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Abstract: This paper addresses the problem of guidance and control for an
Autonomous Surface Craft (ASC). A path following approach is used for steering
the vehicle along a predefined path. The presented solution is based on the
definition of an error vector that should be driven to zero by the path-following
controller. The proposed methodology for controller design assumes a polytopic
Linear Parameter Varying (LPV) representation with piecewise affine dependence
on the chosen parameters to accurately describe the error dynamics. The controller
synthesis problem is formulated as a discrete-time H2 control problem for LPV
systems and solved using Linear Matrix Inequalities (LMIs). In order to increase
the path-following performance, a preview controller design technique is used.
The resultant nonlinear controller is implemented with the D-Methodology under
the scope of gain-scheduling control theory. The final control system is tested in
simulation with a full nonlinear model of the DELFIMx catamaran.
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1. INTRODUCTION

Marine biologists and researchers depend on tech-
nology to conduct their studies on time and space
scales that suit phenomena under study. Several
oceanography missions can be performed auto-
matically by Autonomous Surface Craft (ASC),
like bathymetric operations and sea floor charac-
terization. ASC vehicles not only serve research
purposes but can also be used for performing au-
tomatic inspection of rubblemound breakwaters,
as required by the MEDIRES project, (Silvestre et

1 This work was partially supported by Fundação para
a Ciência e a Tecnologia (ISR/IST pluriannual funding)
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al., 2004). The catamaran DELFIMx (built for the
MEDIRES project at IST-ISR) is equipped with
sensors and systems capable of automatic marine
data acquisition. This ASC vehicle (like his prede-
cessor DELFIM, which was developed within the
scope of the European MAST-III Asimov project)
can be used to perform autonomous inspections
missions or to ensure fast data communications
between an oceanographic vessel and an underwa-
ter vehicle. The mentioned applications depend on
the development of new high performance control
algorithms.

For motion control of autonomous vehicles two
strategies arise: trajectory-tracking and path-
following. Due to its enhanced performance, which
translates into smoother convergence to the path
and less demand on the control effort, the path-



following approach was chosen. In this paper,
the path-following problem is formulated along
the lines of the work reported in (Paulino et
al., 2006) and (Cunha et al., 2006). The path-
following problem can be cast and solved as a
regulation problem through the definition of a
suitable error vector which depends on both the
vehicle variables (velocities, position and orien-
tation) and the reference (velocities and path).
The error vector contains velocity, orientation,
and position errors (the position error is defined
as the distance between the vehicle’s position and
its orthogonal projection on the path).

In order to model the error dynamics, a poly-
topic Linear Parameter Varying (LPV) represen-
tation with piecewise affine dependence on the
parameters is used. For each region in the vehi-
cle’s flight-envelope, a discrete-time H2 controller
is synthesized using Linear Matrix Inequalities
(LMIs). Since future path references are available,
a preview control algorithm is applied. Based on
the results presented in (Paulino et al., 2006),
a feedforward preview gain matrix is computed.
This sort of algorithms are widely used to in-
crease the overall close loop performance, which
in this case corresponds to achieving better path-
following performance with smoother actuation.
Pioneer work on preview control can be found in
(Prokop and Sharp, 1994) and references therein.

The resultant nonlinear controller is implemented
within the framework of gain-scheduling control
theory, using the D-Methodology, see (Kaminer
et al., 1995). The overall closed-loop system is
tested in the MATLAB/SIMULINK simulation
environment, using a full nonlinear model of the
DELFIMx catamaran.

The paper is organized as follows. Section 2
presents a nonlinear model for dynamics of the
DELFIMx catamaran. Section 3 introduces briefly
the error space used to describe the vehicle dy-
namics. Section 4 states the preview control prob-
lem. Section 5 describes the methodology adopted
for H2 linear controller design where an LMI
synthesis technique is applied to affine parameter-
dependent systems. Section 6 focuses on the im-
plementation of the nonlinear path-following con-
troller for the DELFIMx catamaran. Finally, sim-
ulation results obtained with the full nonlinear
dynamic model are presented in Section 7.

