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This work evaluates the impact of two state-of-the-art aiding techniques to enhance
the performance of inertial navigation systems (INS). A new embedded methodology to
integrate the vehicle dynamics (VD) in the navigation system is proposed, by modeling it
directly in the Extended Kalman Filter. The embedded VD and the INS algorithm prop-
agate simultaneously the inertial states, allowing for the estimation of the INS errors by
exploiting the dynamical information enclosed in the vehicle model. Results show that the
attitude, velocity and inertial sensors bias estimates are enhanced by the comprehensive
number of states predicted by the VD. The proposed technique introduces computational
savings, with an accuracy equivalent to the classical external vehicle model implementa-
tions. A LASER range finder sensor is also introduced as an external aiding source and
integrated into the navigation system to provide high precision altitude readings for the
critical takeoff and landing maneuvers. The paper shows that the proposed technique
represents a step towards the use of Uninhabited Air Vehicles in mission scenarios with
limited GPS availability and/or high accuracy positioning requirements. The performance
of the INS aiding architecture is assessed in simulation, and results obtained with the full
nonlinear dynamics of a model-scale helicopter are presented and discussed.

Nomenclature

Notation

s̄ Nominal vector
sr Sensor measurement of vector s̄
s Compensated vector
ŝ Estimated vector
δs = s − s̄ Vector error
[s×] Cross product operator for vector s
‖s‖ Magnitude of vector s
F s Vector expressed in coordinate frame {F}
A′ Transpose of matrix A
f |x0

Function f(x) evaluated at point x0

:= Quantity is defined as
≡ Quantity is equivalent to

Symbols

{E}, {B} Earth and body coordinate frames
BaSF Specific force expressed in body frame
a,v,p Acceleration, velocity, and position expressed in Earth frame
ω,u Body angular rate and linear velocity expressed in body frame
ba,bω Accelerometer and rate gyro triads biases expressed in body frame
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g, m Earth gravitational and magnetic fields
na,nω,nm Accelerometer, rate gyro, and magnetometer triads zero mean Gaussian white noises

with variances σ2
a, σ2

ω, σ2
m respectively

λ Rotation vector with magnitude λ = ‖λ‖
E
BR(λ) Rotation matrix from body to Earth coordinate frames, parametrized by λ

R Shorthand notation for E
BR(λ)

In×n,0n×nn-dimensional identity and zeros matrices (I ≡ I3×3 and 0 ≡ 03×3)

Subscripts and Superscripts

k Time index
−,+ Predicted and updated filter states

I. Introduction

The latest technological developments bring about Uninhabited Air Vehicles (UAVs) as versatile, multi-
purpose platforms able to perform a wide variety of missions. The vast scope of practical applications ranges
from coastal surveillance, bridge monitoring, traffic watch, to domestic security and search and rescue mis-
sions in extreme environments.

In particular, model-scale helicopters step forward as a challenging platform with the ability to perform
Vertical Takeoff and Landing (VTOL), featuring high maneuverability and complex, fast open-loop unstable
dynamics. For extended time enduring missions, these vehicles require ultra light weight, high performance,
robust low cost navigation systems.

Low cost inertial navigation systems limitations, associated to open-loop unbounded estimation errors,
are tackled by introducing additional data sources. Information obtained from aiding sensor suites or vehicle
modeling is integrated using filtering techniques to yield accurate attitude and position estimates. Inter-
estingly enough, the vehicle model dynamics aiding provides a comprehensive number of state estimates to
compensate for the inertial errors, bearing performance improvements on most state variables. Given the
fact that vehicle model dynamics is a software based solution, available in virtually any operating scenario,
the scientific community has drawn its attention towards this specific aiding source.

This paper focuses on the role of vehicle dynamics (VD) aiding techniques for low cost navigation systems,
and presents a new method to introduce the vehicle model in the inertial navigation system (INS). The
proposed architecture is based on computing the vehicle dynamics using the INS state estimates, exploiting
the redundancy of the VD and the INS algorithms information. Whereas previous work on integrating full
state vehicle information involved the additional estimation and compensation of the vehicle model errors,
the new method integrates the VD directly in the Extended Kalman Filter (EKF) to estimate exclusively the
INS errors. The main benefits are the associated computational savings and the ability to easily select which
VD equations within the full state vehicle model are implemented. Simulation results for a full actuated rigid
body and for a Vario X-Treme helicopter dynamic model show that the new vehicle model aiding technique
effectively enhances the navigation system results, tackling the inertial sensor’s bias calibration errors. Also,
the LASER range finder sensor implementation for takeoff and landing operations is detailed, enhancing the
vertical channel position and velocity estimates. The VD and LASER aiding techniques provide a valuable
navigation aiding solution for mission scenarios with limited GPS availability and/or with high accuracy
requirements.

The dead-reckoning INS algorithm computes attitude, velocity and position based on the inertial sensor
readings. Global attitude high precision INS algorithms that account for high frequency attitude, velocity
and position motions (denoted as coning, sculling and scrolling respectively) are developed in Refs. 1–4. The
inertial exact attitude, velocity and position computations are affected by inertial sensor biases and noise.
In recent vehicle literature Refs. 5–11, the EKF is adopted to dynamically compensate for non-ideal sensor
characteristics that otherwise yield unbounded INS errors.

Classical GPS/INS navigation strategies involving inertial sensor biases estimation are found to hold
only partial observability for a time-invariant configuration, as discussed in Refs. 7,12,13. Whereas the INS
computations are generic and do not reflect the VD specific information, the vehicle model is a software
based aiding technique that introduces unique vehicle data to tackle state observability limitations. Also,
generic aiding sensors can be subject to interference and jamming, whereas the vehicle model is a passive
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information source valid for most operating conditions.
Simple motion constraints have been successfully implemented in the past for land vehicle applications,

by introducing the concept of virtual observations, see Refs. 6, 8, 10. Nonholonomic constraints of wheeled
vehicles, namely the inability to takeoff or perform lateral translation, are exploited in the navigation system
by inputting zero valued virtual measurements of the body frame y and z axes velocity. Also, vehicle dynamics
bandwidth information and frequency contents are successfully implemented to trace inertial motion and
tackle bias misalignment errors in Ref. 5.

Full state, complex aircraft dynamics have been adopted to enhance the observability of the navigation
system in recent work, see Refs. 6, 11. The navigation system structure is composed by a VD block that
plays the role of an extra INS unit. More precisely, the vehicle dynamics are computed by a vehicle model
simulator and the output is compared to the INS state estimates. The EKF state model is augmented to
dynamically estimate both the INS and the VD errors. It is shown that the EKF successfully compensates
for the errors in the INS and VD algorithms, improving the overall navigation system accuracy.

A convincing discussion about the impact of process model complexity on the improvement of the nav-
igation system performance is presented in Ref. 14. Simple vehicle model is shown to clearly tackle state
uncertainty and that small improvements in the VD model are more relevant to the performance enhance-
ment than the choice of aiding sensor suites. A drawback in more complex dynamics lies in the modeling
errors, overparametrization of the model, and poor observability of the vehicle states, which bias and degrade
the filter performance, and that must be compensated in the form of state model uncertainty and/or using
weak constraints. Although very complex models may contain unobservable modes, from the navigation
system viewpoint it may only be necessary that a valid combination of the states is observable.11

The proposed navigation system architecture is presented in Figure 1. The framework is composed by
an INS/EKF architecture. The INS is a multirate, high precision algorithm that computes attitude, velocity
and position using the data from the inertial sensors. These sensors readings are affected by non-ideal errors,
such as bias and noise, that degrade the INS estimates. The EKF compares the aiding sensor and vehicle
model information with the INS output, under the form of a measurement residual, and compensates for the
estimated inertial unit errors using a direct feedback configuration.

