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Abstract

In this paper we propose an approach to handle the co-
operative localization of an object by a team of robots. Our
technique uses propagation of beliefs to combine informa-
tion provided by a team of robots so as to support a team-
mate in critical situations when it can not see an object, is
lost or equipped with low quality sensors and need cleaner
data. The performance of our approach has been tested in
realistic simulations.

1 Introduction

Currently mobile robots are engaged in a lot of hu-
man like activities where they play a vital role when the
task is harmful, too hard or requires more accuracy. In
many situations robots need to get assistance from other
agents to carry out their tasks. Instead of performing a
complex task using only one comprehensive robot, an al-
ternative is to employ a group of robots with distributed
work and collective responsibility. One fundamental and
challenging problem for mobile robots is localization, i.e.
the ability of a robot to determine its location precisely.
The problem of localization can be divided in three cate-
gories: global localization, relative localization and robot
kidnapping. Global localization is the more difficult case
comparing to relative localization. It deals with situations
where the robot has no initial information about its loca-
tion. The robot attempts to estimate its location with re-
spect to an external global frame. Most approaches fail to
localize the robot from scratch and in some cases the ac-
curacy is not acceptable. Compare to relative localization
methods, global localization solutions provide less accu-
rate answers, are computationally expensive and memory
demanding. Local tracking or relative localization occurs
when the robot knows its current location with respect to
other object and continuously keeps updating its relative
location. The problem of robot kidnapping robot is to esti-
mate the new position of a displaced robot. This is similar
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to global localization, but become harder due to the fact
that the robot has to change its current belief based on its
location, without being aware of a sudden displacement to
a new location. It is the most difficult part, since robot is
not aware of that. First it should catch its displacement and
then find its new position.

Markov Localization is a probabilistic framework which
is able to cope with the problem of global localization
and is adaptable to cooperative localization[1][2][3][4][5]
[6][7][8]. Actually most of work in localization has been
focused on single robot cases while a few in the field of
cooperative localization exist. In Markov Localization a
pdf (probability density function) is maintained all over the
possible robot locations. No assumption about the form of
the pdf is made, contrary to other methods such as Kalman
filter based in which Gaussian pdf is assumed. Fox et
al[1] proposed a Multi-Robot localization algorithm based
on Markov Localization algorithm for a single robot. It
has some drawbacks that are explained in Section 3.3. To
solve those drawbacks, we address the problem of coop-
erative self localization and object localization based on a
Bayesian propagation of beliefs for a team of robots which
can be seen as an extension of Markov Localization. Each
robot determines its own estimate of the object position,
while the team is able to handle situations where one of the
teammate can not observe the object or a better estimation
of object position is considered through belief communi-
cation.

In section 2 we review related work. In Section 3 we briefly
explain the Markov Localization approach and its exten-
sion for a team of robots introduced in [1]. Then in Sec-
tion 4, we explain how to adapt this approach for object
localization by a team of robots . In section 5 we present
simulations that validate our method. In the experiment we
are aimed to run a simulation to test the performance of our
approach. In Section 6 conclusions are drawn.



for each location [ do
Bel,(l) — P(LY) =1)

end for
forever do
if the robot receives new sensory input o,, do
for each location [ do

Bel,, (1) < aP(o,|l)Bel,(l)

end for
end if
if the robot receives a new odometry reading a,, do
for each location [ do

Bel, (1) — /P(l|an,z’)Bezn(l')

end for
end if
end forever

Table 1: Markov Localization Algorithm

2 Related works

This work is connected to two important area in mo-
bile robotic: Multi-Robot Localization and Sensor Fu-
sion. Most researches in the field of Robot Localiza-
tion have been concentrated on the single localization of
a single robot. On the other hand, using multi-agent sys-
tems because of their high performances and simplicity
have become widely spread. Fox, Burgard and thrun in
[LI[2][3]1[4][5][61[7] [8] proposed an algorithm based on
first order Markov assumptions for a single robot which is
called Markov Localization. They extended the algorithm
to adapt to different situation, i.e. dynamic environment,
team of robots and etc. Roumeliotis and Bekey [9] used a
centralized approach to fuse observation of a team. They
used only a Kalman filter to optimally combine the obser-
vations of team of robots.

