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1 Introdution and State-of-the-ArtOmni-diretional atadioptri vision systems have been around for years [1℄.Using a suitable ombination of lenses and mirrors, these systems, when assem-bled on a mobile robot, onsiderably enlarge the �eld of view of the imagingsystem.There are many di�erent ways of assemblying a amera on a robot:� Fixed amera pointing to the front of the robot: in this ase a typialimage that an be seen from the robot is depited in Fig. 1. The maindisadvantages of this solution results from the limited amount of availableinformation, and from the inreasing ourene of olusions of the senebakground due to nearby objets.

Fig. 1. Image seen by a robot with a amera pointing to its front.� Motorized amera: this results from assemblying the amera on a stru-ture linked to a motor. The �eld of view is inreased by moving the ameraup and down (tilt) and/or left and right (pan). A major problem is also�nding an e�etive way of oordinating robot and amera motion.� More than one amera: more than one amera an be used, on one hand,to ahieve stereo vision and determine the distane to relevant objets; onthe other hand, to wath di�erent spots around the robot. This is howevera ostly solution. Furthermore, reliability is dereased due to the inreasingnumber of devies and the power onsumption an be onsiderable.� Fixed amera pointed to one or more mirrors: these belong to thelass of solutions known as atadioptri vision systems. One important ex-ample are the omni-diretional vision systems, based on a amera pointingupwards to a onvex mirror (see Fig. 2-a). The main disadvantage of omni-diretional atadioptri vision systems is the distortion, on the image, ofthe shape of relevant objets in the observed sene. Nevertheless, if the in-formation to be extrated from the image is only the relative orientation,Italian Ministry of University and Sienti� and Tehnologial Researh throughthe ENEA. 2



a) b)Fig. 2. a) Omni-diretional atadioptri vision system onsisting of a amera and aparaboli mirror; b) An image taken by a onial-spherial sensor.distortion is irrelevant, sine the angles between radial lines are preserved[2℄. Di�erent mirrors pro�les an be used, suh as oni mirrors, parabolimirrors or spherial mirrors, to name a few, eah one with a di�erent typeof distortion. When the mirror pro�le is preisely known, the image anbe unwarped with a suitable transformation, i.e., the inverse of the trans-formation performed by the mirror. Another solution is to design mirrorswhih unwarp the image diretly, saving CPU time [3℄ [4℄. Another poten-tial problem is the support type used for the mirror. The support must bearefully hosen, sine it may introdue further distortion and/or olusion(e.g., in Fig. 2-a the image is partially oluded by the supporting strutureof the mirror and by the amera itself). An example of image aptured byan omni-diretional mirror an be seen in Fig. 2-b.This paper fous on the design and use of omni-diretional atadioptri vi-sion systems for soer robots. In the RoboCup-Soer ompetitions, the �eldfeatures are mainly distinguishable by their olor (e.g., the �eld is green withwhite lines, the goals are blue and yellow, the ball is orange), hene vision isa sensor naturally shared by all partiipant teams.In the middle-size league of RoboCup-Soer, the teams are omposed of fullyautonomous robots, with no global view of the �eld and most, if not all,proessing done on board. Among those, an inreasing number of teams isusing omni-diretional atadioptri vision, so that many di�erent importantenvironment features an be seen simultaneously whenever an image frame isaquired. In the paper we desribe the approah to omni-diretional vision inthe middle-size league of RoboCup-Soer by three suh teams:� ART Team, partially represented here by the Politenio di Milano and the3



