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This paper addresses the path-following problem of steering an autonomous air vehicle
along a predefined 3-D path, while tracking a desired velocity profile. The presented solu-
tion relies on the definition of a path-dependent error space to express the dynamic model
of the vehicle, which exhibits a high degree of directional accuracy. The proposed method-
ology adopts a polytopic Linear Parameter Varying (LPV) representation with piecewise
affine dependence on the parameters to accurately model the error dynamics over a wide
flight-envelope. The synthesis problem is stated as a discrete-time H2 control problem
for LPV systems and solved using Linear Matrix Inequalities (LMIs). To achieve bet-
ter path-following performance, a preview control technique is adopted, which amounts
to introducing a feedforward term driven by future path disturbances. Implementation
of the nonlinear controller is addressed within the framework of gain-scheduling control
theory using the D-methodology. The effectiveness of the proposed controller is assessed
in simulation using the full nonlinear model of a small-scale helicopter.

I. Introduction

Over the last decade, autonomous vehicles have been steadily growing a major topic of research. With
the advent of new sensor technology and increasingly powerful computational systems, autonomous vehicles
have the potential to perform high precision tasks in challenging and uncertain operation scenarios. Consider
for example the case of bridge inspections, where a camera-equipped helicopter is expected to follow complex
three-dimensional paths to monitor bridge pillars and deck and assess maintenance and repair requirements.
This provides an important motivation for developing new high performance control algorithms.

Within the field of motion control for autonomous vehicles, the path-following approach arose as a
response to the limitations of trajectory-tracking. Leading work in this area can be found in Ref. 1. In
path-following, instead of tracking a time-parameterized reference, i.e., a trajectory, the vehicle is required
to converge to and follow a path without temporal restrictions. Several examples show that, when compared
to trajectory-tracking, path-following strategies consistently exhibit enhanced performance, with smoother
convergence to the path and less demand on the control effort. In this paper, the path-following problem
is addressed along the lines of the work reported in Ref. 2–4, while having in mind high-maneuverability
vehicles, such as helicopters. The presented solution relies on the definition of a path-dependent error space
to express the dynamic model of the vehicle. The error vector, which the path-following controller should
drive to zero, comprises velocity errors, orientation errors, and the distance to the path, defined as the
distance between the vehicle’s position and its orthogonal projection on the path. Due to a more accurate
representation of error directionality, the proposed error space constitutes an improvement with respect to
previous ones. Namely, instead of matching the desired trimming values, the reference velocities are rotated
to the current body frame. These enhancements are particularly relevant for helicopters, since the angles of
attack and sideslip may change substantially while following a path.

It is well-known that LPV models used within the framework of gain-scheduling constitute a powerful tool
for tackling difficult nonlinear problems. Several examples in the literature attest for its level of success (see
Ref. 5,6 and references therein). In this paper, we adopt a polytopic LPV representation with piecewise affine

∗PhD Student, Department of Electrical Engineering and Computer Science (DEEC), Av. Rovisco Pais 1; rita@isr.ist.utl.pt.
†PhD Student, DEEC, Av. Rovisco Pais 1; dantunes@isr.ist.utl.pt.
‡MSc Student, DEEC, Av. Rovisco Pais 1; pgomes@isr.ist.utl.pt.
§Assistant Professor, DEEC, Av. Rovisco Pais 1; cjs@isr.ist.utl.pt. Member AIAA.

1 of 21

American Institute of Aeronautics and Astronautics



dependence on the parameters to accurately model the error dynamics over a set of predefined operating
regions. Using an LMI approach and based on the notion of quadratic stability for LPV systems,7 we are able
to address the path-following controller synthesis problem in a systematic way and derive in a straightforward
manner a discrete-time H2 controller for each of the operating regions.

Preview control algorithms have been widely used to improve the overall closed loop performance obtained
with limited bandwidth feedback compensators when future information on the commands or disturbances is
available. A series of papers on application of Linear Quadratic preview control theory to the design of vehicle
active suspensions can be found in the literature. Special emphasis should be given to the pioneering work of
Tomizuka,8 where the optimal preview control problem is formulated and solved, and the impact of different
preview lengths on the overall suspension performance is discussed. An alternative method is presented
by Prokop and Sharp9 that consists of incorporating the disturbance or reference dynamics into the design
model and then solving the resulting linear quadratic control problem. More recently, Takaba10 addressed
the problem of robust servomechanism mixed LQ/H∞ design with preview action for polytopic uncertain
systems using Linear Matrix Inequalities. The path-following controller presented in this paper is based on
the novel preview control algorithm proposed in Ref. 11 and generalizes these results to accommodate 3-D
reference paths.

The paper is organized as follows: Section II presents the standard rigid-body dynamic model, which
can be used to describe autonomous air vehicles; Section III introduces the path-dependent error space,
presents a derivation for the error dynamics parameterized by a vector that fully characterizes the desired
operating point, and particularizes for the case of helicopters, introducing a reduced parameter vector and a
suitable error output vector; Section IV reviews theoretical results on LPV systems and presents a solution
for the preview control problem within this framework; Section V focuses on implementation of the nonlinear
path-following controller, addressing the problem of modeling the error dynamics as a set of affine parameter
dependent linear systems and describing controller design specifications; simulation results obtained with
the full nonlinear model of a helicopter are presented in Section VI.

II. Vehicle Dynamic Model

Consider a vehicle modeled as rigid-body, define {I} as the inertial frame and {B} as the body frame,
attached to the vehicle’s center of mass. Let (IpB, I

BR) ∈ SE(3) , R3 × SO(3) denote the configuration
of {B} with respect to {I} and λB = [φB θB ψB]T , θB ∈ ]−π/2, π/2[, φB, ψB ∈ R denote the Z-Y-X Euler
angles, representing the orientation of {B} relative to {I}. The rotation matrix I

BR and the Euler angles λB

satisfy

I

BR = RZ(ψB)RY (θB)RX(φB) ⇔ λB = arg( I

BR)

⇔





θB = atan2(−r31,
√

r2
11 + r2

21)
φB = atan2(r32, r33)
ψB = atan2(r21, r11)

, (1)

where atan2(., .) denotes the four quadrant arctangent function and RZ(.), RY (.), and RX(.) denote rotation
matrices about the Z, Y , and X axes, respectively.

Consider also the linear and angular body velocities, vB and ωB ∈ R3, given respectively by vB = B
I R IṗB

and ωB = B
I R IωB, where IωB ∈ R3 is the angular velocity of {B} with respect to {I}. According to this

notation, the standard equations for the vehicle’s kinematics12 can be written as
{

IṗB = I

BRvB

λ̇B = Q(φB, θB)ωB

, (2)

where

Q(φB, θB)=




1 sin φB tan θB cos φB tan θB

0 cos φB − sin φB

0 sin φB/cos θB cosφB/cos θB


 , (3)

and the derivative of I
BR is given by

I

BṘ = I

BR S(ωB), (4)
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where S(x) ∈ R3×3 is a skew symmetric matrix such that S(x) y = x × y, for all x, y ∈ R3. The dynamic
model of the vehicle can be written as

{
v̇B = f(vB, ωB,u) + B

I R [0 0 g]T

ω̇B = n(vB, ωB,u)
, (5)

where g denotes the gravitational acceleration; f , n : (R3,R3,Rm) → R3 are continuously differentiable
functions of the body velocities and control inputs u ∈ Rm that derive from the remaining forces and
moments acting on the body.

