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Abstract: This paper introduces a fuzzy decision-making algorithm for robot
behavior coordination. The algorithm belongs to the arbitration class of behavior
coordination mechanisms, under which only one behavior is running at a time.
However, it is possible to use a hierarchical decision mechanism for hierarchical
behaviors without interference between hierarchical levels. With this fuzzy decision
method it is possible to represent a specific model of the world where the robot
evolves. This algorithm consists of defining a set of behaviors, a set of world states,
a cost function for behaviors, a set of goals, and a set of constraints. For each
behavior and actual world state pair, a cost function is computed. The cost of
each pair is evaluated by the overall goals. Goals and constraints are aggregated
using a fuzzy operator and the optimal choice is the behavior with the maximum
resulting value. This algorithm was tested with success in realistic simulations of
a goalkeeper soccer robot.

1. INTRODUCTION

Fuzzy logic has been applied in behavior-based
mobile robot control (Vadakkepat et al. 2004,
Pirjanian 1999). A behavior is most commonly
described as a set of purposive perception-action
pars. The main advantages of fuzzy logic is its
capability to handle vague descriptions producing
controllers not prone to conventional design meth-
ods. Furthermore, fuzzy logic allows to define be-
havior decision rules through linguistic terms that
simplify expert knowledge encoding. Fuzzy deci-
sion in behavior coordination is usually classified
as a command fusion coordination mechanism,
see (Pirjanian 1999, Pirjanian and Mataric 1999),
but it could also be used as an arbitration fusion
coordination mechanism. By using a command fu-
sion approach, problematic situations could arise;
when a fuzzy decision is made with command fu-
sion of two competitive behaviors, as in (Pirjanian
and Mataric 1999), the results can be inconsistent,

because the final action is a new behavior that is
not described. For example, in the soccer domain,
when it is possible to execute a clear ball and
execute also an outlet pass, if command fusion
is made, the result can be a ball kicked towards
an intermediate direction which is the average of
both directions. If an opponent is in this direction,
the robot will pass the ball to it which is the worst
decision. Various methods have been proposed
to solve this problem in (Pirjanian 1999), but
none is intuitive enough. Some architectures apply
distributed hierarchical fuzzy inference with com-
mand fusion, instead of centralized fuzzy decision,
as in (Vadakkepat et al. 2004). This approach has
the advantage of abstraction, but does not guaran-
tee sequencing of primitive actions corresponding
to the same behavior.

This paper proposes a generic mechanism that
allows distributed hierarchical fuzzy inference and
guarantees sequencing of primitive actions of the



same behavior. It guarantees also that only one
behavior is selected and only described behav-
iors are executed, instead of a combination of
behaviors. Furthermore, it enables modeling and
considers general constraints at run time.

The paper is organized as follows. In Section 2,
our behavior coordination method based on fuzzy
decision-making is introduced. This section ex-
plains relations between behaviors, world states
and cost function. Goals are constraints are de-
scribed, as well as how fuzzy decision making is
applied in this work. An extension to a hierarchi-
cal environment is discussed. Section 3 introduces
a case study on a robotic goalkeeper. Simulation
results are presented in Section 4 and Section 5
draws some conclusions.

2. BEHAVIOR COORDINATION BASED ON
FUZZY DECISION-MAKING

Fuzzy decision making deals with non-probabilistic
uncertainty and vagueness in the environment
in which the decision making takes place. Two
important elements of decision making are the
goals of the decision that are represented by
the maximized objective function and the im-
posed constraints that confine the search space.
Fuzzy decision making essentially replaces the
crisp goals and the constraints with their fuzzy
equivalents (Bellman and Zadeh 1970, Sousa and
Kaymak 2002).

This paper using the fuzzy decision making frame-
work to obtain an optimal decision in coordinate
behavior. The optimal behavior will be the one
that better satisfies the goals and constraints of
the system. In this paper, fuzzy inference only
selects one behavior at each time step. Thus,
this mechanism belongs to the arbitration class
of behavior coordination mechanisms (Pirjanian
and Mataric 1999).