(a) External Vehicle Dynamics (b) Internal Vehicle Dynamics

Figure 1. Navigation system block diagram

In the first architecture, shown in Figure 1(a), the vehicle dynamics are computed by an external VD
simulator based on the available thrusters input information. The distinct nature of the error sources and
system dynamics11 allows the EKF to separate the INS errors from the VD errors and to perform their
mutual updating in the compensation routines. Recalling the fundamentals of filtering and sensor fusion,
the VD and INS ensemble is expected to yield better performance than any of the systems independently.
It is worth noticing that the accuracy of the INS is increased at the cost of integrating the VD model and
states, augmenting the EKF states to compensate for the VD model errors, and using error compensation
routines in the external vehicle model.

In the second architecture, that is the main contribution of the present paper, the VD information is
directly merged in the EKF state model, as depicted in Figure 1(b), using the INS states to compute the VD
dynamics. In this setup, the inertial state estimates are integrated by both the INS and the VD equations
over a sampling interval, and the VD algorithm output are described as a function of the INS errors. The
distinct VD and INS integration methods applied to the same inertial quantity enables the EKF to estimate
and compensate for the inertial errors. Unlike classical VD aiding, this technique avoids the use of correction
routines for the VD states.
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The proposed technique reduces the computational load associated to the VD model error estimation and
compensation, and is especially suited for low cost hardware. Also, the vehicle dynamics are implemented
incrementally in the EKF, using the same analytical results derived for the VD error estimation of the first
architecture. Because INS states are used in the VD computations, vehicle model equations are partially
decoupled and it is possible to select only those dynamics that are more exact.

The derived vehicle aiding techniques are introduced and validated using a generic fully actuated rigid
body simulator, and extended to a model-scale Vario X-Treme helicopter model simulator, to demonstrate
its application to realistic setups.

This paper is organized as follows. Section II describes the main aspects of the navigation system. Section
III presents the vehicle model characteristics and the vehicle model aiding architectures. Two alternative
methods to introduce the vehicle information in the navigation system are detailed and the associated com-
putational complexity is discussed. Section IV characterizes the LASER sensor and describes the integration
of the sensor information into the navigation system structure. Section V provides implementation details
of the simulation setup. The VD and LASER range finder sensor based navigation systems are simulated
for standard UAV maneuvers and results are discussed in Section VI. Finally, Section VII draws concluding
remarks and comments on future work.

II. Navigation System Structure

In a standalone INS, inertial sensor errors compensation is usually performed offline. Even so, unbounded
INS errors arise over time due to the effects of noise integration, sensor misalignment and bias calibration
errors. The EKF dynamically estimates, compensates and bounds the INS errors using aiding data sources,
see Figure 1. This Section presents a brief summary on the main characteristics of the INS and EKF
algorithms adopted in this work. Namely the concept of multirate high accuracy inertial algorithm, the
EKF error state space formulation and the error compensation routines are introduced. This overview is
intended to provide the necessary background to integrate the LASER and the VD model on the navigation
system. For further details on the navigation system, see Ref. 5 and references therein.

A. Inertial Navigation System

The INS performs attitude, velocity and position numerical integration from rate gyro and accelerometer
triads data, rigidly mounted on the vehicle structure (strapdown configuration). For highly maneuverable
vehicles, the INS numerical integration must properly address the fast dynamics of inertial sensors output,
to avoid estimation errors buildup. The INS algorithm adopted in this paper is found detailed on the tutorial
work presented in Ref. 1,2,4. Angular, velocity and position high frequency motions, referred to as coning,
sculling, and scrolling respectively, are properly accounted for using a multirate, recursive approach. In
this framework, a high speed, low order algorithm computes dynamic angular rate/acceleration effects at
a small sampling interval, and its output is periodically fed to a moderate-speed algorithm that computes
attitude/velocity resorting to exact, closed-form equations.

The moderate-speed inertial algorithms attitude output is represented in Direction Cosine Matrix (DCM)
form, R, and velocity and position are expressed in Earth frame coordinates, v and p respectively. A
standard low-power consumption DSP based hardware architecture is found sufficient to run the algorithm
at the highest accuracy repetition rates. Therefore, for a low cost setup, high computational precision is
obtained and the INS error sources restrict to inertial sensor bias and noise.

B. Extended Kalman Filter

To estimate and compensate for the inertial errors, classical EKF algorithm15 compares the INS output
with the aiding sensor data. The EKF error equations, based on perturbational rigid body kinematics,
were brought to full detail by Britting.16 In particular, the attitude error δλ is parametrized by an un-
constrained rotation vector representation in Earth coordinates, which can be assumed locally linear and
non-singular.17 For equivalent attitude parametrization, see Refs. 17, 18. Given the rotation error matrix
definition16 R(δλ) := RR̄′, the attitude error rotation vector δλ is described by the first order approximation

R(δλ) ≃ I3×3 + [δλ×] ⇒ [δλ×] ≃ RR̄′ − I3×3 (1)

4 of 23

American Institute of Aeronautics and Astronautics



The attitude, velocity, and position error dynamics, as well as inertial sensor’s bias estimation errors, are
given by

δṗ = δv

δv̇ = −Rδba − [RBaSF×]δλ + Rna

δλ̇ = −Rδbω + Rnω (2)
˙δba = −nba

˙δbω = −nbω

where BaSF = Ba + Bg, nba
, nbω

are zero mean Gaussian white noises, and the inertial sensors biases are

modeled as random walk processes, ˙̄ba = nba
, ˙̄bω = nbω

.
The error compensation routines are specific to the INS algorithms and error state space representations.

In the current direct feedback configuration, the EKF error estimates are compensated in the INS moderate-
speed algorithm, using

p+
k = p−

k − δp̂k

v+
k = v−

k − δv̂k

R+
k = R′

k(δλ̂k)R−

k (3)

b+
a k = ba k − δb̂a k

b+
ω k = b−

ω k − δb̂ω k

where matrix R′

k(δλ̂k) is implemented using power series expansion of trigonometric terms up to an ar-
bitrary accuracy.19 The EKF error estimates are reset after being applied to compensate the INS states,
thus updating the linearization point and keeping filter perturbational dynamics valid under the first order
assumptions.

III. Vehicle Model Aiding

Classical GPS/INS architectures involving inertial sensor biases estimation are found to hold only partial
observability for time-invariant configurations.7,12,13 The vehicle dynamics arise as an inexpensive, software
based solution to overcome the lack of observability in the navigation system. Given the thrusters input,
the vehicle model provides redundant angular and linear velocities estimates. By handing the VD output
information to the EKF, linear and angular velocities observability is enhanced. Moreover, although position
is unobservable from the vehicle dynamics,6 the velocity accuracy improvements are expected to reduce
position estimation errors variance.

This Section presents the VD model and the architecture to integrate the VD information in the navigation
system, depicted in Figure 1, is introduced and detailed. In particular, a new methodology to directly embed
the vehicle information in the EKF is presented.