Due to the choice of Euler angles representation, it follows that B
I R [0 0 g]T = RX(φB)T RY (θB)T [0 0 g]T

and so the complete dynamic model of the system can be written as




v̇B = f (vB, ωB, u) + fg (φB, θB)
ω̇B = n (vB, ωB, u)

IṗB = I

BRvB

λ̇B = Q(φB, θB) ωB

. (6)

III. Path-dependent Error Dynamic Model

The goal of this work consists in designing a controller that steers the vehicle along a desired path, which
corresponds to a smooth three-dimensional curve Γ. In this section, we describe the transformation applied
to the vehicle dynamic model (6) to obtain an error dynamic model, which will then be used for controller
design. In order to define this error space, we must first introduce two coordinate frames relating the vehicle
and the desired path Γ. These are the tangent frame {T} and the desired body frame {C} shown in Figure 1.
Both coordinate frames move along the path attached to the point on the path closest to the vehicle. The
difference between the two lies in the fact that {T} is always aligned with the tangent to the path, whereas
{C} gives the desired body orientation.

Figure 1. Coordinate frames: inertial {I}, body {B}, tangent {T}, and desired body frame {C}

A. The tangent frame {T}
There is an almost exact correspondence between {T} and the standard Serret-Frenet frame, formed by the
tangent, normal, and binormal vectors. Both frames share the same x axis, the tangent vector, and have
collinear y and z axes, which may have opposite signs. In loose terms, while in the Serret-Frenet frame the
normal always points “inside” the curve, this may not be case with the {T} frame. This property widens
the set of curves for which continuity in the {T} frame can be guaranteed. To illustrate the difference
between the two frame definitions, consider the sinusoidal curve depicted in Figure 2. The discontinuity in
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the Serret-Frenet’s normal vector, shown in Figure 2(a) at the origin of the coordinate frame, is eliminated
by our alternative tangent frame definition shown in Figure 2(b).
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(a) Serret-Frenet frame
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(b) Tangent frame

Figure 2. Sinusoidal curve

A formal definition for the {T} coordinate frame and a derivation of the equations ruling its motion along
the curve can be found in Appendix A. Assuming that the curve is parameterized by the arc-length s, also
defined in Appendix A, the orientation of {T} with respect to {I} can be written as

I

T R(s) = [t(s) n(s) b(s)] ∈ SO(3), (7)

where the tangent t(s), the normal n(s), and the binormal b(s) are defined in (51), (55), and (56), respec-
tively.

In the following, the dependence on s is omitted, for reasons of simplicity. Given (7), it is easy to show
that i) since {T} is always tangent to the path, the linear velocity vT = T

I R IṗT ∈ R3 takes the form

vT = VT [1 0 0], (8)

where VT ∈ R gives the speed with which the tangent frame is moving along the curve, i.e., VT = ṡ; ii)
according to the Serret-Frenet formulas (59), the motion of I

T R is ruled by

I

T Ṙ =
d(I

T R)
ds

ṡ = VT
I

T R S([τ 0 κ]T ); (9)

and iii) the angular velocity ωT = T
I R IωT is therefore given by

ωT = VT [τ 0 κ]T . (10)

Going back to the original idea of constraining the tangent frame’s motion to depend on the body’s
motion, so that the origin of {T} coincides with the point in Γ closest to the vehicle, it is easy to see
that this condition is equivalent to restricting the distance vector d = IpB − IpT to belong to the plane
perpendicular to the tangent vector t, see Figure 1. Then, the body position relative to the path can be
expressed in terms of the arc-length s and the distance vector dt = [dy dz]T ∈ R2, which verifies

T

I Rd = [0 dT

t ]T . (11)

Taking the derivative of (11), it is straightforward to write
[

0
ḋt

]
= T

I Ṙ (IpB −I pT ) + T

I R (IṗB −I ṗT )

= −S (ωT )

[
0
dt

]
+ T

BRvB − vT, (12)

and simple manipulations show that the speed of the tangent frame is given by

ṡ = VT =
1

1− κ dy

[
1 0 0

]
T

BRvB (13)
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and the motion of dt is ruled by

ḋt = VT τ

[
0 1
−1 0

]
dt +

[
0 1 0
0 0 1

]
T

BRvB. (14)

B. The desired body frame {C}
The need to define {C} arises from the fact that while following a path, the vehicle may take different
orientations or even rotate with respect to the path. The desired orientation can be represented by the
Z-Y-X Euler angles λC = [φC θC ψC ]T , θC ∈ ]−π/2, π/2[ , φC , ψC ∈ R.

Using the tangent velocities vT and ωT , the linear and angular velocities of {C} can be written as
vC = C

T RvT and ωC = C
T R (ωT + T ωC), respectively, where the relative angular velocity T ωC is given by

S(T ωC) = VT

d(T
CR)
ds

C
T R . Then, the derivative of λC can be written as

λ̇C = Q(φC, θC) C

T R (ωT + T ωC). (15)

C. Error space definition

In order to ensure that a vehicle not only follows a predefined curve Γ but also tracks a given velocity profile,
extra references are needed. For that purpose, we consider the reference tangent speed Vr, which defines
references for both the linear and angular tangent velocities given by vr = [Vr 0 0]T and ωr = Vr[τ 0 κ]T ,
respectively. Given the definitions of {T}, {C}, and references Vr and ωr, we introduce the following error
state vector

xe =




ve

ωe

dt

λe


=




vB − B
T Rvr

ωB − B
T R (ωr + T ωC)

dt

λB − λC


 ∈ R

11. (16)

It is now easy to see that there is a nonlinear transformation between the original vehicle state xB =
[vT

B ωT
B

IpT
B λT

C ]T ∈ R12 and the state vector given by [xT
e s]T . Moreover, it is straightforward to verify that

the vehicle follows a path Γ with speed VT = Vr, relative angular velocity T ωB = T ωC, and orientation
λB = λC if and only if xe = 0. It should be noted that the reference velocities are determined in the tangent
frame {T} and then rotated to the current body frame {B}. This is in contrast with previous approaches,2

where the references were rotated to {C} instead of {B}. With a significant orientation error, directionality
of the velocity errors could be lost. In the current approach, the velocity errors ve and ωe do not depend on
the orientation error, so that keeping λe 6= 0 while the remaining error components are driven to zero, still
ensures that the vehicle follows the path with the desired speed, but now with arbitrary orientation. The
following proposition summarizes the above considerations.

