
Automatic segmentation of the lungs using multiple active contours and
outlier model

Margarida Silveira and Jorge Marques
Instituto Superior T́ecnico - Instituto de Sistemas e Robótica
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Abstract— This paper presents a method for the automatic
segmentation of the lungs in X-ray computed tomography
(CT) images. The proposed technique is based on the use of
multiple active contour models (ACMs) for the simultaneous
segmentation of both lungs and outlier detection. The technique
starts by grey-level thresholding of the images followed by edge
detection. Then the edge points are organized in strokes and a
set of weights summing to one is assigned to each stroke. These
weights represent the soft assignment of the stroke to each of
the ACMs and depend on the distance between the stroke points
and the ACM units, on gradient direction information and also
on the stroke size. Both the weights and the ACMs energy
minimization are computed using the generalized expectation-
maximization (EM) algorithm. Initialization of the ACM’s is
fully automatic. Experimental results show the effectiveness of
the proposed technique.

I. INTRODUCTION

X-ray computed tomography (CT) is the most commonly
used diagnosis technique for the analysis of the pulmonary
region and the number of CT evaluations of the lungs has
been steadily increasing. In most pulmonary CT image analy-
sis applications the first step is the segmentation of the lungs.
Some examples include airway analysis [11], emphysema
detection [10], evaluation of lung ventilation [12] and the
detection of lung nodules [14], [15]. Several algorithms
have been proposed for the segmentation of the lungs.
Most methods start with grey-level thresholding followed by
region segmentation based on a sequence of morphological
operations [8], [9], [14]. For instance in [9] the step of grey-
level thresholding is performed using optimal thresholding
to select the threshold automatically. Then connected compo-
nents labelling is performed, the background air is eliminated
by deleting regions that are connected to image borders and
only the two larger regions are retained. In some images there
is a superposition of the lungs region which requires an addi-
tional step for their separation. This task of lung separation
is usually one of the most computational intensive. in [9]
the left and right contours are separated by identifying the
anterior and posterior junctions by dynamic programming.
Lung separation in [8] is performed by a heuristically based
region splitting procedure according to a thickness measure.
Some methods include a priori anatomical knowledge [11],
[12] which makes them more powerful but at the cost of
more computational load. For instance in [12] anatomical
knowledge stored in a semantic network is used to guide the
low level image processing and a lung separation step based

on dynamic programming is also included. Recently, an algo-
rithm using marker based watershed transform was proposed
[13] that eliminates the tasks of finding an optimal threshold
and separating the attached left and right lungs. However, the
identification of internal and external markers which is based
on morphological operations relies on heuristics. In [2] two
independent ACM’s based on geodesic gradient vector flow
are used. Although this method works well on concavities it
is unable to bridge anatomical structures such as the trachea
or bronchi in case of adverse initialization. In this paper
we present a method for the automatic segmentation of the
lungs in thoracic CT images. The proposed technique is
based on the use of multiple active contour models (ACMs),
an algorithm recently proposed in [1] in which multiple
ACM’s compete for the boundaries of multiple regions, thus
alleviating the well known problem of ACM’s initializations.
The algorithm proposed in this paper includes two major
contributions: 1) it uses a different observation model which
makes it less sensitive to initialization and more robust to
outliers, 2) initialization of the ACM’s is fully automatic. A
new outlier model is developed that takes into account the
strokes size in order to reject the smaller strokes correspond-
ing to the smaller nearby anatomical structures. In addition,
the observation model is also improved and features are
extended to include the gradient direction as well as the edge
locations. These modifications make the method more robust
thus allowing a fully automatic initialization which is based
on the detection of dark circles on a white background with
the Hough Transform. This paper is organized as follows:
section II formulates the problem, section III describes
the proposed algorithm for lung segmentation, section IV
presents experimental results and section V concludes the
paper.

II. SEGMENTATION WITH MULTIPLE ACTIVE CONTOUR

MODELS

A. Problem Formulation

Let y be the set of all edge points detected in an image and
let us assume thaty is organized in connected components,
called strokes,yj , j = 1, ..., N whereyj = {yj

1, ..., y
j
n} is the

set of edge points belonging to the j-th stroke. The number
of ACM’s, L, is assumed to be known and we add an extra
model to account for outliers. We denote it the outlier model,
xoutlier . Let xk be the k-th active contour model,k =
1, ..., L defined by a sequence of 2D pointsxk

i , i = 1, ...,Mk;



the number of points for each snake is adjusted by insertion
and deletion in order to keep the distance between two
consecutive points constant and therefore different ACM’s
may have different number of points.xk can either be an
open or closed contour. We will assume that the strokes
detected in the image are independent:

p(y|x) =
∏

j

p(yj |x) (1)

and that the distribution of each stroke is a mixture of L+1
densities:

p(yj |x) =
∑

k

αkp(yj |xk) + αoutlierp(yj |xoutlier) (2)

where theαk ’s are the mixing proportions verifyingαk ≥ 0
, αoutlier ≥ 0 and

∑
k

αk + αoutlier = 1.