The external VD structure, depicted in Figure 1(a), follows from previous work found in Refs. 6, 11.
Vehicle state estimates are computed by a vehicle simulator block, using the thrusters input information.
The full state vehicle model algorithm computes attitude and velocity estimates that are compared to the
INS output, under the form of measurement residuals. Whereas the vehicle aiding information is expected
to help the INS, computational and modeling errors of the vehicle dynamics itself must be addressed by the
filter. Therefore, the EKF state model is also augmented to compensate for the vehicle modeling errors.

The current work presents a new, alternative method to exploit the VD model by blending the vehicle
simulator equations directly in the EKF state model. Vehicle dynamics are integrated in the filter state
space, linearized about the inertial state estimates. The vehicle dynamics propagate the inertial estimates,
so the VD integration is a function of the INS errors. Therefore, the EKF algorithm internally solves the
VD equations and only outputs the INS error estimates, as shown in Figure 1(b).

A. Body Dynamics

To illustrate the VD aiding technique proposed in this paper, the straightforward dynamics of a rigid body
are first adopted, corresponding to a 6-DOF polyhedron with uniform mass density and fully actuated. After
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validating in simulation the derived internal VD navigation system, the same technique is then tested on the
Vario X-Treme helicopter dynamics model detailed in Appendix A.

The Body coordinate frame origin, denoted pBorg, is located at the body’s center of mass and geometric
center. The axes of the Body frame define a plane of symmetry for the mass distribution of the body, so the
resulting body inertia tensor, denoted IB , is described by the principal moments of inertia,20 yielding

IB =
m

12







h2 + l2 0 0

0 w2 + h2 0

0 0 l2 + w2






(4)

where m is the body mass and (l, w, h) represent the polyhedron length, width and height, respectively. The
rigid body is subject to the thrusters force and momentum, denoted fth and nth respectively, and to viscous
linear and angular damping, denoted Bfd and Bnd respectively, yielding

fth =
∑

i fi, nth =
∑

i
Bpth i × fi

Bfd = −Klin
Bv, Bnd = −Kangω

(5)

where i = 1 . . . 6 denotes the thruster’s index that applies force fi to the body, Bpth i are the thrusters’
coordinates in Body frame, and Klin and Kang are the linear and angular damping coefficients respectively.

Applying the Newton and Euler equations to determine body’s translation and rotation with respect to
the inertial frame, the body dynamics are expressed by the nonlinear state space model

˙̄ωV := fω(ω̄V , n̄th) = −I−1
B ([ω̄V ×] IBω̄V + Kangω̄V ) + I−1

B n̄th (6)

˙̄uV := fu(ω̄V , ūV , f̄th) = −M−1
T ([ω̄V ×]MT ūV + KlinūV ) + M−1

T f̄th + R̄′

V
Eg (7)

˙̄RV := fR(ω̄V , R̄V ) = R̄V [ω̄V ×] (8)

where the Body and the Center of Mass coordinate frames, denoted {B} and {G} respectively, are defined
with the same orientation and position, so the body frame attitude dynamics (6) do not depend on the linear
velocity.

The V subscript for the angular velocity and body linear velocity (6-8) is adopted to emphasize that
these quantities are computed using the vehicle dynamics. As mentioned is Section II.A, these quantities
are also computed by the INS, using distinct inertial algorithms. The correspondence between the VD and
INS quantities is straightforward, ωV ≡ ω and uV ≡ R′v, whereas the nominal quantities are exactly equal,
ω̄V = ω̄ and ūV = R̄′v̄. For simulation purposes, the rigid body dynamics yield physical intuition on the
contribution of the vehicle model to the inertial states errors observability and compensation.

B. External Vehicle Model Aiding

In the classical VD aiding, presented in Figure 1(a), the vehicle dynamics are computed using a standalone
vehicle simulator, appended to the navigation system and external to the EKF/INS system. The EKF state
model is augmented to estimate and compensate for the VD block errors, using particular error compensation
routines.

The VD block error dynamics are formulated using the same technique adopted to describe the INS error
dynamics.5 These are obtained by applying a perturbational analysis to the nominal dynamics (6-8). Let
xV = (ωV ,uV ,RV ) denote the vehicle states, the vehicle model error dynamics are described by the first
order terms of the Taylor series expansion

ω̇V = fω(ωV ,nth) ⇒ ˙δωV ≈
∂fω

∂ω

∣

∣

∣

∣

xV

δωV +
∂fω

∂nth

∣

∣

∣

∣

xV

δnth (9)

u̇V = fu(ωV ,uV ,RV , fth) ⇒ ˙δuV ≈
∂fu

∂ω

∣

∣

∣

∣

xV

δωV +
∂fu

∂u

∣

∣

∣

∣

xV

δuV +
∂fu

∂δλ

∣

∣

∣

∣

xV

δλV +
∂fu

∂fth

∣

∣

∣

∣

xV

δfth (10)
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where the Jacobians are given by

∂fω

∂ω

∣

∣

∣

∣

xV

= I−1
B ([IBωV ×] − [ωV ×] IB − IKang) ,

∂fω

∂nth

∣

∣

∣

∣

xV

= I−1
B

∂fu

∂ω

∣

∣

∣

∣

xV

= M−1
T [MT uV ×] ,

∂fu

∂u

∣

∣

∣

∣

xV

= M−1
T (− [ωV ×]MT − IKlin) (11)

∂fu

∂δλ

∣

∣

∣

∣

xV

= R′

V

[

Eg×
]

,
∂fu

∂fth

∣

∣

∣

∣

xV

= M−1
T

The rotation matrix dynamics (8) are described by the inertial rigid body kinematics, so the associated error
dynamics are identical to the INS attitude error (2), yielding ˙δλV = RV δωV .

The INS and VD state estimates are compared under the form of measurement residuals, obtained by
the perturbational method applied in Ref. 5 and described by

δzω := ω − ωV = ω̄ + δω − (ω̄ + δωV ) = δω − δωV

= −δbω − δωV + nω

δzu := R′v − uV = R′v − (Bv̄ + δuV )

= (R′ − R̄′)v + R̄′δv − δuV = −R′ [λ×]v + R̄′δv − δuV (12)

≈ R′δv + R′ [v×] δλ − δuV

δzλ := RR′

V − I ≈ [I + [δλ×]] R̄R̄′ [I − [δλV ×]] − I

≈ δλ − δλV

where the rate gyro errors are defined by δω = −δbω + nω.
The vehicle model equations (6-8) are computed by a variable-step Runge-Kutta differential equation

solver, using the known thrusters force fth and momentum nth. The vehicle state errors and covariances
are propagated by the EKF using the (9-11) dynamics and assuming that the thrusters input is known,
δnth = δfth = 03×1. Actual implementation of the navigation system may require that the thrusters errors
be parametrized by stochastic uncertainties.

The INS and VD error estimates are updated with the measurement residuals (12) and compensated in
the external vehicle simulator, as shown in Figure 1(a), using the following error compensation routines

ω+
V k = ω−

V k − δω̂V k

u+
V k = u−

V k − δûV k (13)

R+
V k = R′

V k(δλ̂V )R−

V k

similar to the INS error compensation routines (3).