Proposition III.1. Consider a vehicle with state xB = [vT
B ωT

B
IpT

B λT

B]T ∈ R12, a path Γ to be followed,
and the error vector xe = [vT

e ωT
e dT

t λT

e ]T ∈ R11 given by (16). Then,

(i) the vehicle follows Γ, with speed VT = Vr (vT = vr and ωT = ωr) and arbitrary orientation if and only
if dt = 0 and ve = 0;

(ii) the vehicle follows Γ, with speed VT = Vr, relative angular velocity T ωB = T ωC, and arbitrary but
constant orientation if and only if dt = 0, ve = 0, and ωe = 0 ; and, finally,

(iii) the vehicle follows Γ, with speed VT = Vr, relative angular velocity T ωB = T ωC, and orientation
λB = λC if and only if xe = 0.

Proof. i) Having the vehicle on the path is obviously equivalent to having dt = 0, which implies, by (13-14),
that vB = B

T RvT . Therefore,

ve = 0 ⇔ vB = B

T R [Vr 0 0]T ⇔ VT = Vr ⇔ ωT = ωr,

ii) If dt = 0 and ve = 0 then

ωe = 0 ⇔ ωB = B

T R(ωr + rωC) ⇔ B

T R(ωT + T ωB) = B

T R(ωT + T ωC) ⇔ T ωB = T ωC .

The proof of iii) follows immediately.
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D. Error Dynamics

Taking the time derivative of (16) and substituting v̇B and ω̇B by the corresponding expressions given in
(5) yields 




v̇e = f (vB, ωB, u) + fg (φB, θB) + S(ωB − B

T R ωT ) B

T Rvr − B

T R v̇r

ω̇e = n (vB, ωB, u) + S(ωB − B

T R ωT ) B

T R (ωr + T ωC)− B

T R (ω̇r + T ω̇C)

ḋt = VT τ

[
0 1
−1 0

]
dt +

[
0 1 0
0 0 1

]
T

BRve

λ̇e = Q(φB, θB)ωB −Q(φC, θC) C

T R (ωT + T ωC)

. (17)

Recalling that Vr, κ, τ , I
T R, and I

CR can be parameterized by s, the error dynamics (17) can be written in
compact form as ẋe = fe(xe, s,u). The time derivative of s given in (13) can also be written in similar form
and therefore the full system dynamics are described by

{
ẋe = fe(xe, s,u)
ṡ = fs(xe, s)

. (18)

Until now, it has been assumed that Γ can be any smooth 3-D space curve to be followed with arbitrary
velocity and orientation, provided these are continuously differentiable functions of s. The set of allowable
paths is now restricted to the set of trimming paths. Similarly, the reference speed Vr and the motion of
{C} are constrained to correspond to trimming trajectories consistent with the chosen path. A trimming
path corresponds to a curve that the vehicle can follow while satisfying the trimming condition, which is
equivalent to having v̇B = 0, ω̇B = 0, and u̇ = 0 in (5). It is well known that, for a vehicle with dynamics
described by (5) and assuming constant gravitational acceleration, the set of trimming trajectories comprises
all z-aligned helices (κ̇ = 0, τ̇ = 0, λT = [0 θT ψT ]T , and λ̇T = sign(κ)VT

√
κ2 + τ2 [ 0 0 1 ]T ), followed at

constant speed (V̇T = 0) and constant orientation relative to the path (T ωC = 0). For helices, the flight path
angle θT is given by θT = arctan(−τ/κ), while in the case of straight lines (κ = 0, τ = 0), θT is a predefined
constant. The following set of constraints can therefore be imposed on the reference path and velocities:
V̇r = 0, κ̇ = 0, τ̇ = 0, T ωC = 0, and λ̇C = λ̇T = sign(κ)VT

√
κ2 + τ2 [ 0 0 1 ]T .

Under these constraints, the error dynamics are given by




v̇e = f (vB, ωB, u) + fg (φB, θB) + S(ωe) B

T Rvr + (1− VT

Vr
) B

T R S(ωr)vr

ω̇e = n (vB, ωB, u) + S(ωe) B

T R ωr

ḋt = VT τ

[
0 1
−1 0

]
dt +

[
0 1 0
0 0 1

]
T

BRve

λ̇e = Q(φB, θB)ωB − sign(κ)VT

√
κ2 + τ2 [ 0 0 1 ]T

. (19)

Notice that the rotation matrix T
BR can be written as T

BR = Ry(θT )T Rz(ψct + ψe)Ry(θB)Rx(φB), where ψct

denotes the constant difference ψC − ψT . Thus, the only terms in (19) that depend explicitly on s, ψT and
ψC, do not appear isolated and consequently the need to include the arc-length s in the state vector has
been eliminated.

Consider the constant parameter vector η = (Vr, ψ̇r, θT , ψct, φC , θC), where ψ̇r = Vr

√
κ2 + τ2 denotes

the reference yaw rate. It is easy to verify that, apart from a translation or a z-axis rotation, η completely
characterizes a trimming trajectory. Then, as opposed to (18), the error system can be considered separately
from the state s as given by

ẋe = f̄e(xe, η,u). (20)

The following result shows that, for every trimming trajectory that is feasible for the vehicle in question,
(20) has an equilibrium point at the origin and therefore its linearization about that point is time-invariant.

Proposition III.2. Consider a reference vector η = (Vr, ψ̇r, θT , ψct, φC , θC) that parameterizes a trimming
trajectory. If there exists a constant input vector uη such that

{
f( C

T R vr,
C

T R ωr, uη) + fg(φC, θC) = 0
n( C

T R vr,
C

T R ωr, uη) = 0
, (21)
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then xe = 0 is an equilibrium point of the error system (20).

Proof. The proof follows from direct substitutions of the equilibrium point in the appropriate equations. If
xe = 0, then by (16) vB = C

T Rvr, ωB = C
T R ωr, and λB = λC , and by (13) VT = Vr. Given the definition

of uη, it follows that v̇B = 0 and ω̇B = 0. Using these results in (19) yields v̇e = 0, ω̇e = 0, ḋt = 0 and
λ̇e = Q(φC , θC) C

T R ωr − sign(κ)Vr

√
κ2 + τ2[0 0 1]T . Simple algebraic manipulations show that λ̇e = 0.