Our aim is to estimate the L ACM’s using the MAP
criterion:

x∗ = arg max
x

p(x|y) = arg max
x

[log p(y|x) + log p(x)]
(3)

As discussed in [1] this can not be solved analytically so the
EM algorithm is used.

B. Observation Model

We assume each stroke has i.i.d. edge points, each mod-
elled by a mixture ofMk densities centered in the snake
elements:

p(yj |xk) =
∏
n

p(yj
n|xk) =

∏
n

1
Mk

∑

i

ϕσ(yj
n, xk

i ) (4)

This model is related to the elastic net model [3] and
associates every edge point with a given snake element.
This model is less sensitive to initialization than the previous
model used in [1]. Since in the thresholded images the lungs
appear as black regions against a white background we use
directional snakes [4] and define the contribution of each
feature to the potential function introduced as follows:
{

ϕσ(yj
n, xk

i ) = N(yj
n, xk

i , σ2I)
∣∣θN (xk

i )− θG(yj
n)

∣∣ ≤ π/2
0 otherwise

(5)
whereN(y, µ, R) denotes the normal density function with
meanµ and covariance R,θN (xk

i ) is the contour’s outward
normal direction at snaxelxk

i and θG(yj
n) is the gradient

direction at edge pointyj
n. This approach makes sure that

only those edge points with the correct gradient direction
will attract the ACM’s. For the case of the outlier model,
the contribution of each feature to the potential is a constant.
Previously we used the same constant for every stroke,V =
φσ(|3σ|2) and our outlier model had the ability to classify
the strokes that were distant from all the ACM’s as outliers.
We now propose using a different value for each stroke,V j .

p(yj |xoutlier) =
∏
n

p(yj
n|xoutlier) =

∏
n

N jV j =
(
N jV j

)n

(6)
If V j is set inversely proportional to the size of the cor-
responding stroke,N j , then the smaller strokes will also

tend to be classified as outliers, and the ACM’s will be
able to bridge the small outlier strokes. Therefore we used
V j = exp(−KN j) where K is a positive constant.

C. Prior Model

We adopt the following prior:

log p(x) =
∑

k


Eint(xk) +

∑

l 6=k

Einter(xk, xl)


 (7)

whereEi(xk) is a regularization energy that expresses the
assumption that each contour is smooth andEinter(xk, xl) is
another regularization energy that expresses the interaction
between different active contours. ForEint(xk) we used:

Eint(xk) =
∑

i

(∥∥xk
i − xk

i−1

∥∥− l0
)2

(8)

where l0 is the desired spacing between successive snake
elements, set by the user. Settingl0 6= 0 prevents the
active contour from shrinking collapsing into a point. For
Einter(xk, xl) we used:

Einter(xk, xl) =
∑

i

∑
m

ϕ(|xl
m − xk

i |2) (9)

where ϕ(d) is a distance measure that can be tailored to
fit a particular application. Any kind of geometrical relation
between contours can be defined, for example the contours
can attract or repel each other, they may be required not to
intersect or to be concentric.

D. Estimation of the multiple ACM’s

In the EM algorithm it is assumed that y is incomplete
data and that the complete data includes binary labelszj , j =
1, ..., N with zj = {z1

j , ..., zL+1
j }, that indicate which model

generated the stroke;zk
j = 1 means that strokeyj was

generated by modelxk. The complete log likelihood is given
by:

logp(y, z|x) =
∑

j

∑

k

zk
j log p(yj |xk) (10)

Instead of maximizing (3), the EM algorithm alternates
between two steps. In the E-step it finds the conditional
expectation of the complete log likelihood with respect to
the unknownx given the observed datay and the current
estimate,̂x .

Q(x,
_
x) = E

[
log p(y, z|x)|y,

_
x
]

(11)

Q(x,
_
x) = E

[
∑
j

∑
k

zk
j log

[
αkp(yj |xk)

]
]

=
∑
j

∑
k

wj
k log

[
αkp(yj |xk)

] (12)

wherewj
k is a set of weights summing to one assigned to

each stroke. The weightswj
k represent the soft assignment

of strokeyj to the active contourxk. The weights are given
by:

wj
k = p(zk

j = 1|yj ,
_
x) =

αkp(yj |xk)∑
m

αmp(yj |xm)
(13)



In the M-step the estimation of the active contour is obtained
by the maximization of:

U(x,
_
x) = Q(x,

_
x) + log p(x) (14)

The maximization is performed by the gradient algorithm:

xk
t+1 = xk

t − γ∇x(Q(x,
_
x)) (15)

where ∇x represents the gradient. This equation can be
rewritten as follows:

xk
t+1 = xk

t − γintfint − γextfext − γinterfinter (16)

wherefext(xk
i ), fint(xk

i ) andfinter(xk
i ) are external, internal

and interaction forces. More details are given in [1].