C. Internal Vehicle Model Aiding

In the external VD aiding architecture, the vehicle dynamics are computed by a standalone algorithm, and
the EKF state model (2) is augmented to estimate the VD error dynamics (6-8). The INS and the VD states
dynamics are uncorrelated, and their observation is based on measuring a linear combination (12) of the
INS and the VD errors. In the external VD aiding methodology, computational resources are allocated to
estimate and compensate for the VD errors, as a mean to estimate and compensate for the INS errors.

A new method to implement the VD aiding is motivated by the idea of replacing the vehicle inertial
states, such as ωV , uV and RV , by the INS estimates, respectively ω, R′v and R, and propagating the
inertial quantities through the vehicle dynamics. The VD results are described as a function of the INS
errors, allowing the EKF to estimate and compensate for the inertial errors. This way, error estimation and
compensation routines are only performed in the INS, reducing the computational cost associated to VD
aiding techniques.

The new method also allows to select which vehicle dynamics are adopted, in the case some modeled
dynamics are more precise than others, allowing for the use of those that yield better accuracy. For example,
VD velocity (7) can be computed using the INS attitude estimate R instead of computing the vehicle attitude
RV dynamics (8), or the navigation system can be aided by using only VD angular velocity dynamics (6)
without computing the linear velocity dynamics (7) if these are inaccurate.
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Let x = (ω,v,R) denote the INS state estimates. In the internal VD methodology, nominal vehicle
dynamics (6-7) are linearized about the INS state estimates. Using the first order terms of the Taylor series
expansion yields

˙̄ωV = fω(ω̄, n̄th) ≈ fω(ω,nth) +
∂fω

∂ω

∣

∣

∣

∣

x

(ω̄ − ω) +
∂fω

∂nth

∣

∣

∣

∣

x

(n̄th − nth) (14)

˙̄uV = fu(ω̄, ū, R̄, f̄th) ≈ fu(ω,u,R, fth) +
∂fu

∂ω

∣

∣

∣

∣

x

(ω̄ − ω) +
∂fu

∂u

∣

∣

∣

∣

x

(ū − u) +
∂fu

∂δλ

∣

∣

∣

∣

x

δλ

+
∂fu

∂fth

∣

∣

∣

∣

x

(f̄th − fth) (15)

The INS estimate error is defined as the difference between the nominal state and the INS estimate. There-
fore, the nominal angular and linear velocities are expressed as a function of the INS states and estimation
errors by

˙̄ωV ≈ fω(ω,nth) −
∂fω

∂ω

∣

∣

∣

∣

x

δω −
∂fω

∂nth

∣

∣

∣

∣

x

δnth

= fω(ω,nth) +
∂fω

∂ω

∣

∣

∣

∣

x

δbω −
∂fω

∂ω

∣

∣

∣

∣

x

nω −
∂fω

∂nth

∣

∣

∣

∣

x

δnth (16)

˙̄uV ≈ fu(ω,u,R, fth) −
∂fu

∂ω

∣

∣

∣

∣

x

δω −
∂fu

∂u

∣

∣

∣

∣

x

δu −
∂fu

∂δλ

∣

∣

∣

∣

x

δλ −
∂fu

∂nth

∣

∣

∣

∣

x

δnth −
∂fu

∂fth

∣

∣

∣

∣

x

δfth

= fu(ω,u,R, fth) −
∂fu

∂u

∣

∣

∣

∣

x

R′δv −

(

∂fu

∂δλ

∣

∣

∣

∣

x

+
∂fu

∂u

∣

∣

∣

∣

x

R′ [v×]

)

δλ +
∂fu

∂ω

∣

∣

∣

∣

x

δbω

−
∂fu

∂ω

∣

∣

∣

∣

x

nω −
∂fu

∂nth

∣

∣

∣

∣

x

δnth −
∂fu

∂fth

∣

∣

∣

∣

x

δfth (17)

where body linear velocity error δu is rewritten as a function of the INS state errors δu := R′v − R̄′v̄ ≈
R′ [v×] δλ + R′δv.

Equations (16-17) describe the nominal angular and linear dynamics as the result of solving the vehicle
dynamics fω(ω,nth) and fu(ω,u,R, fth) using the INS states, and correcting the first order effects of the
INS errors in the vehicle dynamics using the linearization Jacobians. Interestingly enough, the vehicle
dynamics functions applied to the inertial estimates do not yield the INS state estimate derivatives, ω̇ 6=
fω(ω,nth), u̇ 6= fu(ω,u,R, fth), which is a clear consequence of the distinct, compatible models enclosed in
the VD and INS computations. The thrusters input is considered to be known, δnth = δfth = 03×1.

The navigation system observations are drawn directly from the INS inertial estimates

zω := ω = ω̄ − δbω + nω

zu := R′v = R̄′ (I − [δλ×]) v̄ + R′δv (18)

≈ ū + R′δv + R′ [v×] δλ

The proposed technique is designed using the Jacobians computed for the classical method (11). Hence,
the analytical results needed to integrate the vehicle model in the EKF are the same for both architectures.
On the other hand, the number of states is reduced, because the INS information is directly used in the
vehicle dynamics, which reduces the computational cost associated to the introduction of vehicle dynamics
in the Kalman filter. The VD error compensation routines (13) are not necessary in this technique.

IV. LASER Aiding

In this Section, the LASER range finder aiding sensor is described and the corresponding filter observation
equation is introduced. Without loss of generality, the sensor is assumed to be mounted along the z axis of
the frame {M}, whose relative orientation to the body frame is described by the known installation rotation
matrix B

MR. The LASER reads the distance L from the vehicle to the ground, along the z axis of the {M}
coordinate frame, as depicted in Figure 2. The high accuracy of the LASER sensor is especially suited for
landing and takeoff operations of an air vehicle. Other changeling applications for the LASER sensor are
the relative positioning of the vehicle with respect to a structure.
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Figure 2. LASER Range Finder Reading

In the current work, the landing area terrain is assumed to be locally planar, such as an heliport or a
landing lane. The Earth’s surface height h̄S , given by the distance from the Earth frame origin to the Earth
surface, is modeled as approximately constant

˙̄hS = nhS
(19)

where nhS
is a zero mean Gaussian white noise process whose variance reflects the uncertainty on the ground’s

flatness.
Let p̄ = (p̄x, p̄y, p̄z) be vehicle position coordinates in the Earth frame. As depicted in Figure 2, the z

axis Earth coordinate of the vehicle is given by

p̄z = −(h̄S + h̄V ) (20)

where h̄V ≥ 0 is the vehicle’s height, that is, the distance from Body frame origin to the Earth surface.
Using elementary trigonometric relations yields

cos(θ) =
h̄V

L̄
=

|M h̄′

V ez|

|Eh̄′

V ez|
(21)

where Eh̄V = (0, 0,−h̄V ) is the vehicle’s height in Earth coordinates, ez = (0, 0, 1) is the unitary z axis
vector and M h̄′

V ez corresponds to the projection of h̄V on the z axis of the {M} frame.
Applying the coordinate transform M h̄V = (R̄ B

MR̄)′Eh̄V and developing the terms in the previous
equation, the LASER range is described by

L̄ =
h̄V

e′zR̄
B
MR̄ez

(22)

where L̄ is not defined for the cases where the LASER is pointing upwards, that is e′zR̄
B
MR̄ez ≤ 0.