2.1 Behaviors, World States and Cost Function

A behavior, b, and a world state, x, are mapped
in a cost function, f , such that

f : (b,x)→]−∞,+∞[. (1)

This means that for each pair (b,x) the function
f has a value representative of behavior b cost
when the world is in state x. The state x is
a multidimensional value, which means that x
represents all world component states that are
relevant for the defined behaviors.

The cost function is multidimensional, so it is
important to guarantee that it has some proper-
ties, such as dimension independence of behaviors

and states. This independance can be defined as
follows: when the dimension of behaviors is p,
the dimension of states is q, and p increases to
p + 1, the cost and definition of old behaviors
are not affected. A similar property holds for
the states: when more states are added, the cost
and definition of old behaviors are not affected.
These properties are very important to assure the
expansibility of behaviors.

Therefore, a cost function can be defined as

f(bi,x) =
n∑

j=1

ri,j(x) (2)

where ri,j(x) is the cost of rule j for behavior bi.
The cost ri,j(x) can be described as

ri,j(x) = ki,jdi,j(x), (3)

where ki,j is a constant behavior bi is the cost
factor for rule j, and di,j(x) is an activation level
for rule j. The activation level of a rule, di,j(x)
can be described as a predicate that operates in
fuzzy states. So, we consider x to be a vector
of fuzzy states with dimension m. Each fuzzy
state is represented by a linguistic term. So, the
predicate that describes di,j(x) can be defined
by a fuzzy aggregation operator over linguistic
terms (Dubois and Prade 1985). However, this can
be limitative, if complex predicates are necessary.
Thus, predicates can be defined over a tree, such
that the root operator must be a fuzzy aggregation
operator, and the leafs can be other operators
or fuzzy states described by a linguistic term.
However, every leaf in this tree must be a fuzzy
state.

When all rules of behavior bi have an activation
level tending to zero:

∑n
j=1 di,j → 0, the cost for

this behavior will tend also to zero: f(bi,x) → 0.
This means that there is no control of the default
cost of a behavior when it is inactive. Thus, a
default rule needs to be added for each behavior.
This rule can be described as

ri,n+1 = ki,n+1di,n+1(x) (4)

where ki,n+1 is the value that the cost function
must tend to when activation levels of other rules
tend to zero. The value di,n+1 can be computed
as

di,n+1 = 1−
n∑

j=1

di,j . (5)

2.2 Goals

Goals are membership functions, g, such that
g(f(bi,x)) is the preference level for behavior bi



in state x. The domain of goals must be the range
of cost functions f . In this way, it is possible to
have goals defined over different domains as long
as there is a cost function with the same range for
each goal.

2.3 Constraints

Constraints can be added to the decision algo-
rithm. Constraints are functions, c : bi → [0, 1],
that establish a maximum preference level for each
behavior. One can specify at run time a set of
constraints, which represent a specific model of
the world in where the robot evolves. Constraints
are pieces of information extracted from the envi-
ronment to contextualize the behavioral selection
process.

2.4 Fuzzy Decision Making

The optimal fuzzy decision is the one that better
satisfies the goals and the constraints. Thus, if g
are the goals and c are the constraints, the optimal
fuzzy decision is given by

bopt = arg max
b

[min(gi(f(b,x)), cj(b))] , (6)

with i = 1, . . . , n and j = 1, . . . ,m. It is necessary
to establish priorities between behaviors, because
if there are two or more that have the same
satisfaction level, the decision can be made by a
default rule instead of being random.