A group of researchers have been working on simulta-
neously map building and localization by a team of robot
in an unknown environment [10][11].

Howard [12] used a combination of maximum likeli-
hood estimation and distributed numerical optimization for
cooperative localization. They considered members of a
team of robots as a landmark to perform relative local-
ization and reduce uncertainty. Howard et al[13] used
Bayesian method for multi robot localization. In his ap-
proach each member of a team keep information about rel-
ative position to other teammate and use it as a particle

if nth robot is detected by the mth robot do
for each location [ do

Bel, (1) «— Bel,(1)intP(Ly = l|Lp, =1, 7)) Bely, (1 )dl
end for

end if

Table 2: Markov Multi-Robot Localization Algorithm

filter. Ioanniset al examined the effect of size of a team
of robot on cooperative localization. They applied particle
filetr and used a kind of robot called as tracker to find out
relative positioning[14]. In[15] Marcelino et al developed
an approach to increase coverage field of view of robots in
a team. A group of researchers adapted Markov Localiza-
tion algorithm to a highly dynamic environment for a team
of robot to self-localize a soccer player in the RoboCup
Simulation League[16][17]. Pinheiro et al[18] adjusted
Durrant-Whyte approach[19] for sensor fusion and intro-
duced a new algorithm for representing, communicating
and fusing distributed, noisy and partial observations of
an object by multiple robots. Using this technique, team
members were able to do more frequent cooperation be-
tween team members, so as to solve conflict situations and
achieve a team consensus faster.

There are lots of work done in the area of sensor fusion.
Durrant-whyte[19], considered a multi-sensor system as a
team of decision makers. Each sensor is able to make a lo-
cal decisions and also participate in team decision. Sensors
use a dependency model to combine information if certain
condition is met.

Some researchers applied machine learning technics or
combination of machine learning algorithms to fuse and in-
tegrate sensory information. Carpenter et al used a neural
networks to perform real-time localization and ranging us-
ing multiple sensors on a mobile robot. The robot learned
how to fuse visual and sonar information to determine
the distance to objects in its environment[20]. Pasika[21]
and Joseph[22] applied Neural Network and a combina-
tion of Neural Network and Support Vector Machine to
fuse the the information of sensors. The main idea was
to build a virtual sensor at lower cost. Mahajaner al[23]
developed a fuzzy logic inference system to integrate and
fuse data from different types of sensors with different
resolutions based on the sensors uncertainty. Shekharet
al[24]proposed a framework to integrate information of
multiple sensors to determine position and orientation of
an object.

3 Markov Localization

Markov Localization is one of the best and most effec-
tive approaches in global localization that has recently been



Figure 1: An example of a team of robots that is divided
into two sub-teams. It also shows the propagation of infor-
mation in two sub-teams for cooperative localization of an
object. Two sub-teams can also exchange information via
common member.

successfully applied to a wide variety of localization prob-
lems. Contrary to other popular algorithms such as those
based on Kalman filtering, it makes no assumption about
uncertainty distributions. Instead of maintaining a single
hypothesis concerning the best estimate of the robot po-
sition, this approach keeps a probability density over the
space of every possible positions and orientations, which is
called Belief. Initially, when there is no information avail-
able about the initial location, the pdf is a uniform distri-
bution. In further steps, the robot combines sensory and
odometry information and the pdf typically evolves to a
multimodal pdf. Finally when the robot finds its exact loca-
tion, the pdf is converted to an unimodal distribution. The
drawback is that, Markov Localization is computationally
expensive and requires large memory.