The LASER range finder sensor measures the actual range L̄ corrupted by the sensor noise

Lr = L̄ + δL (23)

where δL = nL is modeled as a zero mean Gaussian white noise with variance σ2
L.
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The LASER sensor is used primarily to perform landing maneuvers, providing high accuracy estimates
of the vehicle distance to the ground along the {M} coordinate frame z axis. The measurement residual is
computed by

δzL := pz − (−hV ) (24)

where the height estimate from the LASER reading is given by rearranging the terms in (22)

hV = e′zR
B
MR̄ezLr (25)

and the INS position estimate

pz = p̄z + δpz = −h̄S − h̄V + e′zδp (26)

that includes the summation of the vehicle’s and Earth’s surface heights, h̄S and h̄V respectively, which are
filtered apart by modeling the hS dynamics (19) in the EKF.

Replacing the INS attitude estimate R by the attitude error δλ approximation (1) and neglecting second
order terms yields

h̄V = e′zR̄
B
MR̄ezL̄ ≈ e′z [I3×3 − [δλ×]]RB

MR̄ezL̄

≈ e′zR
B
MR̄ez(Lr − δL) + Lre

′

z

[

RB
MR̄ez×

]

δλ (27)

= hV − e′zR
B
MR̄ezδL + e′z

[

RB
MR̄ez×

]

δλ

From equations (23-27), the measurement residual is described as a function of the EKF state variables

δzL = e′zδp − e′z
[

RB
MR̄ez×

]

δλ − h̄S + e′zR
B
MR̄eznL (28)

For practical applications, the landing and takeoff locations have different terrain height hS . After the
takeoff and during flight operations, the LASER sensor is switched off to prevent erroneous readings due
to the terrain height fluctuations and to the interference of obstacles located between the vehicle and the
ground. When the landing maneuver starts, the LASER is switched on to estimate the new hS . A method
to estimate hS using the filter uncertainty is discussed in Section V and validated in Section VI.

V. Implementation

In this Section, the state space model matrices for the VD aiding architectures and LASER sensor
integration in the INS/EKF navigation system are detailed. The state variables and measurement residuals
associated to the VD dynamics are cast in the state model formulation, evidencing the differences between
the external and internal vehicle model aiding techniques. The computational savings obtained by using the
internal vehicle model aiding are detailed. Discrete-time equivalent of the continuous state space model is
deduced for implementation purposes.

The standard formulation for the continuous-time state space dynamics is described by

ẋC = FC (xC)xC + GC (xC) nxC
+ uC (29)

z = HC (xC) xC + nzC
(30)

where xC is the state vector, FC is the state dynamics matrix, nxC
is the state noise transformed by matrix

GC , uC is the system input vector, and z is the state measurement, corrupted by the noise vector nzC
.

The state and measurement noises are assumed zero mean, Gaussian white noises with covariance matrices
denoted by QC and RC , respectively.
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A. INS/EKF state model

The state error estimates dynamics are immediate from the inertial errors model (2). Let xINS =
(

p,v,R, BaSF ,ω
)

denote the inertial estimates, the INS/EKF architecture state dynamics are described by

x̂C ≡ δx̂ =
[

δp̂′ δv̂′ δλ̂′ δb̂′
a δb̂′

ω

]′

,

FC(xINS) ≡ FINS =















0 I 0 0 0

0 0 −
[

RBaSF×
]

−R 0

0 0 0 0 −R

0 0 0 0 0

0 0 0 0 0















(31)

nxC
≡ nINS =

[

n′
p n′

a n′
ω n′

ba
n′

bω

]′

, uC ≡ 0

GC(xINS) ≡ GINS = blkdiag (I,R,R,−I,−I)

where blkdiag(...) represents a block diagonal matrix, np is a fictitious zero mean Gaussian white noise
associated to the position error estimate and the state noise covariance matrix is given by

QC ≡ QINS = blkdiag(σ2
pI, σ

2
aI, σ

2
ωI, σ2

ba
I, σ2

bω
I) (32)

The measurement equations (30) are determined by the aiding techniques integrated in the navigation
system. The measurement model for the proposed VD and LASER aiding techniques are described in the
ensuing. For comparison purposes, a simplified GPS receiver is considered to provide position measure-
ments corrupted by Gaussian white noise and a magnetometer aiding sensor provides Earth’s magnetic field
readings. The GPS and magnetometer aiding sensors are modeled in the form (30) using the measurement
equations detailed in [5].

B. Vehicle Model Aiding

The EKF state space model previously described is augmented to exploit the VD and Laser dynamics and
associated measurement residuals.

1. External Vehicle Model Aiding

The continuous-time error state space model for the navigation system with external VD aiding is obtained
directly from the EKF/INS error state model augmented by the VD error dynamics (9-11), yielding

xC ≡
[

δx̂′ δx̂′

V

]′

, nxC
≡
[

n′

INS n′
xV

]′

, uC ≡ 0,

FC(xINS,xV ) ≡

[

FINS 015×9

09×15 FV (xV )

]

, GC(xINS) ≡

[

GINS 015×9

09×15 GV

]

, (33)

with the vehicle states, noises and model submatrices given by

δx̂V =
[

δω̂′

V δBv̂′

V δλ̂V
′

]

, nxV
=
[

n′
ωV

n′
BvV

n′

λV

]

,

FV (xV ) =







∂fω

∂ω
0 0

∂fu

∂ω

∂fu

∂u

∂fu

∂λ

RV 0 0







∣

∣

∣

∣

∣

∣

∣

xV

, GV =







I 0 0

0 I 0

0 0 I






(34)

where nxV
is a vector of fictitious zero mean Gaussian white noise that characterizes the vehicle modeling

errors. The external VD and INS error dynamics are independent, so the state dynamics matrix FC is block
diagonal.
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The relation between the INS and VD states is introduced by the measurement residuals (12), which is
a function of the INS and VD errors, given in the state space form by

z ≡ δzV =
[

δz′ω δz′u δz′
λ

]′

, nzV
≡
[

n′
ω + n′

zω
n′

zu
n′

zλ

]′

HC(xINS) ≡







0 0 0 0 −I −I 0 0

0 R′ R′ [v×] 0 0 0 −I 0

0 0 I 0 0 0 0 −I






(35)

where nzω
, nzU

and nzλ
are a fictitious zero mean Gaussian white noises associated to the δzV observation,

with covariances σ2
zω

, σ2
zU

and σ2
zλ

respectively. The vehicle states and measurements noise covariance
matrices are

QC ≡ blkdiag(QINS, σ2
ωV

I, σ2
uV

I, σ2
RV

I), RC ≡ blkdiag((σ2
zω

+ σ2
ω)I, σ2

zu
I, σ2

zλ
I) (36)

where the fictitious white noise variances reflect the effects of neglecting second order terms in the measure-
ment residual derivation.

In particular, the observation noise of δzω includes the rate gyro noise, so a state and measurement noise
correlation matrix

CC ≡

[

0 0 σ2
ωI 0 0 03×9

06×15 06×9

]′

(37)

is introduced in the Kalman filter equations, see Refs. 5, 15 for the definition details and the discrete-time
approximation.