2. VEHICLE DYNAMICS

This section briefly presents the model adopted to
describe the dynamics of the DELFIMx catama-
ran in the horizontal plane. The vehicle has two
hulls, two propellers driven by electrical motors,
and a torpedo-shaped sensor container, attached
to the catamaran by a central wing-shaped link.
For a comprehensive description of this model, the
reader is referred to (Prado, 2002).

Using standard notation in the field, let {U} de-
note the inertial coordinate frame, {B} the body
fixed coordinate frame attached to the vehicle’s
center of mass and consider the following vehicle
variables:
UpB = [x y]T - position of the origin of {B} with
respect to {U};
v = [u v]T - linear velocity of {B} relative to {U},
expressed in {B};
ψ - heading angle that describes the orientation
of frame {B} with respect to {U};
r - angular velocity of {B} relative to {U}, ex-
pressed in {B}
The vehicle’s kinematics can be written as{

ψ̇ = r
U ṗB = U

BRv

where U
BR denotes the rotation matrix from {B}

to {U}.
Consider also the generalized variables for the
horizontal motion mode given by

ν =
[
u v r

]T

τ =
[
X Y N

]T

where τ denotes the generalized force vector com-
prising the external forces [X, Y ] and moment N .
Then, the equations of motion for the dynamics
can be written in compact form as

M ν̇ + C ν = τ , (1)

where M is the 2-D rigid body inertia matrix and
C the matrix of Coriolis and centripetal terms.
The generalized force τ can be decomposed as

τ = τ add(ν̇, ν) + τ body(ν) + τ prop(ν,u), (2)

where τ add denotes added mass terms, τ body the
hydrodynamic forces and moments acting on the
body, and τ prop the forces and moments generated
by the propellers as a function of the velocities
ν and of the actuation vector u = [nc nd]T .
The symbols nc and nd stand for the common
and differential modes of the propellers’ speed of
rotation.

The major difficulty faced when modeling a cata-
maran lies in obtaining an analytical expression
for τ . In the current horizontal plane model, the
gravitational effect is neglected and the fluid is
assumed to be at rest, whereas the dynamic and
hydrodynamic effects of the different catamaran
components are accounted for in the final expres-
sion for τ , see (Prado, 2002) for further details.

3. ERROR SPACE

In order to address the path-following problem
and convert it into a regulation problem, the
vehicle’s dynamics are expressed in a conveniently
defined error space that naturally describes the
dynamic characteristics of the ASC for a suitable
flight envelope.



3.1 Tangent and desired body frames

The error space definition requires the introduc-
tion of a coordinate frame that relates the vehicle
position with the path. This frame, whose x and
y axes are constrained to be tangent and normal
to the path, respectively, is called the tangent
frame {T} (see Fig. 2). There is an almost exact
correspondence between {T} and the well-known
Serret-Frenet frame, which, as illustrated in Fig. 1,
can only differ on the direction of the normal axis.
This is an alternative definition of great practical
significance, since it widens the set of paths for
which continuity in {T} can be guaranteed. In

Fig. 1. Tangent and Serret-Frenet frames

addition to being aligned with the tangent to the
path, the frame {T} is constrained to move along
the path as a function of the vehicle’s motion,
so that its origin corresponds to the orthogonal
projection of the vehicle’s position on the path
(see Fig. 2).

Given these constraints, it is easy to show that
the linear velocity vT = T

UR U ṗT is given by

vT = VT

[
1 0

]T
,

where VT is the speed with which {T} is moving
along the curve, and that the distance d = UpB −
UpT has no component along the tangent axis,
that is,

T

URd =
[
0 dt

]T
.

As for the angular velocity rT , it is easy to show
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Fig. 2. Coordinate frames and distance to the path

that it verifies
rT = VT κ,

where κ is the signed curvature, defined for each
point on the curve, see (Cunha et al., 2006) for
details.