3.1 Markov Localization algorithm

The basic Markov Localization algorithm is shown in
Table 1. We use the same notation as in [1]. In a team of
N robots, each robot collects data up to time ¢ in a vector
dt, with1 < n < N. d! includes data from odometry
and environmental sensors such as vision ,laser and etc.
Bell (Lt = 1) = P(Lt = I|d*) denotes the belief of the
nth robot at time ¢ being at position [. The algorithm can
be divided into two major steps:

1-If a robot receives new environmental information it
updates the likelihood of all new possible places given that
data.

2-If robot receives new odometry data it updates the
likelihood of all new possible places.

O

Figure 2: An example of exchanging information in a sub-
team for improving self localization of robots.

3.2 Markov Localization-Multi Robot algorithm

Fox et al[1] extended Markov Localization to a collab-
orative mobile robot localization in which a team of N
robots uses teammate’s information in order to improve
uncertainty, when one robot “observer” discovers another
robot “observed”. In this case data from the observer
passes to observed robot. The observation of the observed
robot by the observer provides extra constraints for the ob-
served robot to improve its belief. The proposed algorithm
is presented in table 2.

3.3 Drawbacks of Markov Localization

One of major drawbacks of this algorithm is that it is
computationally expensive and memory demanding. Be-
sides that, the communication of high amounts of data in
a realtime system is challenging. For example, in[1] the
team of N robots need to communicate and keep N (N —1)
believes while exchanging data only with one robot might
be enough. Another disadvantage of the Markov Localiza-
tion algorithm is that there is no strategy to fuse data. In
some cases fusing a belief with another one is useful while
the others do not improve the uncertainty. Also to apply
the Markov Localization extension approaches to a team
of robots [1], robots should be active agents, capable of
observing other agents, send and receive data. However,
when locating commonly observed objects, those are pas-
sive agents, not able to measure their travelled distance, or
observe its location and unable to communicate with the
observing agents.

4 Distributed Team Localization Algorithm

In this section we briefly explain our algorithm. The
algorithm is designed to improve uncertainty of self local-
ization of robots and also uncertainty of robots for localiza-
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Figure 3: An example of exchanging information between
sub-teams via common members.

tion of an object. First we define some concepts and then
introduce the algorithm.

4.1 Uncertainty Measure

Entropy is a measure for uncertainty which is widely
utilized. Although it was first introduced by Boltzmann in
the context of Thermodynamics, it has been used in differ-
ent areas such as Quantum Physics and Information The-
ory. Shannon used the concept of entropy in Information
Theory, defined as:

H(L) ==Y pilnp; (1)

Where p; is probability that random variable L takes on
the value /;. Entropy is a positive number: H > 0. when
H is zero we are fully certain. As the value of H increases
we become less certain.

In probabilistic localization, we are confronted with
uncertainty and use entropy as a measure of uncertainty.
Suppose two robots n and m observe an object Obyj.
Bel) (Lby; = 1) = P(Lb,, = 1|o!,) is defined as the
belief of robot n about Obj. A self entropy can be defined
as:

H(Bell) |on) = =Y Bell) (Lby; = 1)
l

InBell) (Lby; = 1)

Now first robot receives information about the location of
the object from second robot. Robot 7 to improve its uncer-
tainty, takes into account the observation of robot m and:

Bel$) (Lby,; = 1) = P(Lby; = 1[0}, 0f,)

Based on this we can define cooperative entropy:

H(Belgz))ﬂomom) =— ZBGZE:)(L% =1)
/

InBel (LY, = 1)

Entropy of a belief Bel can be interpreted as amount of
uncertainty contains in belief Bel. Uncertainty might be
reduced by fusing different observations. We use entropy
as a condition for fusing beliefs. We only fuse a belief with
another one if entropy of combined Beliefs decreases.
4.2 Communication

Due to the restrictions in communications and also other
physical limitations, each robot can not directly exchange
information with all the other robots in a team. Moreover
it would be computationally costly if each robot wants to
use all other obsevations. For that reason we define an op-
timal radius r in which fusing the information is likely to
be useful. It is clear that the maximum value of r is limited
to the communication range.
4.3 Sub-team

Although a full cooperation among all the robots
of a team can improve individual robot estimate of
object locations, it is computationally expensive and
sometimes technically impossible. For this reason we
divide a team into sub-teams. In each sub-team, team
members are in contact and exchange data. Besides
that different sub-teams may have common members.
Taking advantage of this, two sub-teams can exchange
data through common member. In Fig. 1 it is shown how
members of a team are divided in two sub-teams. Two
sub-teams are able to communicate via a common member.

