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Abstract— This paper addresses the problem of stabilizing
systems that evolve on SE(3). The proposed solution consists
of an output-feedback controller that guarantees almost global
asymptotic stability (GAS) of the desired equilibrium point, i.e.
the point is stable and, except for a set of zero measure, all
initial conditions converge to it. The output vector is formed
by the position coordinates, expressed in the body frame, of a
collection of landmarks fixed in the environment. The resulting
closed-loop system exhibits the following properties: i) the
position error is globally exponentially stable and ii) the norm
of the angle-axis of the error rotation matrix is monotonically
decreasing almost everywhere. Results are also provided that
allow one to select landmark configurations so as to control
how the position and orientation of the rigid body converge to
their desired values.

I. INTRODUCTION

The problem of stabilizing a rigid-body in position and ori-

entation is by no means a new control problem. Considering

the simplest case of a fully-actuated kinematic model, the

classical approach relies on a local parameterization of the

rotation matrix, such as the Euler angles, which transforms

the state-space into an Euclidean vector space. In this setting,

the problem admits a trivial solution. However, no global

solution can be obtained and there is no guarantee that the

generated trajectories will not lead the system to one of its

geometric singularities. Moreover, the described trajectories

may be practically inadequate, since the module of the Euler

angles vector does not correspond to a metric on SO(3).
An alternative way of parameterizing rotations, which still

has ambiguities but is globally nonsingular, is offered by

the unit quaternions or the angle-axis parameterization. In

these cases, global results can be obtained - see [1] for

an example based on quaternions that solves an attitude

regulation problem for low-Earth orbit rigid satellites and

[2] for an example that uses the angle-axis representation

to tackle a visual-servoing problem. However, both methods

have the drawback of requiring full state knowledge and

mapping the orientation to the selected parametrization.

In this paper, we present an output-feedback solution to

the stabilization problem, defined on a setup of practical
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significance. It is assumed that there is a collection of

landmarks fixed in the environment and that the coordinates

of the landmarks’ positions are provided in the body frame.

This type of measurements are produced by a number of on-

board sensors, including CCD cameras, ladars, pseudo-GPS,

etc.

The main contribution of this paper is the design of an

output-feedback control law, based on the above described

measurements, that guarantees almost global asymptotic sta-

bility (GAS) of the desired equilibrium point. In loose terms,

this corresponds to saying that the point is stable and, except

for a zero measure set of initial conditions, the system con-

verges asymptotically to that point [3]. The relaxation in the

concept of GAS from global to almost global provides a suit-

able framework for the stability analysis of systems evolving

on manifolds not diffeomorphic to an Euclidean vector space,

as is the case of the Special Euclidean Group SE(3) [4]. As

discussed in [5], [6], and [7], topological obstacles preclude

the possibility of globally stabilizing these systems by means

of continuous state feedback. The approach followed in this

paper is in line with the methods presented in [5] and [4],

which address the attitude tracking problem on SO(3) based

on the so-called modified trace function. Building on these

results, we address the more general problem of stabilization

on SE(3) and, equally important, we provide a controller

that only requires output feedback, as opposed to full-state.

In addition, we establish results that describe the effect of

the geometry of the points on the shape of the equilibria set

and on the dynamic behaviour of the closed-loop system.

Namely, using the angle-axis parameterization for the error

rotation matrix, the decreasing monotonicity the rotation

angle’s absolute value is ensured almost everywhere and it

is shown that almost GAS of the axis of rotation at a given

point can be obtained by appropriate landmark placement.

The paper is organized as follows. Section II introduces

the problem of stabilization on SE(3) and defines the output

vector considered. Section III describes the construction of

an almost globally asymptotically stabilizing state feedback

controller for the system at hand. In the process, an exact

expression for the region of attraction is derived. In Sec-

tion III-A, we show that the proposed control law can be

expressed solely in terms of the output, and then analyze the

convergence of the position error and of the angle and axis

of rotation arising from the angle-axis parameterization of

the error rotation matrix. Simulation results that illustrate

the performance of the control system are presented in

Section IV. Section V summarizes the contents of the paper

and presents directions for future work. For the sake of

brevity, most of the proofs and technical results are omitted



from the paper, and the reader is referred to [8] for a

comprehensive presentation of this material.