Universit�a degli Studi di Milano { Bioa, Italy, and� Minho, from the University of Minho, Portugal,� ISoRob, from the Instituto Superior T�enio, Portugal.Three main topis are overed by the paper:� The design of a multi-part omni-diretional mirror.� Virtual sensors to extrat important environment features from the image.� Omni-diretional vision-based self-loalization.Eah of the above groups onentrated on one of the topis (listed in the sameorder). This paper aims at demonstrating that an integration of the work done,based on the desribed atadioptri vision system with a multi-part mirror,is possible. Nevertheless, the results presented were obtained with mirrorsseparately designed by the di�erent groups, eah orresponding to partiularparts of the multi-part mirror.In the literature, di�erent mirror geometries have been proposed [5℄ [6℄ andeven in RoboCup-Soer middle-size league some teams already used mir-rors [7℄ [8℄ [9℄ with pro�les other than the original onial one [5℄. In 1999, the�rst multi{part mirror designed to obtain spei� properties of the image waspresented at RoboCup [10℄ [11℄.Many researhers have used several distint approahes to self-loalization ineither indoors and outdoors environments, and either using natural or arti�ialenvironment landmarks [12℄. One urrently popular approah are the so-alledMarkov Loalization methods [13,14℄.An inreasing number of teams partiipating in RoboCup-Soer middle-sizeleague is approahing the self-loalization problem. The proposed solutionsare mainly distinguished by the type of sensors used: Laser Range Finders(LRFs), vision-based omni-diretional sensors and single frontal amera. TheCS-Freiburg and Stuttgart-Cops teams an determine their position with anauray of 1 and 5 m, respetively, using LRFs [15℄. However, LRFs requirewalls surrounding the soer �eld to aquire the �eld border lines and, in asense, orrelate them with the �eld retangular shape to determine the teampostures. Other teams propose a vision based approah to self- loalizationbased on a single frontal amera, used to math a 3D geometri model ofthe �eld with the border line segments and goal lines in the aquired im-age [16℄ [17℄. RoboCup's Agilo team [16℄ proposes a single frontal amera tomath a 3-D geometri model of the �eld with the border lines and goalsline segments in the aquired image. Only a partial �eld view is used in thismethod. Iohi and Nardi [17℄ also use a single frontal amera and math thelines with a �eld model using the Hough Transform. Even though similar to thework on vision-based self-loalization desribed in this paper, their approahonsiders lines deteted loally (again due to a partial �eld view), rather than4



a global �eld view, and requires odometry to remove ambiguities. The robotsof the Tuebingen team use omni-diretional vision for self-loalization, butonly the distane to the walls is used [18℄. Several teams use a vision-basedomni-diretional atadioptri system similar to the one desribed here, butonly for ball and opposing robots traking.Omni-diretional Vision-based approahes to self-loalization have been usedalready outside RoboCup. One suh approah is desribed in [19℄, where theauthors use a oni mirror to implement a atadioptri vision system thatextrats radial straight lines from the surrounding environment, and an Ex-tended Kalman Filter to integrate the loalization data so-obtained by trian-gulation with odometry.The paper is organized as follows: in Setion 2, the design of the multi-partomni-diretional mirror is desribed. Appliations to roboti soer based onomni-diretional atadioptri vision systems, whih an use the di�erent partsof the multi-part mirror are introdued in Setions 3 and 4: virtual sensorsthat loate relevant objets/landmarks in the sene and a self-loalization al-gorithm, respetively. Finally, some onlusions and a desription of envisagedfuture work are drawn in Setion 5.2 Designing a Multi-Part Omni-Diretional MirrorAn aurate design of an omni-diretional vision sensor should enable therobot to observe the parts of the sene relevant for the spei� appliation.By analyzing the rules and aims of RoboCup-Soer middle-size league, it ispossible to de�ne a set of requirements for suh a vision system.2.1 Inferring Requirements for the Pereption System from RoboCup RulesAn omni-diretional pereption system should be able to detet points of inter-est (diretion and distane) with the auray required by the appliation. Thefollowing requirements and appliations have been identi�ed in the RoboCupdomain:� When the point of interest is in ontat or very near to the robot, a very goodauray is required for both diretion and distane, in order to properlyontrol the robot motion. An example is the ontrol of ball kiking.� When the point of interest is within a few meters from the robot, a goodauray is required for both diretion and distane. It is very useful thatthe error a�eting distane measure of sene points in this range to be5