E. Example: error dynamics for model-scale helicopters

Using the error space defined in the preceding section, it is straightforward to obtain a linearization of the
system about any predefined operating point. If the vehicle under consideration is fully actuated, then the
set of operating points can be parameterized by η. Otherwise, we need to define a suitable parameterization
of lower dimension. In this paper, we consider the case of model-scale helicopters, which typically have four
actuators forming the input vector

u = [θ0 θ1c θ1s θ0t]T ∈ R4, (22)

where θ0 is the main rotor collective input, θ1c and θ1s the cyclic inputs for main rotor and Bell-Hiller flybar,
and θ0t the tail rotor collective input. It is easy to see that, due to the tail rotor actuation, helicopters
can describe trimming trajectories with arbitrary but constant yaw angle relative to the path, that is, with
arbitrary ψct. However, the roll and pitch angles φC and θC are automatically constrained by this choice.
These considerations suggest that the first four elements of η, which we now denote by ξ = (Vr, ψ̇r, θT , ψct),
adequately parameterize the operating points of a helicopter over its flight envelope. We would also like to
stress that due to the use of the D-methodology17 in the final implementation scheme, the need to supply
values for φC and θC is eliminated and therefore the problem of determining the exact vehicle orientation for
each trimming condition is bypassed.

We are also interested in defining an output to be driven to zero at steady-state by means of integral
action. Once again, we need to take into account the characteristic of the vehicle when defining this output.
For the case of helicopters, we propose the following function

ye =


ve + B

T R

[
0
dt

]

ψe


 ∈ R4. (23)

The first element of ye, which can also be written as vB − B
T R [Vr − dT

t ]T , effectively defines a new desired
velocity that points towards the path as a function of dt. In addition, it has the advantage of expressing the
distance in the current body frame.

To summarize the foregoing considerations, the error system for a helicopter can be described as

P(ξ) :=

{
ẋe = f̄e(xe, ξ,u)
ye = g(xe, ξ)

, (24)

where, with an obvious abuse of notation, f̄e(xe, ξ,u) corresponds to f̄e(xe, η,u) as defined in (20) and
g(xe, ξ) is given by (23). Recalling that ξ is a constant parameter vector, the linearization of P(ξ) about
(xe = 0, u = uξ) results in a time-invariant system of the form

Pl(ξ) =

{
δẋe = Ae(ξ)δxe + Be(ξ)δu
δye = Ce(ξ)δxe

, (25)

where Ae(ξ) =
∂ f̄e
∂xe

(0,uξ, ξ), Be(ξ) =
∂ f̄e
∂u

(0,uξ, ξ), and Ce(ξ) =
∂g
∂xe

(0, ξ). Analytical expressions for these

Jacobians matrices can be found in Appendix B.

IV. Controller Synthesis

In the preceding section, we have derived a linear parameter-dependent representation for the nonlinear
error system. In this section, we consider a discrete-time Linear Parameter Varying (LPV) system as
a starting point and describe the control synthesis methodology adopted to design an H2 state-feedback
controller for this model. The connection with the underlying error model is presented in Section V.
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A. Theoretical Background

Consider an LPV system of the form
{

x(k + 1) = A(ξ)x(k) + Bw(ξ)w(k) + B(ξ)u(k)
z(k) = Cz(ξ)x(k) + E(ξ)u(k)

, (26)

where x is the state, u is the control input, z denotes the error signal to be controlled, and w denotes the
exogenous input signal, which includes reference commands and disturbances. The system is parameterized
by ξ, which is a possibly time-varying parameter vector and belongs to the set Ξ.

To analyze these systems, the useful notion of quadratic stability has been introduced (see, for example,
Ref. 7).

Definition IV.1 (Quadratic Stability). The system x(k + 1) = A(ξ)x(k) is said to be quadratically stable
if there exists a matrix P > 0 such that the LMI A(ξ)T PA(ξ)− P < 0 is satisfied, for all ξ ∈ Ξ.

It is straightforward to verify that quadratic stability is a sufficient condition for stability. Of course that
without further assumptions, testing for quadratic stability involves an infinite number of LMI’s. Several
different structures for the LPV system have been proposed, which reduce the problem to that of solving
a finite number of LMI’s. In this paper, we have adopted the polytopic description, which can be used to
model a wide spectrum of systems and, as shown in the next section, is an adequate choice for the system
at hand.

Definition IV.2 (Polytopic LPV system). The LPV system (26) is said to be polytopic if, for all ξ ∈ Ξ, the

system matrix S(ξ) =

[
A(ξ) Bw(ξ) B(ξ)
Cz(ξ) 0 E(ξ)

]
verifies S(ξ) ∈ co(S1, . . . , Sr), where co(.) denotes the convex

hull operator and Si =

[
Ai Bwi Bi

Czi 0 Ei

]
, for all i ∈ {1, . . . , r}.

According to Definition IV.2, S(ξ) belongs to the polytope of matrices whose vertices correspond to the
fixed systems S1, S2,. . ., Sr. If, in addition, the set Ξ is assumed to be a polytope defined as Ξ = co(Ξ0),
where Ξ0 = {ξ1, . . . , ξr}, and the dependence of S(ξ) on ξ is assumed to be affine, then S(ξ) satisfies

S(ξ) = S

(
r∑

i=1

αiξi

)
=

r∑

i=1

αiS(ξi), (27)

with
∑r

i=1 αi = 1 and αi ∈ [0, 1]. It follows that the vertices Si of the matrix polytope can be identified
with the vertices ξi of the parameter polytope, so that Si = S(ξi), i ∈ {1, . . . , r}. The polytopic structure
provides a powerful set of results when used in conjunction with the following lemma.

Lemma IV.1. 13 Let f : Ξ → R be a convex function defined on the convex set Ξ = co{Ξ0}. Then f(ξ) ≤ γ,
for all ξ ∈ Ξ, if and only if f(ξ) ≤ γ, for all ξ ∈ Ξ0.

This result allows not only for the test of quadratic stability but also for the evaluation of a whole range
of performance measures by simply considering a finite number of LMI’s. In this paper, we are interested
in finding a solution to the discrete-time state feedback H2 synthesis problem. Consider the static state
feedback law given by

u(k) = Kx(k), (28)

and let Tzw denote the closed loop operator from w to z resulting from the interconnection of (26) and (28).
Then, the H2 synthesis problem can be described as that of finding a control matrix K that stabilizes the
closed-loop system and guarantees that the H2 norm of Tzw, ‖Tzw‖2, is smaller than a desired bound γ.

The technique used for controller design relies on results available in Ref. 14 and Ref. 13, the most
important of which are summarized below after being rewritten for the case of polytopic LPV systems. In
the following, tr(L), im(L), and ker(L) denote the trace, image, and kernel of matrix L, respectively.
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Lemma IV.2. A static state feedback controller guarantees the γ upper-bound for the discrete time H2 norm
of the closed loop operator Tzw(ξ) with ξ ∈ Ξ, that is,

‖Tzw(ξ)‖2 = ‖(Cz(ξ) + E(ξ)K)
(
zI −A(ξ)−B(ξ)K

)−1
Bw(ξ)‖2 < γ, ∀ ξ ∈ Ξ (29)

if and only if there are real matrices P = P T > 0, K and Z such that, for all i ∈ {1, . . . , r}, the following
LMI system is satisfied




−P−1 (Ai + BiK) 0
(Ai + BiK)T −P (Czi + EiK)T

0 (Czi + EiK) −I


 < 0 (30)

[
P−1 Bwi

BT
wi

Z

]
> 0 (31)

tr(Z) < γ2. (32)

The synthesis problem, i.e. that of finding a matrix P = X−1 and controller K that verify (30-32), can
be solved according to the following result.