II. PROBLEM FORMULATION

Consider a fully-actuated rigid-body, attached to a frame

{b} and whose kinematic model is described by

ṗ = −v − S(ω)p (1a)

Ṙ = −S(ω)R, (1b)

where (p, R) =
(

bpπ,
b
πR

)

∈ SE(3) denotes the con-

figuration of a fixed frame {π} with respect to {b}, v,

ω ∈ R
3 the linear and angular velocities of {b} with respect

to {π}, expressed in {b}, and S(.) is a function from R
3

to the space of three by three skew-symmetric matrices

S = {M ∈ R
3×3 : M = −MT} defined by

S
([

a1

a2

a3

])

=
[ 0 −a3 a2

a3 0 −a1

−a2 a1 0

]

. (2)

Note that S is a bijection and verifies S(a)b = a×b, where

a,b ∈ R
3 and × is the vector cross product.

Consider also a target configuration (p∗, R∗) =
(

dpπ,
d
πR

)

∈ SE(3), defined as the configuration of {π}
with respect to the desired body frame {d}, which is assumed

to be fixed in the workspace. Fig. 1 illustrates the setup

at hand, where the coordinates of n points acquired at

the current and desired configurations (p, R) and (p∗, R∗),
respectively, are available to the system for feedback control.

In loose terms, the control objective consists of designing a

control law for v and ω, based on the available current and

desired point coordinates, which ensures the convergence of

(p, R) to (p∗, R∗) (or, equivalently, of {b} to {d}), with the

largest possible basin of attraction.

Fig. 1. Problem setup.

The landmarks, whose position coordinates in {π} are

denoted by xj ∈ R
3, j ∈ {1, 2, . . . , n}, are required to

satisfy the following conditions:

Assumption 1: At least three of the xj are not collinear.

Assumption 2: The origin of {π} coincides with the cen-

troid of the landmark points, such that
∑

j xj = 0.

Choosing this placement for {π} considerably simplifies the

forthcoming derivations and implies no loss of generality. As

shown latter in the paper, Assumption 1 can be interpreted

as an observability condition.

To conclude the problem formulation, we introduce the

error variables

e = p − p∗ ∈ R
3, Re = R∗TR ∈ SO(3), (3)

and the output vector

y = [qT

1 . . . qT

n]T ∈ R
3n×1, (4)

where qj = Rxj + p, j ∈ {1, 2, . . . , n}, denotes the

coordinates of the jth point expressed in {b}. Similarly, we

define the desired output vector y∗ = [q∗

1
T . . . q∗

n
T ]T ∈

R
3n×1, where q∗

j = R∗xj + p∗. From a practical point of

view, (4) should be viewed as the output vector. Note that

qj and q∗

j are precisely the type of measurements produced

by on-board sensors that are able to locate landmarks fixed

in the environment. As on-board sensors, they produce the

coordinates of the landmarks’ positions in the body frame.

Examples of such sensors include CCD cameras, ladars,

pseudo-GPS, etc.

The state-space model for the error system can be written

as

ė = −v − S(ω)(e + p∗) (5a)

Ṙe = −S(R∗T

ω)Re, (5b)

with the output vector given by (4). The control objective

can then be defined as that of designing a control law based

on y that drives e to zero and Re to the identity matrix I3.

III. CONTROL DESIGN ON SE(3)

The approach adopted to solve the proposed stabilization

problem builds on Lyapunov theory and, for that purpose,

the following candidate Lyapunov function is considered

V =
1

2
‖y − y∗‖

2
=

1

2

∑

j

∥

∥qj − q∗

j

∥

∥

2
. (6)

Since we are concerned with the global asymptotic sta-

bilization (GAS) of a system evolving on SE(3), it is

convenient to express V as a function on SE(3). As shown

in [8], V can be written as

V (e, Re) = V1(e) + V2(Re), (7)

where

V1(e) =
n

2
eT e, (8)

V2(Re) = tr ((I −Re)XX
T ) , (9)

and

X =
[

x1 . . . xn
]

∈ R
3×n.