2.5 Hierarchical Fuzzy Decision Making

The abstraction of relevant features is very impor-
tant in complex systems. Systems with behaviors
that can be decomposed in sub-behaviors reduce
the complexity involved in decision making. For
example, in robotic soccer each robot can play
various roles, like attacker, mid-fielder, defender
or goalkeeper. With exception of goalkeeper, other
robots can choose roles dynamically. Each role
represents a high level behavior that is composed
by low level sub-behaviors. A discussion on hier-
archical operators in fuzzy decision making can be
found in (Kaymak and Sousa 2003).

The proposed method performs “local” fuzzy in-
ference. Only one sub-behavior will be selected,
the inference continues in this sub-level restricted
to behaviors associated with the behavior chosen
in the higher level. This method does not allow
interference between hierarchical levels.

3. CASE STUDY ON A ROBOTIC
GOALKEEPER

Under the robot soccer domain, robotic Goalkeep-
ers are robots that are typically rich in behaviors,
representing an ideal case study to test fuzzy
decision making.

3.1 Problem Description

In this case study, an omnidirectional robotic
goalkeeper is considered. A good starting point
is to identify behaviors that human goalkeepers
usually display. In a soccer glossary, see (Glossary
2006), a description of human soccer behaviors is
presented. We have used some of the most typical
ones for goalkeepers.

3.1.1. Goalkeeper behaviors The most impor-
tant behaviors are:

• Clear Ball: kick ball to free place (can be out
of field)

• Outlet Pass: pass to unmarked teammate
• Intercept ball: move to intercept ball position
• CatchBall: approach ball and catch it.
• Steal Ball: when an opponent has the ball,

steal it
• Cut Down The Angle: move forward to min-

imize the shot angles within which the ball
can get into the goal

• Marking: avoid easy pass (cut down pass line)
• Home Position: back to default position

3.1.2. States of the world For the presented
behaviors the following set of world states is used:

• ballNearFinalLine
• ballMiddleField
• ballNearOwnGoal
• ballOpponentField
• ballNearGoalkeeper
• ballVelocityOwnGoal : ball velocity with re-

spect to own goal
• ballVelocityOpponentGoal : ball velocity with

respect to opponent goal
• ballVelocityStopped
• ballVelocityLow
• ballVelocityMedium
• ballVelocityHigh
• ballOwnerGoalkeeper
• ballOwnerTeammate
• ballOwnerOpponent
• ballOwnerNobody
• teammateGoodPlaceForPass : teammate is

in good place to receive pass
• opponentGoodPlaceForPass : opponent is in

good place to receive pass



• angMinimized : angle between goalkeeper,
ball and goal post

Figures 1, 2 and 3 show some fuzzy sets describing
the previously mentioned fuzzy states.
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Fig. 1. Fuzzy set for linguistic term ballMiddle-
Field (length=12, width=8 and point (0,0) is
the center of field)
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Fig. 2. Fuzzy set for linguistic term ballOwnerOp-
ponent
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Fig. 3. Fuzzy set for linguistic term angMinimized

3.1.3. Main goal of goalkeeper The main goal of
goalkeeper is to take as few goals as possible. So,
this linguistic term can be defined as

µTakeFewGoals(y) =

 1, if 0 <= y < 2
−0.5y + 2, if 2 <= y < 4
0, if y >= 4

where y is the number of goals taken. The linguis-
tic term is plotted in Fig. 4.

In this example, y is the cost. This cost is given
by the cost function in (??) in the next section,
which is applied to a specific behavior. The goal
will be applied for all behaviors through the cost
function.

2 4

1

Number of goals taken

µ
takefewgoals

Fig. 4. Main goal of goalkeeper

3.1.4. Cost function of goalkeeper For the sake
of simplicity, in this example only three behaviors
will be described (ClearBall, OutletPass and Cut-
DownTheAngle). Note however that eight behav-
iors were implemented. The domain of the goal is
the number of taken goals per game, thus the do-
main of the cost function must be also the number
of taken goals per game. Figures 5, 6 and 7 show
block diagrams representing the behaviors, their
rules, cost and priority, as defined in Section 2.1.
Each behavior is represented by one or more rules.
The highest priority is given to the behavior that
has the minimum value. Each rule has a cost that
contributes to the behavior total cost. The rule
cost is determined by the product between its
static cost (e.g. clearBall rule 1 has static cost
2.0) and rule activation level, that are given by
the associated predicate. The main predicate has
as child other predicate or a fuzzy value assigned
by some fuzzy state. Each behavior has a default
rule with cost 10.0, such that its activation level
is max(0, 1−

∑n
j=1 di,j), where di,j represents rule

j activation level for behavior bi.