Lemma IV.3. The H2 norm of the closed loop operator Tzw(ξ) is less than a positive number γ, that is,
‖Tzw(ξ)‖2 < γ, with ξ ∈ Ξ if, for all i ∈ {1, . . . , r}, a real symmetric matrix X > 0 (X = P−1) and a real
matrix Z exist such that

(W T

1i
Ai + W T

2i
Czi)X(W T

1i
Ai + W T

2i
Czi)

T −W T

1i
XW1i −W T

2i
W2i < 0 (33)[

X Bwi

BT
wi

Z

]
> 0 (34)

tr(Z) < γ2, (35)

where matrices W T
1i

and W T
2i

satisfy im[W T
1i

W T
2i

]T = ker[BT
i ET

i ]. Using the matrix solution X, the static
state feedback gain K is then computed by solving the following LMI feasibility problem:



−X Ai 0
AT

i −X−1 CT
zi

0 Czi −I


 +




Bi

0
Ei


 K[0 I 0] +




0
I

0


 KT [BT

i 0 ET
i ] < 0. (36)

This result can be easily proven by using the Projection Lemma,14 followed by a decomposition of the
null space matrices. Finally, the optimal solution for the discrete time H2 control problem is approximated
through the minimization of γ subject to Lemma IV.3.

B. Discrete-Time Preview Control

Better path-following performance with limited bandwidth compensators can be achieved by taking into
account, in the control law, the characteristics of the reference path ahead of the vehicle. The technique
used in this paper to develop a path-following controller generalizes the results presented in Ref. 11, and
amounts to introducing a dynamic feedforward block fed by future path disturbances. We recall that, in
this section, we consider a general LPV system and defer to the next section the presentation of the method
adopted to model the path-following error dynamics as such.

Consider an LPV system of the form (26) that depends affinely on the parameter vector ξ ∈ Ξ = co(Ξ0)
and assume that there is an extra exogenous input s for which future samples can be previewed, i.e. rewrite
the state equation in (26) as

x(k + 1) = A(ξ)x(k) + Bw(ξ)w(k) + B(ξ)u(k) + B1(ξ)s(k).

Assuming a preview length of p samples, let xs(k) = [s(k)T , s(k + 1)T , ..., s(k + p)T ]T ∈ R(s(p+1))×1 be the
vector containing all the preview inputs at instant k. We are interested in determining the control matrices
Kd and Ks for a controller of the form

xs(k + 1) = Dxs(k) + Bss(k + p + 1) (37)
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where

D =




0 I 0 · · · 0
0 0 I · · · 0
...

...
. . . . . .

...

0 0 0
. . . I

0 0 0 · · · 0




, Bs =




0
0
...
0
I




,

and the augmented system with state x̄(k) =
[
x(k)Txs(k)T

]T

can be written as
{

x̄(k + 1) = Ā(ξ)x(k) + B̄(ξ)u(k) + B̄w(ξ)w(k) + B̄ss(k + p + 1)
z̄(k) = C̄z(ξ)x(k) + Ē(ξ)u(k)

, (38)

where

Ā(ξ) =

[
A(ξ) H(ξ)

0 D

]
, B̄(ξ) =

[
B(ξ)

0

]
, B̄w(ξ) =

[
Bw(ξ)

0

]
, B̄s =

[
0

Bs

]
,

the matrices C̄z(ξ) and Ē(ξ) determine a new output signal z̄ that incorporates z, and H(ξ) =
[
B1(ξ) 0 · · · 0

]

has as its first element the injection matrix for s(k) on the original system. Recalling that we are interested
in determining a state-feedback controller, which can be written as

u(k) = Kdx(k) + Ksxs,

and noting that D is a stable matrix, it is straightforward to observe that the stability of the resulting
closed-loop system is determined exclusively by Kd.

In this paper, we adopt the design methodology described in Ref. 15, which consists of i) designing
Kd to minimize the H2 norm of the LPV system without preview and ii) computing Ks to meet specific
performance criteria for the system evaluated at the central point of Ξ. We denote this point by ξo and the
corresponding state space matrices by Ao, Bo, Bwo, and B1o. For the sake of completeness, we state the
result presented in Ref. 15, which provides the expression for Ks.

Result IV.4. Consider the matrices Q =

[
Qd Qds

QT

ds Qs

]
= C̄z

T
C̄z and R = ĒT Ē, where Q is partitioned

according to the structure of (38). Further assume that C̄T
z Ē = 0. Given a pair (Pd, Kd), Pd = P T

d > 0 that
satisfies the conditions of Lemma IV.2 for the LPV system (26), consider the matrix

Pds = [ÃT

c PdBo, (Ã2
c)

T PdBo, · · · , (Ãp+1
c )T PdBo] + [Q1, Ã

T

c Q1 + Q2, ...,

p+1∑

j=1

(Ãp+1−j
c )T Qj ], (39)

where Ãc = Ao−Bo (BT
o PdBo + R)−1

BT
o PdAo and Qj denotes the jth s-dimensional column block of matrix

Qds, and the matrix Ps with entries

Ps(i, j) =

{
∆(i, j) , i≤s ∨ j≤s

∆(i, j) + Ps(i− s, j − s) , i>s ∧ j>s
(40)

∆ = HT

o PdHo + HT

o PdsD + DT PdsHo + Qs − (PdHo + PdsD)T Bo(BT

o PdBo + R)−1BT

o (PdHo + PdsD).

Consider also the feedforward gain matrix

Ks = (BT

o PdBo + R)−1
BT

o (PdHo + PdsD) . (41)

Then, the closed-loop system resulting from the interconnection of (26) and (37) is stable over the whole
region Ξ and the Lyapunov inequality for the central point verifies

(Āo + B̄oK)T P (Āo + B̄oK)− P + (C̄z + ĒK)T (C̄z + ĒK) =

[
Λ 0
0 0

]
≤ 0, (42)

with P =

[
Pd Pds

P T

ds Ps

]
> 0 and K =

[
Kd Ks

]
.
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V. Implementation

A. Affine Parameter Dependent Approximation of the Error Dynamics

In this section, we bridge the gap between the results of sections III and IV by taking the path-following
error dynamics and approximating it by a discrete-time polytopic LPV system with affine dependence on a
given set of parameters. The forthcoming results were obtained for the nonlinear helicopter simulation model
SimModHeli,16 parameterized for a specific platform the Vario X-treme helicopter. To apply the preview
methodology, we also need to introduce an additional exogenous input that takes into account discontinuities
in the reference path, and therefore can be used as a preview input.