independent from the points position. An example is self-loalization whih,basing on loalization of known points, would be eased if suh points areobserved with the same auray.� When the point is quite far, a good auray is required for the diretion,less auray may be aepted for the distane. An example is moving tothe ball: the diretional auray is required in order to be able to headtowards it.� The last requirement deals with the markers, whih allow to distinguishteam-mates from opponents. The pereption system should be able to ob-serve the markers in the range of distanes and heights where they areplaed.In 1999, a mirror was designed [10℄ [11℄ only partially mathing these require-ments. The aims were both to have enough resolution to detet and loalizethe ball even when observed at the farthest distane, and to inlude in theimage the maximum part of the ball when it is lose to the robot body. Theserequirements ould not be mathed by any of the lassial mirror shapes usedtill then, and we deided to implement a 2-part mirror. The �rst part was aonial mirror and the seond one a spherial apex, sharing a ommon tan-gent at the intersetion points. The spherial part projeted sene points atthe ground level up to 1.5 m from the sensor, thus allowing the angle of theonial part to be steep enough to observe points distant up to 6 m from thesensor (see Fig. 2-b). The sensor, implemented with a large, low-ost mirror(18.5 m of diameter) and a low ost amera, was good enough to make itpossible the implementation of suessful behaviors [11℄.Sine then, all requirements have been taken into aount and the pereptionsystem was redesigned. We deided to develop a new design methodology toimplement a new set of mirrors based on a omprehensive analysis of theabove requirements and satisfying them through an aurate ontrol of thedistribution of the image resolution [4℄.2.2 Isometri Mirror PartVision systems measure the distane between image points in order to estimatethe distane between sene points. The relationship between image and senedistanes, for omni-diretional system based on onventional onial mirrors isnot linear. Suh non-linearity turns into a distortion at the image level (see theouter part of Fig. 2-b). This distortion grows quikly with the distane fromthe objet to the observer. On one hand, it is quite obvious that the nominalvalue of the estimates an be easily orreted given the pro�le funtion of themirror. On the other hand, the auray of these measurements is orruptedby the joint e�et of suh distortion and image sampling, without any possi-6



bility to ompensate for it. The auray degradation implied by onventionalmirrors onits with the requirement of a reasonably limited amount of in-auray for any distane measure in the intermediate range. Therefore, oneof the objetives of this work was to develop an optial ompensation of theabove-desribed distortion, working diretly on the mirror pro�le in suh away that the absolute loalization error remains limited with respet to theobjet distane. In other words, the driving idea was to ontrol the distri-bution of the image resolution on a pixel basis, in order to get the desiredauray. The analytial setup for this optial ompensation turned out to bevery similar to previous work [3℄ (see also [20℄) where the aim was to ex-ploit reetive surfaes as omputational sensors. This optial ompensationresults in a onstant absolute error in the distane measurement. The trans-formation between two 2D Eulidean spaes (ground and sensor) performedby suh amera/mirror system, keeps angles unhanged and hanges lengthsby a onstant fator. This transformation, being linear, does not hange themetri tensor, negleting the onstant. Therefore, we all this kind of mirrorisometri beause of its apabilities to keep the image metri, property thatdoes not hold for onventional mirrors.An even more relevant point driving our design onerns the detetion ofimage features. The proposed design has the e�et of keeping onstant theimage size of the sene features at the ground level, inside the overed rangeof distanes. This makes less likely a detetion failure when the feature is farfrom the observer.
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Fig. 3. Sketh for inferring the di�erential equation generating the isometri part ofthe mirror ((xi+1 � xi) = k(Xi+1 �Xi)8i).The design problem is modelled by the following di�erential equation 1, whihan be inferred by applying the laws of Linear Optis (see Fig. 3).7



