used for recon-
struction, since only two adequate features would be avail-
able. Our algorithm, however, can use corner points and
contour points alike without any loss in precision.

In each frame, the match for the 16 inliers is found
among ca. 1200 candidates. Consequently, each frame
would require the solution of a linear program with over
19000 variables. As explained previously, using a priori
knowledge reduces the dimensionality of the problem.

4.2. Hotel sequence

This sequence is 30 frames long and contains images of
a moving toy house. 37 points (features) have been chosen
from the contour lines of the first image. As in the ’Sphere’
sequence, these points have been chosen in such a way that
they reside on contour lines. Since this sequence has been
built from real images, a limited amount of noise is asso-
ciated to each observation. The total number of matching
candidates for each frame is ca. 11000 points, resulting in
more than 400000 variables. Once more, knowledge on the
maximum amplitude of movement between frames is used
to radically reduce dimensionality. Due to the absence of
ground truth, initialization for this sequence has been pro-
vided by manual matching of the feature points so that an
initial value for the eigenvectors of Z in the first frame can
be obtained.

4.3. Results

The following images in the sequence use the result of
the preceding match for initialization, as described in sec-
tion 3.3. The algorithm is run for the two above mentioned
sequences, that present the disparity between consecutive
frames as detailed in the next table.

’Sphere’ ’Hotel’
min max min max

0.25 pxl 2.17 pxl 0.10 pxl 1.51 pxl

In the synthetic sequence, feature correspondence is
done with zero error relative to ground-truth. This is ex-
pectable since the experiment corresponds to a perfectly or-
thographic and noiseless situation.

Matching candidates for the ’Hotel’ sequence are repre-
sented as black pixels in Figure 3, on the first frame. Feature
points have been singled out as black circles. Due to the ab-
sence of ground-truth, correspondence error in the ’Hotel’
sequence cannot be evaluated directly. However, it is pos-
sible to ascertain by visual inspection that feature point tra-
jectories are consistent with the movement of the scene, as
seen in Figure 4. Correspondence quality can also be eval-
uated by recovering the 3D positions of the feature points
using [10]. In Figure 5, a top view of the 3D point cloud
clearly shows that they are aligned according to the walls of
the house. The two ’rogue’ points in the middle correspond
to the points on the chimney.

Note that in the ’Hotel’ sequence there exist a large num-
ber of outliers placed very near to the feature points. It is
thus plausible that the matching algorithm chooses a neigh-
bouring outlier over a feature point on some occasions,
without this implying an error that would compromise the
final result.
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Figure 2. 1st(lower left) and last (upper right) frame of the
’Sphere’ Sequence. Dotted lines represent inlier trajectories.

5. Future work and conclusions

We have presented a method that is capable of matching
image points extracted from generic contour points, without
resorting to corners in the image.

Our algorithm is able to cope with a high percentage of
outliers without any significant decrease in performance.
We have run experiments with a high number of points,
demonstrating that our method is computationally feasi-
ble. Reconstruction performance visually demonstrates the
capibilities of this algorithm.

The fact that the initial set of features has to be visible
over the whole sequence is an issue that becomes problem-



Figure 3. Contours of the 1st frame of the ’Hotel’ sequence. Inliers
are marked with a circle.

Figure 4. 30th frame of the ’Hotel’ sequence and associated inlier
trajectories.

atic if the sequence presents a very large movement. Han-
dling occlusions is at the moment still an open issue. The
increase in disparity between consecutive images (which is
presently diminute) also requires further investigation.

References

[1] C. Branco and J. Costeira. A 3d image mosaiching system
using the factorization method. In IEEE ISIE, Pretoria, South
Africa, July 1998.

[2] H. Lütkepohl. Handbook of Matrices, John Wiley & Sons
1996.

−200

−100

0

100

200

−200 −150 −100 −50 0 50 100 150

−200

−150

−100

−50

0

50

100

Figure 5. 3D point cloud generated by a SFM algorithm from the
computed correspondences (top view).

[3] A. Heyden, R. Berthilsson and G. Sparr. An iterative factor-
ization method for projective structure and motion from im-
age sequences. Image and Vision Computing(17), 13(1), pp.
981-991, November 1999.

[4] V. Kolmogorov and R. Zabih. Visual correspondence with oc-
clusions using graph cuts. In Proc. ICCV, pp. 508-515, July
2001.

[5] B. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision. In Proc. of the 7th

International Joint Conference on AI, 1981.

[6] J. Maciel and J. Costeira. A Global Solution to Sparse Corre-
spondence Problems. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 25(2), February 2003.

[7] R. Oliveira, J. Costeira and J. Xavier. Optimal Point Corre-
spondence through the Use of Rank Constraints, ISR Internal
Report, November 2004.

[8] C. J. Poelman and T. Kanade. A paraperspective factorization
method for shape and motion recovery. In Proc. ECCV, pp.
97-108, August 1994.

[9] P. Sturm and B. Triggs. A factorization based algorithm for
multi-image projective structure and motion. In Proc. ECCV,
pp. 709-720, April 1996.

[10] C. Tomasi and T. Kanade. Shape from motion from im-
age sreams under orthography: a factorization method.
IJCV,9(2):137-154, November 1992.