4.4 Fusing information in a sub-team

Assuming that the observations in each sub-team are in-
dependent, we can use the following equation to combine
the information in a sub-team with K robots:

K
P(LY = 1lyr..y) = HP(LS) = lly;) 2)
i=1

Where y; is the observation of the i* robot in a sub-team.
4.5 Flow of information in a Sub-team

In case of mutual localization the flow of information
is bidirectional as it is shown in Fig. 2. For localization
of an object, direction of flow of information depends on
the relative position of the team member. Members that
are closer send the date to the closest teammate and from
them to all others. An example of flow of information in
sub-teams is shown in Fig. 1. Sub-teams can exchange data
bidirectionally and, in case of object localization, direction
of propagation of information is from closest member to
farthest as is shown in Fig. 3.



4.6 Fusing information between two members of
a sub-team

Suppose robot m observes n. Taking advantage of that,
observed robot n can improve its own localization via ([1]):

BelD(L{ =1) — BelP(LP =1)> " P(L
LY =1,r®, = d)BelD (LY =1')

3)

t)*l‘

Where r,(f)m is distance between robots n and m at time ¢.
In case of an object localization, where the object Obj is
observed by robot 7 :

® M (t) W o
Be lOb]( Obj =1) « Be lozu Obj =1) ZP Obj =1

LY =118 = )(Beld (LY =1)

“4)

and Bels)(LSf) = l/) is calculated from (3)

4.7 Cooperative Localization

Localization of an object by a team of robots involves
many different challenges. In many situation robots due
to restrictions such as sensors range or physical obstruc-
tions, are not able to observe teammate’s or other objects.
Another reason to use collaborative localization is that it
can enhance the accuracy of localization. To mange this,
we used the Markov Localization algorithm with some
changes to avoid its drawbacks. The algorithm is shown
in table 3. The algorithm can be split in four steps:
1-Sub-team registration
2-Self localization
3-Object localization
4-Sub-teams communication
We divide a team into some sub-teams. We suppose all
team members are heterogeneous. At first robots try to reg-
ister in a sub-team. Sub-team size depends on the size of
the field and communication limitations. It is also a func-
tion of number of observations that needs to be fused. After
registration in a team, robots should determine their loca-
tions. They use Markov Localization algorithm for that.
After that, robots send their beliefs about others to a sub-
team blackboard, where all team members have access to
teammate observations. Fusing observations is only use-
ful if both observations agree. For checking agreement
an entropy filter is used. Each robot combines informa-
tion with others if entropy of fused belief drops down after
fusing two observations. Suppose robot m observes robot
n. Robot m sends the information about n to blackboard.
Robot n uses equation (3) and builds m belief about its
own position. Robot n only uses that information if the

Do forever

Do for each robot
register robot in sub-teams

End Do

Do for each sub-team
Self localize robots using Markov Localization
Algorithm.
Send information to sub-team blackboard.
Build beliefs for each robot in sub-team, based
on other teammate observations, using:

Bel(t)(L(t) 1) - Bel(“(L(“ Y P(LY =1

LY =1, v = d)Bel) (L) = 1)

Fuse data IF
H(BelY (Li|on, om)) < H(Bez;”(Lt\on))

using :

PLY = lyrn) =TI, P(LY = llys).
Localize Objects in the field of view, using
Markov Localization Algorithm.

Send information to sub-team blackboard.