XY + 2Y 01�Y 021� XY 2Y 01�Y 02 = �Y �X2X(Y +H); 8><>:Y (0) = Y0Y 0(0) = 0 (1)where: Y 0 = dY=dX, � = k �, � is the foal length, k is the proportionalityonstant from X to x, H is the pin-hole height from the ground. Di�erentlyfrom [3℄, [20℄ we developed a geometrial integration of equation 1. Ourapproah is based on a loal �rst order approximation of the pro�le: at eahpoint the mirror has been approximated by its tangent spae. The resultingpro�le looks quite similar to the one obtained in [3℄. It is onvex into its �rsthalf, i.e. the part that goes from the axis of symmetry toward the outside ofthe mirror; then it has an inetion point and �nally it gets slightly onave.Establishing point by point the relationship between the mirror pro�le andthe sene is one way to ontrol the distribution of the image resolution. Es-tablishing the amount of image resolution devoted to a single part is a anotherway to ontrol the distribution of the image resolution.2.3 Constant Curvature Mirror PartIt would be desirable if the above desribed design approah ould over thewhole range of distanes required for the RoboCup purposes, but the useof onventional low-ost olor ameras does not allow a reliable detetion ofrelevant features on the whole range of distanes. Thus we have designed aseond mirror part that satis�es jointly two requirements of the previouslymentioned ones. The �rst of suh requirements is the overing of the farthestrange of distanes. The seond is the markers detetion and loalization. Thesetwo requirements do not imply an auray as high as for the other ones.Another aspet of the design of this part is to preserve the ontinuity betweenthe two portions of the image in order to ease the assoiation of the robot bodyto its marker, when they are aross the two parts. Suh image ontinuity an beguaranteed by imposing the ontinuity of the tangent at the juntion betweenthe isometri and the new part of the mirror (point A in Fig. 4-a). Anotherondition omes from �xing point B = (XB; YB) and setting the height Hmaxso that it an be observed at distane dmax. This onstraint gives the tangentto the pro�le in point B.tan(�) = (Hmax � YB)(dmax �XB) ; tan(�) = xb� ; tan() = tan((� + � � �)2 ); (2)where: � is the foal length.Beause there is no other onstraint, this portion of the mirror an be de-signed, e.g., by imposing a onstant variation of the tangent between the two8
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b)Fig. 4. a) Sketh for the design of the onstant urvature part of the mirror; b)Sketh for the design of the planar part of the mirror.endpoints. Hene the name \onstant urvature" given to this part of the mir-ror. The mirror will over ompletely the highest part of the sene (Zone B).On the other hand, when the robots are quite near, they will be observed bythe �rst part of the mirror (Zone A).2.4 Planar Mirror PartThe so far designed mirror does not satisfy the requirement onerning thenearer range of distanes. Due to the robot olusion (see Fig. 4-b), it is notpossible to observe the sene immediately lose to the robot. The relativelysmall image of a feature, when very near and imaged in the isometri part,results in a less than required auray, while the highest should be obtainedin the very lose range. To satisfy the requirement, a third part of mirror hasbeen introdued. This part should be the outmost to su�er the least olusionfrom the robot body. The simplest solution to this design problem is a planarmirror lying on a plane perpendiular to the rotational axis. The height ofthis part has to be as low as possible, with respet to the amera, in orderto give the largest images of the features. At the same time, this part shouldnot be on the line sight of others. Hene the hoie has been to have a planarmirror at the same height of the last point of the onstant urvature part ofthe mirror (point B). The point C is set as follows:XC(YC � ��HSensor) = x� YC = YB; (3)where HSensor is the height of sensor plane and � is the foal length. The ballimage produed by this part is large enough to allow a reliable detetion andan aurate loalization. 9



2.5 The Resulting MirrorThe mirror pro�le resulting from the above desribed design is shown in Fig. 5-a. It enables the system to observe up to 6 m far away without image distortionat the ground level; thanks to the onstant urvature part it an observe upto the maximum height, 0.6 m, at the maximum distane in the ground (11.2m). Its outer part allows the observation of objets from 0.39 m to 0.51 m.The last prototype of the mirror is depited in Fig. 5-b; an image obtained bythis mirror and a very low-ost amera is shown in Fig. 6. You may notie thatsuh image have been olleted after a rough mehanial setup. This ativityshould have aligned optial and mirror axis, put the mirror at the designeddistane from the pin-hole, et. It is extremely likely that some defet is stillpresent on the image.
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a) b)Fig. 5. a) Pro�le of the overall mirror; b)The last mirror prototype.3 Virtual Image Sensors for Roboti SoerMany visual features are important in the RoboCup-Soer domain. A set ofvirtual image sensors 3 was designed to extrat a ruial subset of those fea-tures for middle-size league robots, and handle the neessary ations, namely:� other robots and walls, for obstale avoidane,� goals,� far ball, to move towards it,� near ball, to kik it,� atadioptri system alibration.3 A virtual image sensor extrats features from a (sub)image, suh as the entroidor whether an objet is present or not. Di�erent virtual sensors operate over theimage provided by just one transduer: the CCD amera plus the video aquisitionboard. 10
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Fig. 6. Image taken with the robot near to the enter of the ground (Melbourne,31.08.00, �eld B of the initial tournament). Notie the e�et of the isometri optialompensation, whih lasts up to 6 m; in the onstant urvature part it is possibleto detet a goal and the marker. However, their distanes from the observer, thanksto the ontinuity with the �rst part, an be measured at the ground ontat pointwith the limited error provided by the isometri design. Notie also the dimensionof the farther ball, whih is even larger that when nearby beause of the isometriproperty holding at the oor level only. There was no marker on the robot besidesthe farther ball.Those virtual sensors an be used with any atadioptri vision system, parti-ularly the one desribed in the preedent setion. This setion goes throughtheir implementation details for a paraboli mirror that was built to test onlythe virtual sensors.3.1 The Importane of ColorsAfter apturing an image, what an be done with it in order to instrut arobot to play soer? An important step is the reliable extration of visualfeatures from the image, orresponding to relevant objets on the �eld.First, the objets must be reognized. These are the two goals, the ball, thesurrounding walls, the other robots and their markers. All those objets arereognized by their known olors. Eight di�erent olors are used:� the ball is red,� the playing �eld is green,� one goal is blue,� the other goal is yellow,� the surrounding walls are white (inluding some letters and symbols in11