2. Internal Vehicle Model Aiding

The continuous-time state space model is straightforward from (16-17), yielding

x̂C ≡
[

δx̂′ x̂′

V

]′

, nxC
≡
[

n′

INS n′
xV

]′

, uC ≡
[

fω(ω,Nth)′ fu(ω, Bv,R,Fth)′
]′

FC(xINS) ≡

[

FINS 015×6

FV (xINS) 06×6

]

, GC(xINS) ≡

[

GINS 09×6

GV (xINS) I6×6

]

(38)

with the vehicle states, noises and submatrices described by

x̂V =
[

ω̂
′

V û′

]′

, nxV
=
[

n′
ωV

n′
uV

]′

,

FV (xINS) =

[

0 0 0 0 ∂fω

∂ω
,

0 −∂fu

∂u
R′ −

(

∂fu

∂δλ
+ ∂fu

∂u
R′ [v×]

)

0 ∂fu

∂ω

]∣

∣

∣

∣

∣

xINS

(39)

GV (xINS) =

[

0 0 −∂fω

∂ω
0 0

0 0 −∂fu

∂ω
0 0

]∣

∣

∣

∣

∣

xINS

where nxV
is an array of fictitious zero mean Gaussian white noise that characterizes the vehicle modeling

errors. Note that the vehicle states dynamics depend only on the inertial state estimates, i.e., the state
matrices depend only on the xINS variable.

The measurement state model (18) is described in the state space form by

z ≡
[

z′ω z′u

]′

, nzV
≡
[

n′
ω + n′

zω
n′

zu

]′

, HC(xINS) ≡

[

0 0 0 0 −I I 0

0 R′ R′ [v×] 0 0 0 I

]

(40)

and nzω
and nzu

are a fictitious zero mean Gaussian white noises associated with the measurement. The
vehicle states and measurements noise covariance and covariance correlation matrices are

QC ≡ blkdiag(QINS, σ2
ωV

I, σ2
uV

I), RC ≡ blkdiag((σ2
zω

+ σ2
ω)I, σ2

zu
I), CC ≡

[

0 0 σ2
ωI 0 0 03×6

03×15 03×6

]′

(41)
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The off-diagonal block element of FC evidences that the vehicle state errors are a function of solely
the inertial state estimation errors. The zeros block 06×6 diagonal element of FC facilitates the matrix
exponential computational in the discretization process.

In the embedded VD formulation, the vehicle dynamics propagate xINS instead of the vehicle states,
hence the EKF does not need to update the latter xV . Let K = [K′

INS K′

V ]′ be the Kalman gain matrix,
where KINS is a (15×6) gain submatrix and KV is a (6×6) gain submatrix. Using the Schmidt-Kalman gain
expression,15 the navigation system computations are reduced by skipping KV and xV update and simply
calculating the KINS explicitly to update xINS.

C. LASER Aiding

The continuous-time state space model for the LASER sensor is immediate from (19), bearing

x̂C ≡
[

δx̂′ hS

]′

, nxC
≡
[

n′

INS nhS

]′

, uC ≡ 0 (42)

FC(xINS) ≡

[

FINS 015×1

01×15 0

]

, GC(xINS) ≡

[

GINS 09×1

01×9 1

]

(43)

and the measurement state model, obtained from (28), is given by

z ≡ δzL, nzC
≡ nzL

, HC(xINS) ≡
[

e′z 01×3 −e′z
[

RB
MR̄ez×

]

01×3 01×3 −1
]

(44)

where

QC ≡ blkdiag(QINS, σ2
hS

), RC ≡ (e′zR
B
MR̄ez)

2σ2
L, CC ≡ 0 (45)

As mentioned in Section IV, the LASER sensor is adopted for takeoff and landing maneuvers and to
determine the relative position to structures. When the LASER sensor is inactive, the hS state estimate
uncertainty will grow, at a rate defined by the σ2

hS
variance. While the noise nhS

defines the terrain flatness
when the LASER sensor is on, nhS

models the discrepancy between hS of different sites when the LASER
is off. In the current work σ2

hS
is defined so to provide a large uncertainty between the time the LASER is

deactivated (takeoff) and activated (landing), assuming that the flight time is known. Other valid approach
is to define σ2

hS
according to the vehicle horizontal velocity and the terrain’s geographic profile.

Additionally, the hS uncertainty should be bounded during flight time to avoid numerical problems, by
adopting techniques such as square root filtering15 or by simply setting σhS

= 0 if the uncertainty reaches a
prespecified upper bound.

D. State Model Discretization

The discrete-time state space model is obtained using the zero order hold discretization technique

Φk = eFkT , Hk = HC |t=tk
(46)

and the discrete-time noise covariance matrices are5,15,21

Qk ≃ [GkQCG′

k]T, Rk ≃
RCk

T
, Ck ≃ (I +

FkT

2
+

F2
kT 2

6
)GkCCk (47)

where T is the sampling period, Fk = FC |t=tk
, Gk = GC |t=tk

, RCk = RC |t=tk
, CCk = CC |t=tk

and
Φk = Φ(tk+1, tk) denotes the state transition matrix.

VI. Simulation Results

This Section validates the proposed VD and LASER range finder aiding techniques in simulation. In the
first simulation, the accuracy of the navigation system aided by the VD techniques is compared to a classical
GPS/INS architecture. The external and internal VD aiding techniques results are analyzed to study the
performance deterioration (if any) of implementing the internal VD model. Bias estimation and velocity
accuracy enhancements are presented and discussed, for a standard UAV trimming trajectory.
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Figure 3. Trimming Trajectory

To verify the validity of using linearized models for highly nonlinear, realistic vehicle models, the proposed
internal VD aiding technique is simulated on a model-scale Vario X-Treme helicopter. The model dynamics,
derived from first-principles in Refs. 22,23, are summarized in Appendix A. The navigation system accuracy
enhancements are illustrated and the predicted error covariance is depicted to evidence the inertial states
observability improvements.

Finally, simulation are performed to show the accuracy improvements obtained with the LASER range
finder sensor integrated on a GPS/INS configuration. The vehicle describes a hovering maneuver and has to
acquire the ground height for a landing operation. Dynamic estimation of terrain height is performed and
position and velocity vertical channel accuracy enhancements are shown.

The INS high speed algorithm is set to run at 100 Hz and the normal speed algorithm is synchronized
with the EKF, both executed at 50Hz. The LASER sensor operates at 10Hz and the GPS provides position
measurements at the nominal frequency of 1Hz. The vehicle model profile is detailed in Table 1 and the
sensors noise and bias characteristics are presented in Table 2.

A. Vehicle Model Aiding

The rigid body is subject to constant linear and centripetal acceleration, describing the upwards trimming
trajectory shown in Figure 3. To analyze the bias estimation and compensation, a 1

3
bias calibration error is

introduced in each channel of the accelerometer and rate gyro sensors. The external VD, embedded VD and
a classical GPS/INS architecture results are presented in Figures 4 and 5 and detailed in Tables 3 and 4.
Due to the poor observability of the yaw angle, see Table 3, a magnetometer aiding sensor is included.

The comprehensive number of state dynamics provided by the VD clearly endows the filter to compensate
for the inertial sensor biases. Accelerometer and rate gyro biases calibration errors are quickly tackled by
the VD information, yielding smaller bias estimation error variances in the VD architecture, see Figure 4.