Using the angle-axis representation for rotations, such that

Re = rot(θ,n) = I3 + sin θ S(n) + (1 − cos θ)S(n)2

represents a rotation of angle θ ∈ [0, π] about the axis

n ∈ S
2, one can show that (9) can be rewritten as

V2(Re) = (1 − cos θ)nTPn, (10)



where

P = tr(XXT )I3 −XXT .

Using expressions (8)-(9), it is straightforward to show

that, as long as three landmark points are noncollinear, V
satisfies the condition V = 0 if and only if e = 0 and

Re = I3. The time derivatives of V1 and V2 take the form

V̇1 = −neT (v − S(p∗)ω) (11)

V̇2 = −S−T (ReXX
T −XXTRT

e )R∗T

ω, (12)

respectively, yielding

V̇ = −aT

vv − aT

ωω, (13)

where av = ne, aω = nS(p∗)e + R∗S−1(ReXX
T −

XXTRT

e ), and S−1 : S 7→ R
3 corresponds to the inverse

of the skew map S defined in (2). Once again, using the

angle-axis representation of Re, the derivative of V2 can be

rewritten as

V̇2 = −nTPQ(θ,n)TR∗T

ω, (14)

where Q(θ,n) = sin θI3 + (1 − cos θ)S(n). Details on

the derivation of the expressions presented for V1, V2, and

respective derivatives can be found in [8].

Before presenting a possible solution to the stabilization

problem, we describe a preliminary approach to the problem

that serves as motivation. Given (13), the simplest state-

feedback control law yielding V̇ ≤ 0 would be

v = kvav, ω = kωaω, (15)

where kv > 0 and kω > 0. This choice of controller

guarantees, by Lyapunov’s stability theorem, local stability

of (e, Re) = (0, I3) and, by LaSalle’s theorem, global

convergence to the largest invariant set in the domain sat-

isfying V̇ = 0. In this particular case, the whole set defined

by V̇ = 0 is positively invariant, since all its elements

are equilibrium points of the system. In summary, GAS

would only be guaranteed if (e, Re) = (0, I3) were the

unique solution of V̇ = 0. The following result discards

this possibility.

Lemma 3.1: ([8]) Under Assumptions 1 and 2, the deriva-

tive of V along trajectories of the system (5) with the control

law (15) is equal to zero if and only if e = 0 and Re belongs

to the set

CV2
= I3∪{rot(π,ni) ∈ SO(3) : ni is an eigenvector of P} .

(16)

In addition, P can be factored as UΛU ′ with U ∈ O(3) and

Λ = diag(σ2
2+σ2

3 , σ
2
1+σ2

3 , σ
2
1+σ2

2), where σ1 ≥ σ2 ≥ σ3 >
0 are the singular values of X . Three cases may occur:

i) if all singular values of X are distinct, then CV2
is given

by

CV2
= {I3} ∪ {rot(π,nj) : j = 1, 2, 3};

ii) if only two are distinct, then CV2
consists of the larger

set

CV2
= {I3} ∪ {rot(π,n) : n = nk or n∈span(ni,nj) ∩ S

2,

σi = σj 6= σk, i, j, k = 1, 2, 3};

iii) otherwise (all singular values of X equal), CV2
is given

by

CV2
= {I3} ∪ {rot(π,n) : n ∈ S

2}.
Since the matrix P is completely determined by the point

positions that define X , Lemma 3.1 shows that CV2
is

completely determined by the geometry of the measured

points, which, in many applications, can be placed to yield

appropriate sets CV2
. To illustrate this observation, consider

two configurations for the landmark points, a rectangle and

a square, corresponding to the matrices X1 =
[

a a −a −a
b −b −b b
0 0 0 0

]

and X2 =
[

a a −a −a
a −a −a a
0 0 0 0

]

respectively, with a > b > 0.