For that purpose, we recall the error space definition and assume that at time ti there is a discontinuity
in the reference path such that

d( I
T Rvr)
dt

(ti) = I

T R (t−i )δ(0)
(

T

I R(t−i )I

T R(t+i )vr(t+i )− vr(t−i )
)

(43)

d( I
T R ωr)
dt

(ti) = I

T R (t−i )δ(0)
(

T

I R(t−i )I

T R(t+i )ωr(t+i )− ωr(t−i )
)

(44)

dλC

dt
(ti) = δ(0)

(
λC(t+i )− λC(t−i )

)
, (45)

where δ(.) denotes the Dirac delta function. A detailed analysis of the error dynamics suggests the intro-
duction of three disturbance terms due to (43), (44), and (45), so that the linearized error state equation
becomes

δẋe = Ae(ξ)δxe + Be(ξ)δu + W (ξ)δw, (46)

with the injection matrix W given by W (ξ) =




C
T R(ξ) 0 0

0 C
T R(ξ) 0

0 0 0
0 0 I


.

The corresponding discretization can be written as

x(k + 1) = A(ξ)x(k) + B(ξ)u(k) + B1(ξ)s(k), (47)

where the matrices A = eAeT , B =
∫ T

0
eAeτBedτ , and B1 = eAeT W were obtained assuming a zero-order

hold on the input u and an impulse signal on the input s, both synchronized with the sampling time T .
To define a polytopic LPV model, we consider the parameter vector ξ = (Vr, ψ̇r, θT , ψct) and partition

the parameter domain into the 98 convex regions (each with 16 vertices), which result from the combination
of intervals defined for each of the parameters. The values for these intervals, which are presented in Table 1,
were selected to encompass a wide range of operating conditions.

Table 1. Parameter intervals for flight envelope partitioning

Parameters Intervals
Vr [0 1], [0.9 1.9] (m/s)
ψ̇r [−0.2 0.2] (rad/s)
θT [−90 − 60], [−65 − 35], [−40 − 10], [−15 15], [10 40], [35 65], [60 90] (deg)
ψct [−90 − 60], [−65 − 35], [−40 − 10], [−15 15], [10 40], [35 65], [60 90] (deg)

To illustrate the shape of the operating regions obtained, Figure 3 shows 2-D representations where two
parameters are free to vary and the remaining are fixed. Notice that there is overlapping between adjacent
regions, which can be used to implement an hysteresis commutation between controllers.

Within each region, the state space matrices of the discrete-time system (47) were approximated by
affine function of ξ using Least Squares Fitting. For a relatively dense grid of evaluated operating points,
the affine approximation results in an average error in the matrix entries of less than 6.2%. Then, the
resulting system was evaluated at the vertices of each region, producing the finite set of state space matrices
Si, i ∈ {1, . . . , 16}, needed for control system design.
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Figure 3. 2-D operating regions

B. Synthesis Model and Controller Design

The linear state feedback controllers were required to meet the following design specifications:

Zero Steady State Error. Achieve zero steady state values for the error variable ye.

Bandwidth Requirements. The control loop bandwidth for the actuators channels should not
exceed 10 rad/s ; this limit was selected to ensure that the actuators would not be driven beyond their
normal actuation bandwidth.

The first step in the controller design procedure is the development of a synthesis model that can serve
as an interface between the designer and the H2 controller synthesis algorithm.

P

K

W1

W2

W3

6

T
z−1

6

?
-

-

-

-

-

¾

-

-

-

-

¾
¾

w
z

u

u

ye

x

G

Figure 4. Synthesis model

Consider the feedback system shown in Fig. 4, where P is the discrete-time linear model of the helicopter
error dynamics, and K is a state feedback controller to be designed. The augmented system G shown within
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the dashed line is the synthesis model, which is derived from the linear model of the plant by appending the
depicted weights. In practice, the weights serve as tuning ”knobs” which the designer can adjust to meet
the desired performance specifications.

In the figure, w corresponds to the error space disturbance signals s that must be rejected. To meet
the disturbance rejection response requirement the weighting function W1 was chosen as W1 = 0.1I4. The
weight W2 on the actuation vector u was set to W2 = diag([W2a(z)[1 1 1],W2b(z)]), where W2a(z) and
W2b(z) are dynamic weights used to enforce the bandwidth constraint on the main rotor and tail rotor
actuators, as discussed later. The weight W3 was set to W3 = diag([0.5[1 1 1], 0.1[1 1 1], 0.01[1 1], 0.1]) to
meet the command bandwidth requirements. Notice the existence of a block of integrators T/(z − 1) that
operates on the tracking errors e. The sampling time T was set to 0.02 s.

For the case studied in this paper, the transfer functions W2a(z) and W2b(z) were set to

W2a(z) =
5.658z − 4.989

z − 0.331
and W2b(z) =

1.052z + 0.3227
z + 0.3748

.

The inclusion of these high-pass weights expedites the process of fine tuning the closed loop bandwidths of
the control inputs because it penalizes high frequency components of the actuation signals.
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Figure 5. Closed loop frequency response

Figure 5 shows the singular value plot for the closed loop transfer functions from the input disturbance
s to the actuation u, for an operating point with parameters Vr = 1.5 m/s, ψ̇r = 0 rad/s, θT = 0 rad, and
ψct = 0 rad. The diagram shows that the performance requirements and the actuator bandwidth constraints
are met by the resulting closed loop system.

To summarize, the synthesis model G can be written as







x(k + 1)
xi(k + 1)
xf (k + 1)


 =




A 0 0
TCe I 0

0 0 Af







x(k)
xi(k)
xf (k)


 +




B

0
Bf


u(k) +




Bw

0
0


w(k)

z̃(k) = C̃z




x(k)
xi(k)
xf (k)


 + Ẽu(k)

, (48)

where Af , Bf , C̃z, and Ẽ are determined by the weights Wi, i ∈ {1, . . . , 4}.
The final gain-scheduled implementation scheme, presented in Figure 6, was achieved using the D-

methodology described in Ref. 17. This methodology moves all integrators to the plant input, and adds
differentiators where they are needed to preserve the transfer functions and the stability characteristics of
the closed loop system. The D-methodology implementation has several important features, which include
the following: i) auto-trimming property - the controller automatically generates adequate trimming values
for the actuation signals and for the state variables that are not required to track reference inputs and ii)
the implementation of anti-windup schemes is straightforward, due to the placement of the integrators at
the plant input.
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Figure 6. Implementation setup using gain scheduling and the D-methodology.

VI. Simulation Results

Simulation results were obtained using the nonlinear dynamic model SimModHeli, parameterized for the
Vario X-Treme model-scale helicopter (see Ref. 18 for further details). In the paper we present two examples
that are illustrative of the performance that can be achieved for different reference paths. Both simulations
were obtained using a gain-scheduled controller with dynamic weights on the actuation, based on the linear
controller synthesized for the 98 regions defined in section V.A.