Introducing the magnetometer aiding source improves rate gyro bias and attitude estimation, as depicted

Table 1. Rigid Body Characteristics

Property Nominal Value

Mass m = 10 Kg

Length, Width, Height (l, w, h) = (1.00, 0.75, 0.25) m

Thrusters #1 Position Bpth 1,2 = (−0.50,±0.30, 0) m

Thrusters #2 Position Bpth 3,4 = (0,−0.375,±0.10) m

Thrusters #3 Position Bpth 5,6 = (±0.40, 0,−0.125) m

Damping Coefficients Kang = 4, Klin = 2
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Table 2. Sensor Errors

Sensor Bias Noise Variance (σ2)

Rate Gyro 0.05 ◦/s (0.02 ◦/s)
2

Accelerometer 10 mg (0.6 mg)2

LASER - (10−2 m)2

Magnetometer - (1 µG)2

GPS - 10 m2

in Figure 5 and detailed in Table 3. This shows that additional aiding information can be successfully
exploited in the internal VD architecture.

The accuracy improvements in position, velocity and attitude are clear from Tables 3 and 4. Although
vehicle dynamics do not yield position and attitude estimates, the angular/linear velocity accuracy improve-
ments bound the attitude/position estimation errors. Interestingly enough, due to the fast inertial bias
estimation and compensation, accelerometer bias calibration errors do not yield noticeable position errors,
which are effectively bounded by integrating the VD information.

The proposed internal and the external VD architectures performance results are similar. Hence, the
computational savings of the internal VD aiding technique are obtained without affecting the navigation
system accuracy, which validates the embedded VD approach.

Table 3. Attitude Estimation Error

Average Square Error

Magnetometer Off Magnetometer On

Yaw(◦) Pitch(◦) Roll(◦) Yaw(◦) Pitch(◦) Roll(◦)

GPS 2.99 1.88 × 10−2 1.70 × 10−2 1.05 × 10−8 7.35 × 10−3 6.65 × 10−3

Ext. VD 1.30 × 10−2 6.09 × 10−4 1.39 × 10−3 1.23 × 10−7 2.48 × 10−4 2.24 × 10−4

Int. VD 2.30 × 10−2 5.42 × 10−4 1.47 × 10−3 1.27 × 10−7 3.46 × 10−4 2.96 × 10−4

Table 4. Position and Velocity Estimation Error (Magnetometer On)

Average Square Error

px(m) py(m) pz(m) vx(m/s) vy(m/s) vz(m/s)

GPS 0.92 1.35 1.15 1.13 × 10−2 3.57 × 10−2 1.04 × 10−2

Ext. VD 1.11 × 10−5 1.48 × 10−2 4.07 × 10−4 9.57 × 10−8 6.44 × 10−5 1.80 × 10−7

Int. VD 1.96 × 10−5 2.05 × 10−2 3.32 × 10−4 1.46 × 10−7 8.38 × 10−5 2.76 × 10−7

B. Vario X-Treme Helicopter

The rigid body simulated in the previous Section is a simple nonlinear model that allows for a physical
insight on the proposed aiding techniques results, but it lacks the complexity of a realistic air vehicle. The
Vario X-Treme helicopter, depicted in Figure 6, features highly nonlinear unstable dynamics and is adopted
to take a step towards the implementation of the internal VD aiding technique in field applications.

The simulated takeoff trajectory, depicted in Figure 7, consists of an ascending turn, followed by a
straight upwards path. As before, the 1

3
bias calibration error is assumed and the magnetometer is used to

compensate for the yaw observability.
Simulation results are shown in Figures 8 and 9 and detailed in Tables 5 and 6. Although the Vario

X-treme model is highly nonlinear, the VD linearization technique yields accurate inertial estimates. The
helicopter model aiding dramatically enhances the INS estimates, as shown in Figures 8 and 9. The filter
estimated error covariance is, in general, consistent with the estimation error covariance.
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Figure 4. GPS and VD Navigation Systems Estimation Errors (Magnetometer Off)
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Figure 5. GPS and VD Navigation Systems Estimation Errors (Magnetometer On)

17 of 23

American Institute of Aeronautics and Astronautics



Figure 6. Vario X-Treme Model-Scale Helicopter

Figure 7. Vario X-Treme Simulated Trajectory

Figure 9 indicates that the VD aiding technique effectively enhances the trajectory estimation to a
centimeter accuracy. As discussed in Refs. 11,14, these exciting results must be addressed with care. Vehicle
modeling errors, model simplification assumptions or unmodeled time-varying parameters, perturbations and
dynamics, such as vehicle load and wind gusts, may severely affect the navigation system performance if not
correctly accounted for in the filter.11

The tuning of the noise covariance matrices, the estimation of additional states and parameters and the
use of more accurate vehicle model dynamics, among other techniques,14 are adopted to allow for the use
of VD in real navigation systems. Nonetheless, side effects such as the poor observability of the augmented
states, the overparametrization of the vehicle model or even the inability to obtain a vehicle model which
yields information on the real vehicle dynamics may occur. The use of the full VD model in filtering is a
time-consuming process, requiring navigation systems engineering expertise for complex vehicles.

On the other hand, previous work by the authors5 has shown that using a general bandwidth description
of the vehicle dynamics frequency contents yields noticeable accuracy improvements. Either using a generic
or a complex vehicle model, the integration of the vehicle dynamics in the navigation system is a valuable
aiding technique, especially suited for the cases of GPS outage or jamming and when other external sensors
are not available or provide poor observability of the vehicle states.
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Table 5. Attitude Estimation Error

Average Square Error

Yaw(◦) Pitch(◦) Roll(◦)

GPS 1.63 × 10−7 9.66 × 10−3 7.33 × 10−3

Vario X-Treme Model 7.22 × 10−9 3.35 × 10−4 1.66 × 10−4

Table 6. Position and Velocity Estimation Error

Average Square Error

px(m) py(m) pz(m) vx(m/s) vy(m/s) vz(m/s)

GPS 1.33 2.12 2.41 1.58 × 10−2 6.76 × 10−2 4.07 × 10−2

Vario X-Treme Model 4.92 × 10−2 4.71 × 10−3 3.36 × 10−2 7.91 × 10−4 1.65 × 10−2 7.51 × 10−6
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Figure 8. Vario X-Treme VD vs GPS Estimation Errors (solid line) and Estimated Error Standard Deviation
(dashed line)
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Figure 9. Trajectory Estimation for the Vario X-Treme

C. LASER Aiding

The LASER range sensor implementation is analyzed for a landing operation of an air vehicle equipped
with a standard GPS/INS unit. The vehicle hovers the landing zone and activates the LASER at t = 30 s
to acquire the ground height and enhance the distance-to-ground estimate. The actual terrain height is
hS = 4 m, the filter estimate is ĥS = 0 m and the estimated error variance of ĥS is set at 16 m2.

As depicted in Figure 10, using solely the GPS sensor yields high uncertainty on the position estimate,
which may render landing unfeasible. The LASER range finder successfully estimates the ground height and
improves significantly the velocity and position estimates accuracy along the z axis.
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Figure 10. LASER Aiding Estimation Errors (solid line) and Estimated Error Standard Deviation
(dashed line)

VII. Conclusion

A new embedded methodology to integrate the vehicle dynamics in the navigation system was successfully
implemented. The internal VD system accuracy was shown to be equivalent to the classical external vehicle
model architecture, while computational savings were obtained by introducing the INS states in the vehicle
dynamics. The application of the proposed technique to a highly nonlinear Vario X-Treme helicopter model
validated the approach towards practical applications.