blak),� the robots are predominantly blak,� one team olor is magenta,� the other team olor is yan.These eight olors orrespond preisely to the eight verties of the RGB ube[21℄.Color segmentation is obviously an important problem for RoboCup-soerplaying robots. The image proessing system must not only orretly disrim-inate the eight signi�ant olors, but also avoid the identi�ation of objetsexternal to the game as relevant ones. This is a ritial issue sine many peoplewalks around the playing �eld wearing olourful T-shirt, and sometimes otherred balls are left nearby the �eld.3.2 Image Formats and Color SegmentationDi�erent ameras provide images in di�erent formats. The most usual onesare RGB and YUV. Due to its video harateristis, YUV is the most suitableolor spae for olor segmentation. Its main advantages an be desribed as:� the signal is separated (to analyse shape, we don't need olor, but justluminane);� it is very muh light independent;� it is fast, sine no hardware onversion is required;� lookup tables are 2-dimensional, and thus they are easy to aess and requireless storage spae than \true" 3-D olor spaes;� allows exible onversions to RGB for display;� many ameras output their image in the YUV format.The main disadvantages are:� it needs to be onverted to RGB to be displayed on a omputer sreen;� it is a format most suitable for video rather than for still images.3.3 Sensor Readings from an Image SystemMost sensorial information required in RoboCup-Soer an be extrated bya vision system. Our approah was to de�ne image windows where ertainattributes are expeted to be found. An example an be seen in Fig. 7, for aparaboli mirror. Notie that the image windows must be hanged aordingto the partiular mirror pro�le used and/or mirror assembly on the robot.12



Fig. 7. Captured image, with superimposed de�ned windows for virtual sensors.This system starts by applying a �lter to every image pixel. All olors aresegmented onto the eight possible and aeptable options.The main virtual sensors used in this system are designated as Obstale Avoid-ane, Goal Detetion, Ball Detetion, Eminent Kik and Catadioptri System Cal-libration. We shall now desribe eah of them in detail.� Obstale Avoidane The nine squares around the amera are used as virtualbumpers (window E in Fig. 7). The amount of blak and white inside eahsquare is alulated and, should it be over a ertain prede�ned value, anobstale is deteted, foring the motion ontroller to move the robot awayfrom the obstale. The \bumpers" are numbered from 1 to 9, starting on theleft side. In the image shown, bumpers 2, 3 and 9 are darker whih meansthey are agged showing evidene of an obstale deteted.� Goal Detetion By �nding the maximum value of blue (window A in Fig. 7)in the image and applying a threshold, the blue goal an be found. A similartehnique is used for the yellow goal. In order to avoid noise from outsidethe �eld, whih ould be onfused with the atual blue (yellow) goal, thismaximum must be inside the top three retangles on the image (window Bin Fig. 7).� Ball Detetion The maximum value of red (window C in Fig. 7) represents theball. The red olor is the easiest to trak and the one with least interferene,sine the ball has a very unique and bright olor. Due to its motion, theball an be seen anywhere on the image, and so an window C be loated.� Eminent Kik The robot should not ativate the kiking devie when the ballis not ready to be kiked, to save energy and avoid hurting its opponents.Therefore, the kiking devie is ativated only when the ball (red rossrepresented by letter C in Fig. 7) is inside the red retangle (letter D on thesame image). This also means that the robot will kik the ball only when13