The first example considers a reference path formed by the concatenation of two orthogonal straight
lines to be followed at a speed of 1.5 m/s (see Figure 7). Notice that the reference transition is very abrupt
and therefore could potentially drive the system to instability. The results shows that this is not the case.
Moreover, comparing Figures 7(a) and (b), we can verify that the preview controller, which was designed for
a preview vector with 60 samples, provides a considerable improvement in performance. The control activity
and error vector evolution, depicted in Figures 8(c) and (d), respectively, clearly show that the transition
is adequately anticipated by the system, due to the action of the preview term. An additional tool used
to assess the performance of the preview control scheme consists of comparing the H2 norm of the linear
closed-loop systems resulting from application of the control strategies with and without preview action.
Considering the whole set of operating regions, the H2 norm for the closed-loop systems evaluated at the
central point vary between 6.23 and 6.77 without preview, and are reduced to the interval between 2.36 and
2.41 when preview is applied.

For the second example, we selected a 3-D reference path divided in three segments: i) a climbing ramp
in the yoz plane, ii) a level flight segment along the x axis, and iii) a climbing helix. The parameters
corresponding to each stage are presented in Table 2. Notice that during the second stage, the vehicle
is required to follow the path sideways. Figure 9 shows that after each transition, the helicopter quickly

Table 2. Reference path parameters

Vr(m/s) ψ̇r(rad/s) θT (rad) ψct(rad)
1.5 0 −0.46 0
1.5 0 0 π/2
1.5 0.15 −0.20 0

converges to the reference path, while keeping the actuation within the limits of operation. Notice that this
avoids damaging the helicopter main rotor transmission.
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Figure 7. Path-following results with and without preview.

VII. Conclusions

The paper presented the design and performance evaluation of a path-following controller for autonomous
air vehicles. The technique described achieves good path-following performance by taking into account, in
the control law, the reference path characteristics ahead of the vehicle. An H2 controller design methodology
for polytopic LPV systems is adopted, which exploits dynamics weights to limit the actuation bandwidth.
The technique presented relies on a new error space capable of naturally describing the particular dynamic
characteristics of the aircraft in a suitable flight envelope. An alternative algorithm was used for computing
the feed-forward gain matrix that avoids solving Linear Matrix Inequalities involving large numbers of
unknowns. The resulting nonlinear controller was synthesized and implemented within the scope of gain-
scheduling control theory, using a piecewise affine parameter-dependent model representation for the given
set of operating regions. The effectiveness of the new control law was assessed in a simulation environment
with a full nonlinear model of the Vario X-Treme helicopter. The quality of the results obtained clearly
indicates that the methodology derived is suitable for the proposed application.

Appendix

A. Space Curves and the Tangent Coordinate Frame

A curve in 3-D space can be defined with respect to a parameter ξ ∈ R as the continuous map

p : [ξ0, ξ1] 7→ R3 : p(ξ) = [x(ξ) y(ξ) z(ξ)]T . (49)

We are interested in smooth curves, which are twice differentiable and have nowhere zero velocity, i.e.,
dp
dξ (ξ) 6= 0 ∀ξ ∈ [ξ0, ξ1].

The length of the curve over the domain [ξ0, ξ], also called the arc-length s, is given by

s(ξ) =
∫ ξ

ξ0

∥∥∥∥
dp
dτ

(τ)
∥∥∥∥ dτ. (50)

Defining the tangent vector t(ξ) as

t(ξ) =
dp
ds

(ξ), (51)
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Figure 8. Control activity and error state with and without preview.

and noting that dp
dξ (ξ) = dp

ds (s(ξ))ds
dξ (ξ) and ds

dξ (ξ) =
∥∥∥dp

dξ (ξ)
∥∥∥ then t(ξ) can also be written as

t(ξ) =
dp
dξ

(ξ)
∥∥∥∥

dp
dξ

(ξ)
∥∥∥∥
−1

, (52)

and therefore, we have that t is unitary and tangent to the curve at each point.
The normal vector is defined as satisfying

dt
ds

(ξ) = κ(ξ)n(ξ), (53)

where κ(ξ) ∈ R denotes what we call the “signed” curvature given by

κ(ξ) = σ(ξ)
∥∥∥∥

dt
ds

(ξ)
∥∥∥∥ , σ(ξ) ∈ {−1, 1}. (54)

Notice that (53) and (54) are not sufficient to determine n(ξ) when κ(ξ) = 0. We will complete this
definition so as to ensure that frame {T} is continuous along the curve. This would not be possible if instead
of (54), we had considered the standard definition of curvature κ(ξ) =

∥∥dt
ds (ξ)

∥∥, which is used to define the
Serret-Frenet frame.

Assuming that κ(ξ) = 0 only at isolated points and given an initial value σ(ξ0), the map σ : [ξ0, ξ1] 7→

16 of 21

American Institute of Aeronautics and Astronautics



0
10

20
30

40
50

−105 −100 −95 −90 −85 −80

−45

−40

−35

−30

−25

−20

−15

y [m]x [m]

z 
[m

]

(a) Observed trajectory.

0 10 20 30 40 50 60

0

0.05

0.1

q
0

[r
a

d
]

0 10 20 30 40 50 60
-0.01

0

0.01

0.02

q
1
s

[r
a

d
]

0 10 20 30 40 50 60
-0.04

-0.02

0

0.02

0.04

q
1
c

[r
a

d
]

0 10 20 30 40 50 60
0

0.05

0.1

time [s]

q
tr

[r
a

d
]

(b) Time evolution of the input vector u.

0 10 20 30 40 50 60
−1

−0.5

0

0.5

[m
 s

−
1 ]

u
e

v
e

w
e

0 10 20 30 40 50 60
−0.5

0

0.5

[r
ad

 s
−

1 ] p
e

q
e

r
e

0 10 20 30 40 50 60
−0.1

0

0.1

0.2
[m

]

d
y

d
z

0 10 20 30 40 50 60
−2

0

2

time [s]

[r
ad

]

φ
e

θ
e

ψ
e

(c) Time evolution of the error vector xe.

Figure 9. 3-D Path-following results.