III. PROPOSED ALGORITHM FOR THE SEGMENTATION OF

THE LUNGS

The first step of the proposed algorithm is gray-level
thresholding using Otsu’s [7] method which computes the
optimal threshold that maximizes between-class variation.
The thresholding operation usually separates the lungs and
the outer chest walls and in some images also the trachea,
esophagus or bronchi. Usually there are small white spots
inside the lungs regions corresponding to blood vessels. After
thresholding, the edges of the binary image are detected and
sets of connected edge points (strokes) are detected. The
nearby smaller anatomical structures and the white spots
inside the lungs originate strokes that we wish to discard
as outliers (Fig. 1). At this point the directional information
of the edges is also calculated and will be used to improve
the segmentation performance.

Fig. 1. Edge detection step. a) Original image b) Corresponding edges.

For the simultaneous segmentation of both lungs two
ACMs are used (L=2). In case there are other thoracic
structures of interest in the images, the trachea for example,
more ACMs can be used.

A. Initialization

The initialization is fully automatic. Since the competition
between the multiple ACMs makes them quite robust we are
able to use a crude initialization with two parallel circles
with the same radius. These two circles are found with the
Hough Transform (HT) using a very coarse quantization
for the circles center coordinates(a, b) and also for the
radius r. The circle detection tries to find dark circles on

a bright background and therefore exploits the geometrical
relationship between the center coordinates(a, b) and the
edge directionφ obtained in the edge detection stage. This
relationship, together with the knowledge of the expected
range of radii, makes it possible for every edge point(x, y)
to vote in the parameter space across a line segment normal
to the tangent. The line segment is defined by the points
(x, y) and (x1, y1) which are calculated as follows:

x1 = x + rmax cos(φ)
y1 = y + rmax sin(φ) (17)

where rmax is the maximum value allowed for the radius.
The circles are found by searching the 3D accumulator space
for two peaks with the sameb coordinate for the circle
center and also the same radius. This search for the maxima
is exhaustive but it is fast since the number of cells is
quite small because of the coarse parameter quantization.
Initialization can be located either inside, outside or across
the lungs region.

B. Lung Superposition

In the case of lung superposition, after the algorithm’s
convergence there will be a separation between the ACM’s
because there are no edges at the lungs junction and both
lungs are competing for the same strokes. Therefore, in order
to connect the ACM’s at the junction, we add interaction
forces between the ACM’s. We use the long range attraction
forces and short range repulsion forces also used by [6]
which are derived from the intermolecular dynamics potential
function known as the Lennard-Jones function:

finter(xk
i , xm

j ) = A ‖rij‖−n −B ‖rij‖−m

where‖rij‖ is the distance between snaxelsxk
i and xm

j

and n, m, A and B are constants. We use the default A = B
= 1.0, m = 1, n = 3. An example of lung separation is given
in section IV.

IV. RESULTS

This section presents examples to illustrate the perfor-
mance of the proposed method. The input data consists of
stacks of chest CT slices with X-ray attenuation ranging from
-1024 to 3071 Hounsfield units, corresponding to a 12 bit
quantization. Images are 512x512 with slice thickness of 1.0
millimeters. Edges were obtained with the Canny edge detec-
tor and strokes were obtained with a connected components
labelling algorithm. The external forces acting on each model
unit were multiplied by independent gains as suggested in
[5] in order to speed up convergence. The gain factorsγint

andγinter were chosen manually. The first example illustrates
performance of the algorithm in the middle pulmonary region
and shows the robustness of the method with respect to the
initialization. Fig. 2 a) and b) shows the initial contours and
the final contours obtained by the algorithm. Although there
is a large degree of intersection between the two ACM’s
produced by the automatic initialization step, still the method
is able to recover due to the competition between the two
ACM’s. In addition the algorithm is able to classify the



trachea as an outlier as well as the spurious strokes located
inside the lungs.

Fig. 2. Lung segmentation in the middle pulmonary region. a) Automatic
initialization b) Final Segmentation.

The second example illustrates the performance of the
algorithm in the lower pulmonary region and shows that the
method can deal with pronounced concavities and different
shapes for each lung. Fig.3 a) and b) show the initial contours
on the left and the final contours on the right.

Fig. 3. Lung segmentation in the lower pulmonary region. a) Automatic
initialization b) Final Segmentation.

The third example illustrates the performance of the algo-
rithm in the case of lung superposition. Fig.4 a) shows the
segmentation results obtained without interaction forces and
Fig.4 b) shows the final segmentation with joined contours
after the use of interaction forces between the ACM’s.

Fig. 4. Lung superposition. a) Segmentation before interaction forces b)
Final Segmentation.

V. CONCLUSIONS

This paper proposes a method for the automatic segmenta-
tion of the lungs in X-ray computed tomography (CT) images
using multiple active contour models and an outlier model.
The method segments both lungs simultaneously and also
accounts for outlier features detected in the image. No user
intervention in required to initialize the contour since the
initialization is fully automatic. Optionally more thoracic
structures other than the lungs can be segmented. Future
work will include the extension of the proposed methods
to 3D for the analysis of the complete CT data set.
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