Trimming trajectory simulation results show that the bias calibration errors are quickly compensated
and that bias estimates are enhanced. The linear and angular velocity are also drastically improved in
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comparison to the classical GPS/INS configuration. Position and attitude errors, although not observable
by the VD model, remain bounded for long periods of time. Therefore, the internal VD architecture arises
as a valuable software based aiding source for navigation systems.

Together with the LASER range finder sensor, that provides high precision altitude readings for the
critical takeoff and landing maneuvers, the proposed techniques are found suited for performing autonomous
missions with limited GPS availability and/or high accuracy positioning requirements.

Further work will focus on the observability of the overall navigation system and on a method to ana-
lytically identify the contribution of the vehicle model to the state observability. Using specific and under
research techniques to tune the navigation system’s vehicle model, the proposed aiding architecture will
be implemented on a navigation system for the Vario X-Treme model-scale helicopter,22 property of the
Institute for Systems and Robotics.
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A. Helicopter Model Summary

This Section briefly describes the nonlinear Vario X-Treme helicopter model presented in Ref. 22, and
simplified under the assumptions described in Ref. 23. The motion of the helicopter is described using the
rigid body equations of motion

ω̇ = I−1
B (n (ω,u,uhc) − ω × IB ω) (48)

u̇ = −ω × u +
1

m
f (ω,u,uhc) + R′ Eg (49)

Ṙ = R [ω×] (50)

where m is the vehicle mass, IB is the tensor of inertia about the Center of Mass coordinate frame, denoted
by {G}, uhc is the helicopter command vector and f and n are the vectors of external forces and moments,
respectively, along the same frame.

The input vector uhc =
[

θc0
θc1c

θc1s
θc0t

]′

comprises the blade pitch angle commands for the main

rotor collective θc0
, main rotor longitudinal cyclic θc1c

, main rotor lateral cyclic θc1s
and the tail rotor

collective θc0t
. To compensate the shape of the rotor, θc0

and θc0t
swashplate inputs are corrected in the

helicopter model using the intermediate variables θ0 = θc0
+ α0 and θ0t

= θc0t
+ α0t

, where α0 and α0t
are

the lift curve slope offsets for the main and tail rotor blades, respectively.
In helicopters equipped with the Bell-Hiller mechanism,22 the cyclic blade pitch angles result from the

combination of the commands introduced by the swashplate and the flybar flapping. The blade pitch
dynamics are described by

θ̇1c = Cθ1
θ1c + Cθ3

θc1c
(51)

θ̇1s = Cθ1
θ1s + Cθ3

θc1s
+ Cθ8

µλ0 (52)

with the state coefficients given by

Cθ1
= −

Ω γf

4
[

(γf

8

)2
+ 4
] , Cθ3

=
Ω (c4 + c1) γf

4c2

[

(γf

8

)2
+ 4
] , Cθ8

= −
η2 Ω γf

2c2

[

(γf

8

)2
+ 4
] (53)

where µ is the normalized forward velocity at the main rotor, λ0 is the normalized collective downwash
induced by main rotor, Ω is the main rotor angular speed, γf is the flybar Lock number, and c1, c2 and c4

are flybar pitching parameters.
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For smooth low velocity maneuvers, the effects of the fuselage, horizontal tailplane and vertical fin on
the body dynamics are negligible. The total force and moment vectors are modeled accounting for the main
rotor and tail rotor components, which are dominant over the remaining terms, yielding

f = fmr + ftr (54)

n = nmr + ntr (55)

where mr stands for main rotor and tr for tail rotor.
The main rotor is the primary source of lift required to sustain the helicopter, and generates other forces

and moments that allow for the control of the helicopter position, orientation and velocity. The main forces
and moments are described by

fmr :=







Xmr

Ymr

Zmr






= −s1







a0

(

1
2

θ1s λ0 + µλ0 θ0

)

+ δ0 µ

a0

(

1
2

θ1c λ0

)

a0

(

2
3

θ0 − λ0

)






(56)

nmr =







−kβ β1s

−kβ β1c

1
2

s2 δ0 + s2 a0

(

2
3

θ0 λ0 − λ2
0

)






+







Ymr hR

−Xmr hR + Zmr xcm

−Ymr xcm






(57)

where s1 and s2 are the main rotor’s force and moment normalizing constants, a0 is the lift curve slope for
the main rotor, δ0 is the main rotor profile drag coefficient, kβ is the center-spring rotor stiffness, and xcm

and hR determine the position of the main rotor hub aft and above the center of mass, respectively.

The flapping motion is described by the blade flap angle vector β =
[

β0 β1c β1s

]

, where β0 denotes

the collective mode, and β1c and β1s represent the longitudinal and lateral cyclic modes, respectively. The
blade flapping dynamic can be approximated by the steady-state solution given by

β0 = Cβ1
θ0 (58)

β1c = Cβ3
µ θ0 + Cβ4

θ1c − Cβ5
θ1s + Cβ6

ωx + Cβ7
ωy+Cβ8

µλ0 − Cβ4
λ1c (59)

β1s = Cβ9
µ θ0 + Cβ5

θ1c + Cβ4
θ1s + Cβ7

ωx − Cβ6
ωy+Cβ10

µλ0 − Cβ5
λ1c (60)

with the state coefficients

Cβ1
=

γ
8

γ
8
Sβ + 1

, Cβ3
= −

8
3

S2
β + 1

, Cβ4
=

Sβ

S2
β + 1

, Cβ5
=

1

S2
β + 1

, Cβ6
=

16

Ω γ

Sβ

S2
β + 1

Cβ7
=

16

Ω γ

1

S2
β + 1

, Cβ8
=

2

S2
β + 1

, Cβ9
=

8
3

Sβ

S2
β + 1

, Cβ10
= −

2Sβ

S2
β + 1

(61)

where the longitudinal cyclic induced downwash and forward normalized velocity are described by

λ1c =















0 , µ = 0 (vertical flight)

λ0

(

√

1 +
(

λ0

µ

)2

− |λ0

µ
|

)

, otherwise
(62)

µ =
ux − hRωy

ΩRm

(63)

the lateral cyclic downwash is neglected λ1s = 0, Sβ is the blade stiffness number, Rm is the main rotor
radius and γ is the Lock number.

The tail rotor whose main role is to counteract the main rotor torque, produces the following force and
torque

ftr :=







Xtr

Ytr

Ztr






= s1t

a0t







0
2
3

θ0t
− λ0t

0






(64)

ntr =







Ytr htr

− 1
2

s2t
δ0t

− s2t
a0t

(

2
3

θ0t
λ0t

− λ2
0t

)

−Ytr (xcm + ltr)






(65)
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where λ0t
is the collective induced downwash of the tail rotor, s1t

and s2t
are the tail rotor’s force and moment

normalizing constants, a0t
is the tail rotor lift curve slope, δ0t

is the tail rotor profile drag coefficient, ltr is
the distance from the tail rotor hub to the fuselage reference point and htr is the height of tail rotor hub
above the fuselage reference point.

The collective induced downwash at the main and tail rotors are given by

λ0 = −
a0 s

16
+

√

(a0 s

16

)2

+
a0 s

12
θ0 , λ0t

= −
a0t

st

16
+

√

(a0t
st

16

)2

+
a0t

st

12
θ0t

(66)

where s and st are the main and tail rotor’s solidity, respectively.
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