In order to define the error vector, it is neces-
sary to introduce an additional frame: the desired
body frame {C}, which coincides with the tangent
frame apart from a z-aligned rotation. The angu-
lar distance between {T} and {C} determines the
sideslip angle with which the vehicle is supposed
to follow a particular curve. Thus, the orientation
of frame {C} with respect to frame {U} can be
expressed as

ψC = ψT + ψT C ,

where ψT C is the side-slip angle generally defined
as β = arctan(vC/uC). Notice that ψT C is highly
dependent on the dynamics of the vehicle. How-
ever, as will be seen later, the adopted methodol-
ogy will eliminate the need to explicitly compute
the sideslip angle.

3.2 Error vector definition and error dynamics

Given the foregoing definitions and introducing
the reference velocities vR = VR [1 0]T and rR,
the following error vector can be considered

xe =





ve = v − B

T RvR

re = r − rR

dt = Πy
T

UR (UpB − UpT )
ψe = ψ − ψC

, (3)

where Πy = [0 1]. It is straightforward to show
that the vehicle follows the path with tangent
velocity vr and orientation ψC if and only if
xe = 0.

Assuming that the references satisfy V̇R = 0 and
ψ̇CT = 0, the error dynamics can be written as

v̇e =
[
u̇ + sin(ψe + ψT C) ψ̇e VR

v̇ + cos(ψe + ψT C) ψ̇e VR

]

ṙe = ṙ

ḋt = sin(ψe + ψT C)u + cos(ψe + ψT C) v

ψ̇e = r − κ
cos(ψe + ψT C)u− sin(ψe + ψT C) v

1− κdt

(4)

For tracking purposes, the output vector

ye = ve + B

T R

[
0
dt

]

is appended to the system. Note that ye results
from the combination of velocity and position
errors both expressed in body coordinates.

3.3 Error linearization and discretization

When the reference path is constrained to verify
a trimming condition (which must be feasible for
the vehicle in question), the error dynamics be-
comes an autonomous system with an equilibrium
point at xe = 0 (Cunha et al., 2006). It is well-
known that, in 2-D, such a condition is satisfied if



the desired path is either a straight line or a circle
followed at constant speed (V̇R = ṙR = 0) and
with constant sideslip (ψ̇T C = 0). Given that the
catamaran is underactuated, it can be shown that
the constant parameter vector ξ = [VR rR]T com-
pletely characterizes a trimming condition and
that, imposing this condition on the reference, the
error dynamics can be written in compact form as

P(ξ) =
{

ẋe = fe(xe, ξ,u)
ye = ge(xe, ξ),

Defining uC as the input vector that satisfies (1)
with ν = [(C

T RvR)T rR]T (ν̇ = 0), the linearization
of the error dynamics about (xe = 0,u = uc)
results in the time-invariant system given by

Pl(ξ) =
{

δẋe = Ae(ξ) δxe + Be(ξ) δu
δye = Ce(ξ) δxe,

(5)

where Ae(ξ) = ∂fe
∂xe

(0, ξ,uC), Be(ξ) = ∂fe
∂u (0, ξ,uC),

and Ce(ξ) = ∂ge

∂xe
(0, ξ).

For the purposes of control system design, the dis-
crete time equivalent of the linear continuous time
model (5) is obtained using a zero-order hold on
the inputs. Let T be the sampling time and define,
with obvious abuse of notation, the augmented
discrete time state xd(k) = [xe(k)T , xi(k)T ]T ,
where xi(k) corresponds to the discrete time inte-
gral of ye. Then, the discrete error dynamics can
be written as

xd(k + 1) = A(ξ)xd(k) + B(ξ)u(k), (6)

where A(ξ) =
[

eAe(ξ)T 0
Ce(ξ) I

]
and B(ξ) =




∫ T

0

eAe(ξ)τdτBe(ξ)

0


, for ξ constant.

4. PREVIEW PROBLEM FORMULATION

Better path-following performance with limited
bandwidth compensators can be achieved by tak-
ing into account, in the control law, the character-
istics of the reference path ahead of the vehicle.
The technique used in this paper to develop a
tracking controller amounts to introducing a dy-
namic feedforward block, which is fed by future
path disturbances.