It is easy to show that, in the first case, V2 has exactly

four critical points given by C
(1)
V2

= {I3,diag(−1,−1,1)} ∪
{diag(−1,1,−1),diag(1,−1,−1)} , while, in the second, the

critical points of V2 form the connected set

C
(2)
V2

= {I3,diag(−1,−1, 1)}∪

{Re ∈ SO(3) : Re =

[

cosψ sinψ 0
sinψ − cosψ 0

0 0 −1

]

, ψ ∈ R}. (17)

The sets C
(1)
V = {0} × C

(1)
V2

and C
(2)
V = {0} × C

(2)
V2

are depicted in Fig. 2(a) and (b), respectively, where, for

simplicity of representation, it is assumed that R∗ = I3
and p∗ = [0 0 c]T , c > 0. The desired configuration is

represented in black by the vector p∗ and the coordinate

frame {d}. The remaining configurations are represented in

gray.

Lemma 3.1 reflects the topological obstacles, discussed in

[5], [6], and [7], to achieving, by continuous state feedback,

global stabilization of systems evolving on manifolds not

diffeomorphic to the Euclidean Space. In fact, given a system

evolving on a manifold M, GAS of a single equilibrium

point would imply the existence of a smooth positive definite

function V : M 7→ R with negative definite derivative over

all M, that could be viewed as a Morse function with a single

critical point, and, to admit such a function, M would have

to be diffeomorphic to the Euclidean Space [7]. In view of

these obstacles, a relaxation in the concept of GAS from

global to almost global needs to be considered. It allows for

the existence of a zero measure set of initial conditions that

do not tend to the specified equilibrium point. In practical

terms, this relaxation is fairly innocuous, since disturbances

or noise will prevent trajectories from remaining at these

(unstable) equilibria.

To formalize this concept of stability, which is adopted in

[9], [10], and [3], we first recall the definition of region of

attraction.

Definition 3.1 (Region of Attraction): Consider the au-

tonomous system evolving on a smooth manifold M

ẋ = f(x), (18)

where x ∈ M and f : M 7→ TM is a locally Lipschitz

manifold map, and suppose that x = x∗ is an asymptoti-

cally stable equilibrium point of the system. The region of

attraction for x∗ is defined as

RA = {x0 ∈ M : φ(t, x0) → x∗ as t→ ∞} , (19)



(a) rectangular configuration - four critical points

(b) square configuration - infinite number of critical points

Fig. 2. Critical points for two different landmark geometries.

where φ(t, x0) denotes the solution of (18) with initial

condition x(0) = x0.

Definition 3.2 (Almost GAS): Consider the system (18).

The equilibrium point x = x∗ is said to be almost globally

asymptotically stable if it is stable and M\RA is a set of

zero measure.

Going back to the original kinematic model (5), we define

the following continuous feedback law based on V

v = kve + kωS(e + p∗)bω (20a)

ω = kωbω, (20b)

where bω = R∗S−1(ReXX
T − XXTRT

e ). This control

law will actually have the same equilibrium points as the

simpler one considered before, but, in contrast, we will

now be able to show that the “undesirable” equilibria are

unstable and consequently that (e, Re) = (0, I3) is almost

GAS. Additionally, we will see shortly that these control

signals can be directly expressed in terms of the available

measurements.

Theorem 3.2: For any kv and kω positive, the closed-loop

system resulting from the interconnection of (5) and (20) has

an almost GAS equilibrium point at (e, Re) = (0, I3). The

corresponding region of attraction is given by

RA = {(e, Re) ∈ SE(3) : tr(I3 −Re) < 4} . (21)

Remark 3.1: To prove almost GAS, we need to determine

the actual region of attraction and not just an estimate of it,

as could be readily obtained by using Lyapunov’s method.

This would only provide us with a closed invariant set of

the form Ωc = {x ∈ M : V (x) ≤ c} ⊂ RA. Instead, the

proof of Theorem 3.2 relies on Zubov’s theorem, which can

be used to find the boundary of RA (see [11] and [12]). For

the sake of completeness, we restate the theorem, with only

slight alterations to the version presented in [12].