the ball is touhing the robot.� Catadioptri System Callibration Should, for some reason, the mirror and/orthe amera omposing the atadioptri vision system be moved from itsposition, the robot will not �nd the relevant objets in the orret imagewindows. Therefore, for easy allibration of the atadioptri system, theamera lens must be plaed inside the square given by letter F in Fig. 7.Many other virtual sensors an be reated. However, the number of sensorsis ritial for system performane and therefore their number must be lim-ited, otherwise, the number of frames proessed per seond will substantiallyderease.
4 Omni-Diretional Vision-Based Self-LoalizationThe navigation system is one of the most important sub-system of a mobilerobot. In many appliations, espeially those onerning well-strutured in-doors environments, one important feature of the navigation system onernsthe ability of the robot to self-loalize, i.e., to autonomously determine its po-sition and orientation (posture). One a robot knows its posture, it is apableof following a pre-planned virtual path or of smoothly stabilizing its posture.If the robot is part of a ooperative multi-robot team, it an also exhangethe posture information with its teammates so that appropriate relational andorganizational behaviors are established. In roboti soer, these are ruialissues. If a robot knows its posture, it an move towards a desired posture(e.g., faing the goal with the ball in between). It an also know its team-mate postures and prepare a pass, or evaluate the game state from the teamloations [22℄.In this setion we desribe a self-loalization algorithm based on the isometripart of the multi-part mirror of the atadioptri vision system desribed inSetion 2. The algorithm determines the posture of a middle-size league robot,with respet to a given oordinate system, from the observation of naturallandmarks of the soer �eld, suh as the �eld lines and goals, as well as itsorrelation, in the Hough transform spae, with a geometri �eld model. Eventhough the intersetion between the �eld and the walls is also urrently used,the wall replaement by the orresponding �eld lines would not hange thealgorithm. The algorithm is a partiular implementation of a general methodappliable to other well-strutured environments, and was �rst introdued in[23℄. 14



4.1 Method DesriptionEven though the self-loalization algorithm was designed motivated by its ap-pliation to roboti soer, it an be desribed in general terms and applied toother well-strutured environments, with the assumption that the robot moveson at surfaes and straight lines an be identi�ed and used as desriptive fea-tures of those environments. An important requirement is that the algorithmshould be robust to image noise. Given an image aquired from the isometripart of the atadioptri system, the basi steps of the algorithm are:(1) Build a set T of transition pixels, orresponding to image pixel represen-tatives of environment straight lines (e.g., intersetion between orridorwalls and ground, obtained by an edge detetor).(2) For all transition pixels pt 2 T , ompute the Hough Transform [21℄ usingthe normal representation of a line� = xti � os (�) + yti � sin (�) ; (4)where (xti; yti) are the image oordinates of pt and �; � the line parameters.(3) Pik the q straight lines (�1; �1); : : : ; (�q; �q) orresponding to the top qaumulator ells resulting from the Hough transform desribed in theprevious step.(4) For all pairs f(�j; �j); (�k; �k); j; k = 1; : : : ; q; j 6= kg made out of the qstraight lines in the previous step, ompute��= j�j � �kj (5)��= j�j � �kj: (6)Note that a small �� denotes almost parallel straight lines, while ��is the distane between 2 parallel lines.(5) Classify, in the [0; 100℄ range, the ��s and ��s determined in the previousstep, for its relevane (funtion Rel(:)) using a priori knowledge of thegeometri harateristis of the environment (e.g., in a building orridorof width d, only �� ' 0, �� ' 180 and �� ' d should get high grades).For eah pair of straight lines, assign a grade in the [0; 200℄ range to thepair, by adding up Rel(��) and Rel(��).(6) Pik up the most relevant pair of straight lines (i.e., the pair of largestRel(��) + Rel(��) in the previous step), and use it to extrat somerelevant feature regarding environment loalization (e.g., the orientation� of the robot w.r.t. the orridor walls, represented by the most relevantpair of parallel straight lines, in the example above).(7) Use the relevant feature from the previous step to proeed. For instane,assuming � in the orridor example is suh a feature, it is used to seletolumns from the aumulator ells matrix referred in Step 3. The idea isto orrelate a number of atual straight lines, found in the image, sharing15