With the objective of including this preview com-
ponent in the discrete time error space dynam-
ics (6), assume that the catamaran moves with
constant speed along a given reference path that
results from the concatenation of straight lines
and arcs of circumference. A detailed analysis of
the error dynamics (4) suggests the introduction
of a perturbation term that results from the dis-
continuity in the angular velocity rR. Assuming
that each path segment concatenation occurs at
time ti, the derivative of rR can be written as

ṙR(t) =
∑

i

δ(t− ti)(rR(t+i )− rR(t+i )),

where δ(t) is the Dirac delta function. From (5),
the resulting linear error dynamics can be written
as

δẋe = Ae(ξ)δxe + Be(ξ)δu + Wδw, (7)

with injection matrix W =
[
0 0 −1 0 0

]T . The
corresponding discretization is given by

xd(k + 1) = A(ξ)xd(k) + B(ξ)u(k) + B1(ξ)s(k),
(8)

where B1(ξ) = [(eAe(ξ)T W )T , 0]T is obtained
from the impulse invariant discrete equivalent of
the injection matrix W . It is assumed that the
sampling period is sufficiently small to consider
the reference path changes synchronized with the
sampling time and therefore the perturbation s(k)
can be written as

s(k) = rR(t+k )− rR(t+k ).

Assuming a preview length of p samples, let
xs(k) = [s(k), s(k + 1), ..., s(k + p)]T ∈ R(p+1)×1

be the vector containing all the preview inputs
at instant k. Then, the discrete time dynamics
of vector xs(k) can be modeled as a FIFO queue
given by

xs(k + 1) = Dxs(k) + Bss(k + p + 1), (9)

where

D =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . 1

0 0 0 · · · 0




, Bs =




0
0
...
0
1




,

and the augmented system with state x(k) =[
xd(k)T xs(k)

]
can be written as

x(k + 1) = Āx(k) + B̄ss(k) + B̄u(k), (10)

where

Ā =
[
A H
0 D

]
, B̄s =

[
0

Bs

]
, B̄ =

[
B
0

]
,

and H = [B1, 0, 0, · · · , 0] represents the injection
matrix of the preview signals into the error dy-
namics. Notice that the D matrix is stable and
therefore the augmented system (10) preserves the
stabilizability and detectability properties of the
original plant.

5. DISCRETE TIME CONTROLLER DESIGN

This section briefly describes the LMI-based
methodology that was adopted to solve the prob-
lem of discrete time state feedback H2 preview
control for polytopic LPV systems (Ghaoui and
Niculescu, 1999; Takaba, 2000).

In what follows, the standard set-up and nomen-
clature used in (Zhou et al., 1995) is adopted,
leading to the state-space feedback system rep-
resented in Fig. 3. Consider the generalized LPV
G(ξ), defined as a function of the slowly varying
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Fig. 3. Feedback interconnection

parameter vector ξ. It is assumed that ξ is in a
compact set Θ ⊂ Rq. Suppose that the parameter
set Θ can be partitioned into a family of regions
that are compact closed subsets Θi, i = 1, . . . , N
and cover the desired ASC flight envelope. In the
ith parameter region Θi, the dynamic behavior of
the closed-loop system admits the realization
{

x(k + 1) = A(ξ)x(k) + Bw(ξ)w(k) + B(ξ)u(k)
z(k) = Cz(ξ)x(k) + E(ξ)u(k), u(k) = Kx(k),

(11)
where x(k) is the state vector. The symbol w(k)
denotes the input vector of exogenous signals
(including commands, disturbances and preview
signals), z(k) is the output vector of errors to
be reduced during the controller design process,
and u(k) is the vector of actuation signals. Ma-
trices A(ξ), Bw(ξ), B(ξ), Cz(ξ), and E(ξ) are
affine functions of the parameter vector ξ =
[ξ1, . . . , ξq]T ∈ Θi, e.g. A(ξ) = A(0) + ξ1A

(1) +
. . . + ξqA

(q). The generalized affine parameter-
dependent system G(ξ) consists of the plant to be
controlled, together with appended weights that
shape the exogenous and internal signals and the
preview dynamics presented in Section 4.