Build beliefs about the objects in the field of

view of sub-team, based on other teammate

observations, using:

t t t t
Belog, (Loly = 1) — Bell; Loy, = 1) 3 (Lo,
=LY =1 r5), = d)(Bel (LY =1).

Fuse data considering IF:
H(Belgy(Lilon, o)) < H(Belgy(Lilov))

using :

P(LY); = lyr-yn) =

end Do

Exchange data between sub-teams

end forever :

Team Registration

Hz‘K=1 P(ngj = lly;)

Table 3: Cooperative Localization Algorithm

following condition is satisfied:
H(BelY (Li|on, 00n)) < H(BelP (Lilon)) (5

Then they use equation (2) to fuse the information.

Later robots make their belief about objects in the world.
They use environmental sensors to detect objects and then
use the Markov Localization algorithm. Again they send
information to sub-team blackboard. Each robot uses equa-
tion (4) to find out teammate observations about object in
field of view of sub-team. The fusing condition is the same
as self localization but for an object Obj and they use equa-
tion (2) to combine the observation.

Sub-teams only need to communicate if there is some am-
biguities such as an object not visible by one of the robots.



Figure 4: A sample entropy of uncertainty of vision sensor.

5 Simulation Result

We studied effect of cooperation of robots when a robot
intends to improve the uncertainty of observation for self
localization or common object localization and also if, for
any reason it is not able to locate the common object. The
world was divided into equal squares. We considred dif-
ferent resolutions ranged from 50 * 50 to 200 = 200. Ten
robots equipped with two types of sensors: vision sensor
and odometry sensors, were simulated. The model of vi-
sion is stochastic and only range of the sensors was fixed.
A sample of uncertainty of vision sensor versus distance
is shown in Fig. 4. The range of the sensor is restricted
to cells 1 to 13 ahead of the robot sensor. Sensor deliv-
ers the best observation between 6 and 8, where the en-
tropy is lowest. By increasing or decreasing distance, the
uncertainty of observation increases. We also considered
stochastic model for odometry sensor. A sample of sensor
uncertainties is shown in Fig. 5. In the experiment, first
we studied the effect of cooperation on mutual localization
and then on the localization of a common object. At each
step, robots in each sub-team first update their own belief
using sensory information and then by considering odom-
etry data. Then, robots exchanged the information with
teammates. By that we mean every robot received belief
of others about itself. In our example since robots were lo-
cated in different positions all over the field and because of
restrictions of vision sensors, only one could be observed
by some of robots. Size of the sub-teams ranged from two
to six depend on the situation. Before using those informa-
tion, robot took advantage of entropy filter and chose effec-
tive beliefs. In other words, it checked whether the com-
bination of that information with its own belief improved
uncertainty. For the common object localization, after self
localization each robot that observed that object, send the
information to teammate and in this way they propagated
the uncertainty in the sub-team and network. Using this

Uncertainty of odometry sensor

Figure 5: A sample of uncertainty of odometry sensore.

strategy we not only reduced the entropy of localization of
common object but also in the situations where robots were
not able to observe the object, got an belief via neighbors.
Beside that we needed less computational power, memory
and communication than Markov method for Multi-Robot
Localization. In Fig. 6 plot of entropy of original belief
versus entropy of cooperative belief is shown . As the num-
ber of contributors increased we see a reduction in amount
of entropy. In Fig. 7 we can see the the average entropy re-
duction due to number of cooperative robots. As the num-
ber of cooperative robots increased entropy of cooperative
belief decreases.

6 Conclusion

The objective of this study was to investigate whether
the cooperation of robots in a team could improve uncer-
tainty of team individuals for self localization and also
for localization of an object and when some robots losed
other agents or objects. In the experiment we justified
the suggested algorithm in a complex simulated environ-
ment. Sensory and odometry uncertainties have got un-
known distributions which were generated stochastically.
It was shown that cooperative localization were useful ei-
ther when all team member were able or unable to see the
target.
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