the same desriptive parameter (e.g., the angle � orresponding to �) withthe expeted straight lines obtained from an environment model (e.g., thebuilding layout). To attain this, up to n � values from the aumulatormatrix olumn orresponding to � are piked up, orresponding to upto n straight lines found in the image. To handle unertainty in �, aneven better solution is to pik up not only one olumn but a few olumnssurrounding the aumulator matrix olumn orresponding to �, usingthe top n � values from those olumns. Conatenate all these Houghspae points in an array and all it �̂�.(8) Create an array �� similar to �̂�, but obtained from a geometri model ofthe environment. Atually, �� measures distanes of environment straightlines to the origin of the world referene frame. Correlate �� and �̂� byshifting one array over the other, and inrementing a ounter for eahmathing (��; �̂�) pair. The maximum of the orrelation orresponds tothe best math between up to n straight lines in the image and the nknown environment straight lines. From this result and similar resultsobtained for other straight lines non-parallel to them (determined by thesame proedure for di�erent �s), the image oordinates of environmentfeature points, whose loation in the world referene frame is known, aredetermined and used to determine the robot position w.r.t. that frame,by a suitable transformation from image to world oordinates.4.2 Appliation to Roboti SoerThe self-loalization of a middle-size league soer robot, using the methoddesribed in the previous setion, takes advantage of the soer �eld geometryand of the di�erent olors used for the �eld (green), the surrounding walls andthe �eld lines (white). The �eld is a 9�4:5 m at retangle that an be almostfully observed by the robot atadioptri system from most �eld loations.The self-loalization algorithm was implemented based on the isometri partof the atadioptri system mirror.4.3 Geometri Field ModelThe bird's eye view of the soer �eld, shown shematially in Fig. 9-a, shows6 horizontal and 7 vertial straight lines (onsidering interrupted lines as onlyone line). In this work, all horizontal lines and 5 of the vertial lines (exludingthose orresponding to the bak of the goals) were onsidered. Exluded lineswere hosen beause they are often oluded by the goalkeeper robots. Allthe distanes between lines are known from RoboCup rules. Changes in the16



dimensions are parameterized in a table. The model referene frame is loatedat the bottom left of the model image.4.4 Orientation DeterminationSteps 1-6 of the algorithm desribed in Setion 4.1 are followed to determinethe initial robot orientation estimate (with a �90Æ or 0Æ/180Æ unertainty, tobe solved later). The set T of transition pixels is obtained by determining thewhite-to-green and green-to-white image transitions over 36 irles enteredwith the robot, shown in Fig. 8. The number of irles was determined basedon a tradeo� between auray and CPU time.

Fig. 8. Image obtained with a preliminary prototype of the isometri part of theatadioptri system mirror { notie the distortion on the outer part { showing the36 irles used to determine transition pixels.The Hough transform is then applied to the pixels in T { a variable numberfrom image to image { depending on the number and length of observed lines.In Step 3, q = 6 is used, based on experimental analysis of the tradeo� betweenCPU time and auray. The relevane funtions for �� and ��, used in Steps5-6, are plotted in Fig. 9-b and -. The latter reets a priori knowledge ofthe environment, by its use of the known distane between relevant �eld linesthat an be observed by the atadioptri system in one image.
a) b) )Fig. 9. a) Soer �eld model as seen in a bird's eye view image (oordinates inpixels). Also shown are the relevane funtions for b) �� and ) ��.17



The aumulator ells of the Hough transform in Step 2 are obtained by in-rementing � from 0 to 180Æ in 0.5Æ steps, leading to a line slope resolutionin the image of tan 0:5Æ. � is inremented from 125 to 968 in steps of 1 pixel,orresponding to an atual �eld resolution of 6.95 mm 4 . The �90o or 180oambiguity referred above results from the absene of information on whih�eld lines lead to the most relevant pair. This information is obtained in Steps7-8.4.5 Position DeterminationThe �nal step in the self-loalization proess onsists of determining the robotposition oordinates in the soer �eld. This is done together with the dis-ambiguation of the relevant feature � determined in Steps 1-6 of the self-loalization method, by reating not only the �� and �̂� arrays referred inSteps 7-8, but also their \orthogonal" arrays ��+90 and �̂�+90. The orrela-tion in Step 8 is made between all 4 possible pairs (��+90; �̂�+90), (��+90; �̂�),(��; �̂�+90) and (��; �̂�) with n = 6 (the maximum number of �eld lines thatan be found in the image). The maximum of the 4 orrelation maxima oursfor the array pair representing the best math between image and atual �eldlines. The array immediately identi�es whether �� 90Æ or � = 0Æ _ � = 180Æ isthe robot orientation. A ompanion array pair exists for eah best pair. The2 pairs uniquely identify 2 (approximately) orthogonal �eld lines, by hekingthe array positions where the maximum ourred (vertial �eld lines are num-bered 1; : : : ; 5 from left to right and horizontal lines are numbered 1; : : : ; 6 fromtop to bottom). The intersetion of the two lines is a referene point, whoseoordinates are known in the world referene frame, from the �eld model.The explanation above is summarized in the following table (the best andompanion pairs positions an be exhanged):Best Pair Companion Pair �(��; �̂�) (��+90; �̂�+90) � = �� 90Æ(��; �̂�+90) (��+90; �̂�) � = � _ �+ 180ÆThe robot position is omputed from a rotation of � (one of the possible valuesis used, with no speial riterion), followed by a translation that expresses theenter of the image (i.e., the robot position in image oordinates) in the modelreferene frame, and another translation plus a sale fator f to express it inworld oordinates. The world referene frame is loated in the middle of the4 The relation between � values and the atual �eld resolution is given by the salefator k between �eld and image oordinates (see Setion 2.2)18