ClearBall
priority: 4
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cost 2.0

Operator
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Operator
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Fig. 5. Cost function structure of clear ball.

The ruler’s static cost for behavior b can be
defined by expertise knowledge. This cost must
reflect the answer to the question: what average
goals the goalkeeper take per game if execute
behavior b in world state x? For example, what
must be the average number of taken goals when
goalkeeper execute behavior CutDownTheAngle



OutletPass
priority: 1

rule 1
cost 1.0
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Fig. 6. Cost function structure: outlet pass

CutDownTheAngle
priority: 1

rule 1
cost 1.0
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rule 2
cost 2.0

Operator
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Fig. 7. Cost function structure: cut down the angle

in world state x. This state is composed by ball at
mid-field and goalkeeper at goal. The other states
are irrelevant. The expertise knowledge states that
this cost must be low (one goal per game for
example).

3.1.5. Constraints of goalkeeper A maximum
satisfaction level is assigned to each behavior. This
value is reflected in the constraints. This can be
very useful for representing information concern-
ing general information on the game state and op-
ponents characteristics. Examples of constraints
are as follows:

• µloosing

• µopponents have strong kick

• µopponents kick up

• µopponents dont pass

• µopponents are fast

For example, when the opponents cannot pass the
ball, the marking behavior should not be active.
It can be simply turned off by putting all other
behaviors with fuzzy value one and marking with
fuzzy value zero. When the goalkeeper team is
loosing, it can decide to have a more defensive

behavior and constrain the level of behaviors with
more risk, such as outlet pass and steal ball, to a
lower activation level.

3.1.6. Fuzzy decision making applied to goalkeeper
The decision of what is the best behavior to

execute in the actual world state is made by
evaluating all behaviors, using the goalkeeper cost
function and the “take few goals” goal. The fuzzy
operator min is used to constrain the satisfaction
level of goal with the maximum level allowed by
constraints. The behavior that has maximum sat-
isfaction level for the goal and for all constraints
is selected. After selecting a behavior, the Behav-
ior Coordinator orders the Behavior Executor to
execute the selected behavior.

3.2 Behavior Executor

This entity does not interfere with the tasks of
the Behavior Coordinator. When the coordinator
decides what must be done, the executor simply
does it. Next subsection describes how three of the
behaviors are executed.

3.2.1. ClearBall algorithm This behavior must
kick the ball to a position where there are no
obstacles (opponents or teammates). Obviously, it
must not kick towards its own goal. Figure 8 shows
how the best choice, V C, is calculated. All vectors
are sorted by angle in the field referential (from
the lowest v1 to the highest v7), and the best
direction to kick the ball is given by the average
of two consecutive vectors that have the largest
angle between them.

v1

v2

v3
v4

v5

v6

v7

y

x

vc

Obstacle

GK

ball

best choose
obstacle vector

Fig. 8. Calculating the best direction to kick ball



The execution of behavior clearBall consists of
performing some primitive actions, like aproach-
Ball, rotateTheta and kickBall. With the hierar-
chical fuzzy decision making algorithm presented
in Section 2.5, it is possible to separate the de-
cisions. The higher level corresponds to taking a
decision of what behavior must be executed, and
the lower level corresponds to taking a decision of
what primitive actions must be executed for each
moment.