Given G(ξ), an LMI approach for the synthesis
of state feedback H2 controllers for polytopic sys-
tems is used to compute K = [Kd, Ks], where Kd

and Ks represent the state feedback and feedfor-
ward gain matrices respectively, see (Ghaoui and
Niculescu, 1999; Paulino et al., 2006) for further
details.

For augmented discrete time dynamic systems
that include large preview intervals p > 50,
the controller synthesis technique proposed in
(Ghaoui and Niculescu, 1999) leads to LMI op-
timization problems involving a large number of
variables, which cannot easily be solved using the
tools available today. To overcome this limitation,
an alternative algorithm for the computation of
the feedforward gain matrix is adopted that ex-
ploits the particular structure of the augmented
preview system, see (Paulino et al., 2006).

6. IMPLEMENTATION

The design and performance evaluation of the
overall closed loop system were carried out using
the model described in Section 2.

During the controller design phase the considered
ASC’s flight envelope was parameterized by ξ =

Parameters Intervals

VR [m.s−1] [0.4;0.5] [0.45;1] [0.8;1.5] [1.3;2] [1.8;2]
rR [rad.s−1] [-0.01;0.01] [0.008;0.02] [0.018;0.022]

[-0.02;-0.008] [-0.022;-0.018]

Table 1. Parameter intervals

[VR, rR]T and partitioned into 25 regions resulting
from the parameter intervals presented in Table 1.
For each operating region, the elements of the
discrete time state space matrices were obtained
from the linearization of the error dynamics over
a dense grid of operating points and then ap-
proximated by affine functions of ξ using a Least
Squares Fitting.

To implement the controller within the scope of
gain scheduling control theory, a state feedback
gain matrix Ki = [Kdi, Ksi], i = 1, . . . , 25 was
computed for each of the operating regions using
the technique presented in Section 5. During the
controller design phase the regions were defined
so as to overlap thus avoiding fast switching
between controllers. The disturbance input matrix
Bw was set to B̄s and the state and control
weight matrices Cz and E, respectively, were set
to yield the following performance vector z(k) =
[z1(k)T z2(k)T ]T , where

z1 = [0.01ue, 0.1ve, re, 0.1dt, ψe, 0.03xi1, 0.15xi2]
T

z2 = [0.15nc, 0.1nd]
T

,
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Fig. 4. Implementation setup using gain schedul-
ing and the D-methodology

The final implementation scheme, presented in
Fig. 4, was achieved using the D-methodology
described in (Kaminer et al., 1995). Besides pre-
serving the stability characteristics of the closed
loop system, this methodology has the important
property of eliminating the need to feedforward
trimming values for the actuation signals and
state variables that are not required to track ref-
erence inputs.

The width of the preview interval suitable for a
given vehicle is a compromise between the time-
constants associated to the vehicle’s dynamics and
the computational power available onboard. In
the present case, it was reasonable to consider a
preview length of 100 samples.



7. SIMULATION RESULTS

In this section, we illustrate the performance
that can be achieved with the proposed path-
following controller. The reference path consid-
ered is formed by the concatenation of two arcs, to
be followed at a reference speed of VR = 1.5 m/s.
The curvature switches sign at the intersection
between the segments so that the reference rR

goes from 0.05 rad/s to −0.05 rad/s (see Fig. 7).
As shown in Fig. 5, 6, and 7, the inclusion of
preview control action yields better path-following
performance, since it results in a smoother path
trajectory with reduced convergency time.
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8. CONCLUSIONS

This paper presented the design and performance
evaluation of a path-following controller for an
Autonomous Surface Craft (ASC).

Resorting to an H2 controller design methodol-
ogy for affine parameter-dependent systems, the
technique presented exploited an error vector that
naturally describes the dynamic characteristics
of the ASC for a suitable flight envelope. For a
given set of operating regions, a nonlinear preview
controller was synthesized and implemented under
the scope of gain-scheduling control theory.
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Fig. 7. Trajectories described by the vehicle

The effectiveness of the new control laws was
assessed in simulation, using a nonlinear model
of the DELFIMx catamaran. The quality of the
results obtained clearly indicate that the method-
ology derived yields a high-performance path-
following controller.
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