{−1, 1} and the normal vector n(ξ) can be defined as follows

n(ξ) =





dt
ds

(ξ)κ(ξ)−1, κ(ξ) 6= 0

lim
τ→ξ−

n(τ), κ(ξ) = 0
σ(ξ) =





dσ

dξ
(ξ) = 0, κ(ξ) 6= 0

n(ξ)T

(
lim

τ→ξ+

dt
ds

(τ)
∥∥∥∥

dt
ds

(τ)
∥∥∥∥
−1

)
, κ(ξ) = 0

(55)

The same idea carries through to cases where κ(ξ) = 0 inside intervals. Using (54) and (55), it is easy to
show that n(ξ) is unitary. Moreover, it can be verified that t(ξ) and n(ξ) are perpendicular by noting that
t(ξ) is unitary and therefore t(ξ)T dt

ds (ξ) = 0. Given these properties, n(ξ) can be chosen as the second axis
of our tangent frame. Since we are interested in defining an orthogonal coordinate frame, the third axis,
which corresponds to the binormal vector b(ξ), is completely determined by

b(ξ) = t(ξ)× n(ξ). (56)

Computing the derivative of b(ξ) and taking the cross product with n(ξ), we obtain

n(ξ)× db
ds

(ξ) = n(ξ)×
(
t(ξ)× dn

ds
(ξ)

)
= (t(ξ)n(ξ)T − t(ξ)Tn(ξ)I3)

dn
ds

(ξ) = 0,

where the results n(ξ)× dt
ds (ξ) = 0, t(ξ)Tn(ξ) = 0, and n(ξ)T dn

ds (ξ) = 0 were used. It follows that n(ξ) and
db
ds (ξ) are collinear and therefore can be related by the equation

db
ds

(ξ) = −τ(ξ)n(ξ), (57)
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which defines the torsion of the curve at ξ, denoted here by τ(ξ) ∈ R. Using (53) and (57), it is straightforward
to obtain

dn
ds

(ξ) =
db
ds

(ξ)× n(ξ) + b(ξ)× dt
ds

(ξ) = τ(ξ)b(s)− κ(ξ)t(ξ). (58)

Collecting (53), (58), and (57) in matrix form and omitting the dependence on ξ yields

[
dt
ds

dn
ds

db
ds

]
=

[
t n b

]



0 −κ 0
κ 0 −τ

0 τ 0


 =

[
t n b

]
S ([τ 0 κ]T ) . (59)

This result corresponds to the so-called Serret-Frenet formulas, which rule the motion of
[
t n b

]
along the

curve. Notice that the alternative definition of curvature produces no change in these formulas.

1. A simple example

Consider the smooth sinusoidal curve given by

p(ξ) =
[
ξ sin(ξ) 0

]T

, ξ ∈ [−π/2, π/2], (60)

which is shown in Figure 2. Simple computations show that the tangent vector t(ξ) and its derivative dt
ds (ξ)

are given by

t(ξ) =
dp
dξ

(ξ)
∥∥∥∥

dp
dξ

(ξ)
∥∥∥∥
−1

=
1

(1 + cos(ξ)2)1/2

[
1 cos(ξ) 0

]T

and

dt
ds

(ξ) =
dt
dξ

(ξ)
∥∥∥∥

dp
dξ

(ξ)
∥∥∥∥
−1

=
sin(ξ)

(1 + cos(ξ)2)2
[
cos(ξ) −1 0

]T

,

respectively. According to (54), the curvature can be written as

κ(ξ) = σ(ξ)
| sin(ξ)|

(1 + cos(ξ)2)3/2
,

which implies that κ(ξ) = 0 only when ξ = 0. Given the initial value for σ(−π/2), we can conclude that

n(ξ) = σ(ξ)
sign(sin(ξ))

(1 + cos(ξ)2)1/2

[
cos(ξ) −1 0

]T

, for ξ ∈ [−π/2, π/2]\{0}

and

σ(ξ) =

{
σ(π/2), for ξ ∈ [−π/2, 0)
σ(0), for ξ ∈ (0, π/2]

.

At ξ = 0, we have

n(0) = lim
ξ→0−

n(ξ) = σ(−π/2)
1√
2

[
−1 1 0

]T

and

σ(0) = n(0)T

(
lim

τ→0+

sign(sin(τ))
(1 + cos(τ)2)1/2

[
cos(τ) −1 0

]T
)

= −σ(−π/2).
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B. Linearization of the Error Dynamics

1. Linearization of v̇e

∂v̇e

∂ve
(0,uξ, ξ) =

∂f
∂vB

( C

T Rvr,
C

T R ωr,uξ)− C

T R S(ωr)




1
0
0




[
1 0 0

]
T

CR (61)

∂v̇e

∂ωe
(0,uξ, ξ) =

∂f
∂ωB

( C

T Rvr,
C

T R ωr,uξ)− S( C

T Rvr) (62)

∂v̇e

∂dt
(0,uξ, ξ) = −Vrκ

C

T R S(ωr)




1
0
0




[
1 0

]
(63)

∂v̇e

∂λe
(0,uξ, ξ) =

∂f
∂vB

( C

T R vr,
C

T R ωr,uξ)S( T

CRvr)Q−1(φC , θC) (64)

+
∂f

∂ωB

( C

T R vr,
C

T R ωr,uξ) S( T

CR ωr) Q−1(φC , θC) (65)

+ Rx(φC)T S(Ry(θC)T




0
0
g


)




1 0 0
0 1 0
0 0 0


 (66)

∂v̇e

∂u
(0,uξ, ξ) =

∂f
∂u

( C

T Rvr,
C

T R ωr,uξ) (67)

2. Linearization of ω̇e

∂ω̇e

∂ve
(0,uξ, ξ) =

∂n
∂vB

( C

T Rvr,
C

T R ωr,uξ) (68)

∂ω̇e

∂ωe
(0,uξ, ξ) =

∂n
∂ωB

( C

T Rvr,
C

T R ωr,uξ)− S( C

T R ωr) (69)

∂ω̇e

∂dt
(0,uξ, ξ) = 0 (70)

∂ω̇e

∂λe
(0,uξ, ξ) =

∂n
∂vB

S(C

T Rvr)Q−1(φC , θC) +
∂n
∂vB

S(C

T R ωr) Q−1(φC , θC) (71)

∂ω̇e

∂u
(0,uξ, ξ) =

∂n
∂u

( C

T Rvr,
C

T R ωr,uξ) (72)

19 of 21

American Institute of Aeronautics and Astronautics



3. Linearization of ḋt

∂ḋt

∂ve
(0, ξ) =

[
0 1 0
0 0 1

]
T

CR (73)

∂ḋt

∂ωe
(0, ξ) = 0 (74)

∂ḋt

∂dt
(0, ξ) = Vr τ

[
0 1
−1 0

]
(75)

∂ḋt

∂λe
(0, ξ) = 0 (76)

(77)

4. Linearization of λ̇e

∂λ̇e

∂ve
(0, ξ) = −sign(κ)

√
κ2 + τ2




0
0
1




[
1 0 0

]
T

CR (78)

∂λ̇e

∂ωe
(0, ξ) = Q(φC , θC) (79)

∂λ̇e

∂dt
(0, ξ) = −sign(κ)Vrκ

√
κ2 + τ2




0
0
1




[
1 0

]
(80)

∂λ̇e

∂λe
(0, ξ) =




0 1
cos2 θc

0
0 0 0
0 sin θc

cos2 θc
0


 Q(φC , θC)S( C

T R ωr)




0 1 0
0 0 0
0 0 0


 (81)

+ Q(φC, θC) S( C

T R ωr)Q−1(φC , θC)




0 0 0
0 1 0
0 0 1


 (82)
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