3.2.2. OutletPass algorithm With this behav-
ior it is possible to pass to teammates that are
unmarked in a good place, so that the goalkeeper
also participates in attacker strategies. Figure 9

y

x

v1

v2

Fig. 9. Calculating the best direction to pass ball.
Note that dashed vectors are not centered in
ball.

shows how direction of pass is calculated. For each
possibility, v1 and v2, the lowest angle between
pass vector and obstacles (opponents) vectors is
calculated. Direction of pass is the vector that
has the largest angle. Like clearBall, outletPass is
composed by aproachBall, rotateTheta and kick-
Ball primitive actions.

3.2.3. CutDownTheAngle algorithm This be-
havior minimizes the angle between each post,
ball and goalkeeper. By knowing the position of
the ball and the diameter of the robot, it is pos-
sible to calculate the position on the field that
minimizes the angles. In Fig. 10 it can be seen
how to compute the position that minimizes the
angles. First, one fixes the angles t1 and t2 with
a value that does not represent danger. As d
is known, some geometrical calculations can be
applied to calculate the desired distance and the
angle between robot and ball.

y

x

t1
t2

d

Fig. 10. Calculating the best position to cut down
the angle.

4. SIMULATION RESULTS

The case study presented before was implemented
in C++ into Webots simulator. Several tests were
done. The simulated environment of the tests is a
field with 12 m long and 8 m width, two opponent
omnidirectional robots and one omnidirectional
teammate. First, the goalkeeper was tested with
static opponents and a teammate. All situations
of the game were tested with successful and fast
decision. For example, in the presence of an op-
ponent with the ball near the goalkeeper’s goal
and a teammate marked by the second opponent,
the goalkeeper decided to InterceptBall. When the
goalkeeper is near the opponent with the ball, it
decided to change for behavior StealBall. After
stealing the ball from the opponent, it decided to
do a ClearBall because the teammate was near
to the second opponent, see Fig. 11. When the
teammate moved to a good position for passing,
the goalkeeper decided to make a OutletPass, but
if an opponent was put between them, such that
it would cut line of pass, the goalkeeper decided
to make a ClearBall again.

If an opponent had the ball near the goal area
and the second opponent is unmarked in danger
zone with line of pass, then goalkeeper decided to
CutDownTheAngle (if not minimized yet), after
which it decided to execute InterceptBall. During
InterceptBall, Marking is selected to cut the line of
pass. After cutting the line of pass, the goalkeeper
decides to intercept the ball again.

When the ball was moved to far from goal, goal-
keeper decided to execute CutDownTheAngle in
order to have always the angles minimized.

Our fuzzy decision making algorithm runs in 180
µs (real time) over a P4 2.6 GHz with seven be-
haviors. The code does not have any optimization



InterceptBall

StealBall

ClearBall

CutDownTheAngle

Fig. 11. Selected sequence of behaviors.

and uses generic code of STL (Standard Template
Library in C++) that is usually slower than spe-
cific code. To view goalkeeper in action, please
visit the site
https://omni.isr.ist.utl.pt/ nramos/fuzzyGoalkeeper/.

5. CONCLUSIONS

This paper introduced a hierarchical fuzzy de-
cision making algorithm for behavior decision,
without interference between hierarchical levels
for competitive behaviors. The proposed fuzzy
decision making algorithm runs fast enough for
application in real robots. Designing rules for
fuzzy decision is very intuitive, as shown in an
example concerning a subset of the goalkeeper
behaviors. This algorithm includes a novel way
of representing a priori information about the
environment, such as game state and opponent
characteristics (e.g., slow, fast). The introduction
of new behaviors does not affect the rules of older
behaviors.

Future work on this framework of fuzzy decision-
making will focus on adjusting the costs of rules
using learning algorithms. In a first step, expert
knowledge or supervised learning for quick learn-
ing can be used. To optimize the decisions with-
out expert intervention, the next steps will use
unsupervised learning with simulation. Fuzzy sets
concerning fuzzy world states can be learned as
well.
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