soer �eld, with the x axis pointing towards the blue goal and the y axis issuh that a 3-D oordinate frame would have z pointing upwards. The ori-entation � is measured from x to the straight line passing through the robotenter and the enter of the robot front. The sale fator f depends on thegeometry of the atadioptri system and an be allibrated experimentally.This transformation an be expressed by the following equation, using homo-geneous oordinates:2666664 xrfyrf1 3777775 = 2666664 os � sin � xrefi + xrefm� sin � os � yrefi + yrefm0 0 1 3777775 � 2666664 xriyri1 3777775� 2666664 4502250 3777775 � f (7)
where the subsripts i;m; f stand for the image, �eld model and atual �eldreferene frames, and the supersripts ref and r stand for the referene pointand the robot, respetively.A further validation and disambiguation of the robot posture is required, sine,when only two parallel lines are used to determine the position, and due to�eld symmetry, the robot side of the �eld is unknown, as well as its orientation.To solve this problem, two tests are made. First, the algorithm heks whetherthe robot position is not outside the �eld. The seond test onsists of usingthe urrent estimated posture to seek the nearest goal in the image.This is ahieved by seleting m points loated inside one of the goals (blue oryellow) in the atual �eld and applying to eah of those points of oordinates(xgf ; ygf) the inverse transform of (7).Should the majority of the orresponding pixels in the image have the sameolor of the �eld pixels, � = 0Æ and the estimated position is validated. Shouldthey have the olor of the opposing goal, � = 180Æ and the symmetrial oor-dinates of the urrent position estimate must be used for the robot position.When the majority of image pixels is green, the top maximum of the orre-lation proess is removed and the whole proess re-started using the seondmaximum, and if needed, the third one and so on until the atual posture isdetermined.4.6 Experimental ResultsThe desribed self-loalization algorithm has been implemented in C. Themethod was applied to a set of 90 images obtained by a atadioptri systemmounted on a Super Sout II robot. The images were taken at di�erent �eldspots, with several images taken at eah spot, and were proessed in about19



0.5 seond eah, in a Pentium 233MHz with 64Mb of RAM, the Super SoutII on board omputer. The results from the 90 experiments give an averageauray � of 3.2 mm for the x oordinate, -18 mm for the y oordinate and0:22Æ for �, with standard deviations of 100 mm, 92 mm and 1:8Æ, respetively.In Fig. 10, the histogram of the auray, for the x and y oordinates, is shown,as well as an adjusted Gaussian funtion. The retangle on the plot ontainsall the auraies within one standard deviation from �, i.e., 68,2% of thepostures obtained have an auray of less than or equal to 10 m in x and 9m in y.The auray was determined as the di�erene between the estimated valuesand the ones measured on the �eld, using pre-de�ned spots whose loation iswell known (e.g., the orner of the goal area). The preision (i.e., the di�erenebetween the measured value and the measurements average value for the sameloation) results are similar, and visual inspetion made the average valuesseem trustable.
Fig. 10. Position error histogram.

Fig. 11. Test image results.Figure 11 shows an example of an image to be proessed. The lines representedare the possible lines of the �eld. In this ase, the best pair was (��; �̂�+90) andposture was estimated with an error of �x=+1 m, �y= +1 m and ��=+1Æ. Note that, in this test, the robot is lose to one of the �eld walls, makingharder the posture determination proess, beause the other wall is not seen,and a relevant parallel line an not be found by the algorithm.20
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