Theorem 3.3 (Zubov’s Theorem): Consider the system

(18) and suppose that f is Lipschitz continuous on the region

of attraction RA of an asymptotically stable equilibrium

point x∗. Then, an open set G containing x∗ coincides with

RA if and only if there exist two continuous positive definite

functions W : G 7→ R and h : M 7→ R such that

(i) W (x∗) = 0, W (x) > 0 for all x ∈ G\{x∗},

(ii) W (x) → 1 as x→ ∂G or, in the case of unbounded

G, as d(x, x∗) → ∞, where ∂G is the boundary of

G and d(. , .) is a metric defined on M,

(iii) Ẇ (x) is well defined for all x ∈ G and

Ẇ (x) = −h(x) (1 −W (x)) . (22)

Proof: [Theorem 3.2.] We start by showing that the

derivative of V is nonpositive. Substituting (20) in (11) and

(12) yields

V̇ = −kvne
T e − kωb

T

ωbω.

Then, we have V̇ ≤ 0 for all (e, Re) ∈ SE(3) and

V̇ = 0 for all (e, Re) ∈ CV , the set critical points of V
determined in Lemma 3.1. By Lyapunov’s stability theory,

we can conclude local stability of (0, I3) and, by LaSalle’s

invariance principle, global convergence to CV . To prove

almost global asymptotic stability of (0, I3), consider the

continuously differentiable positive definite function

V̄2(Re) = tr(I3 −Re),

which corresponds to (9) with X = I3. Using the angle-axis

representation, Re = rot(θ,n), and with an obvious abuse

of notation, V̄2 can be expressed as V̄2(θ) = 2(1 − cos θ).

Using (14) with P = 2I3 and (20b), the time derivative ˙̄V2

can be written as

˙̄V2 = −2 sin θ nTR∗T

ω = −2kω(sin θ)2 nTPn ≤ 0. (23)

Defining the set G = {Re ∈ SO(3) : tr(I3 −Re) < 4}, it is

straightforward to show that W (Re) = 1
4 V̄2(Re) together

with h(Re) = kωV2(Re) satisfy the conditions of Theorem

3.3 and therefore G = RA. By noting that G can also be

written as G = {rot(π,n) : n ∈ S
2} and that, as stated in

[5], the mapping from Re ∈ SO(3) to the angle of rotation

θ ∈ [0, π] defines a metric on SO(3), one concludes that G
has zero measure.

Remark 3.2: When XXT satisfies certain conditions, the

function V2(Re) defined in (9) corresponds to the modified

trace function on SO(3) studied in [5] and [4]. In those

works, to prove almost GAS of the desired equilibrium

points, the authors rely on the fact that V2 is a Morse

function on SO(3), i.e. a function whose critical points

are all nondegenerate and consequently isolated [5]. This

corresponds to constraining P , or equivalently XXT , to have



all distinct eigenvalues. In our work, this restriction has been

lifted, since the proof of almost GAS follows a different

approach. As shown earlier, we can consider configurations

(such as the square), which does not yield a Morse function

for V2, because the critical points can form the connected

set C
(2)
V2

given in (17).

A. Properties of the control law

The first property that we would like to highlight is that

the control law (20) can be expressed solely in terms of

the current and desired outputs y and y∗, respectively. The

following result establishes this.

Lemma 3.4: Under Assumption 2, the control law defined

in (20) can be rewritten as

v = kvE (y − y∗) + S(Ey)ω (24a)

ω = kωF (y∗)y − kωnS(Ey∗)Ey, (24b)

where E = 1
n
[I3 · · · I3] ∈ R

3×3n and F (y∗) =
[S(q∗

1) · · ·S(q∗

n)] ∈ R
3×3n.

Proof: According to Assumption 2 and (4), we have

p = 1
n

∑

j qj = Ey, where E = 1
n
[I3 · · · I3] ∈ R

3×3n

and so (20a) can be rewritten as v = kve + S(p)ω =
kvE (y − y∗)+S(Ey)ω. To obtain an alternative expression

for (20b), note that

− aTR∗S−1(ReXX
T −XXTRT

e ) = tr(S(R∗T

a)ReXX
T )

= −aTR∗
∑

jS(xj)Rexj = −aT
∑

jS(q∗

j − p∗)(qj − p),

for all a ∈ R
3. Then, (20b) can be rewritten as ω =

kω
∑

j S
(

q∗

j

)

qj − kωnS(p∗)p and therefore as (24b).

The remaining properties relate to the dynamic behaviour

of the closed-loop system, which can be rewritten as

ė = −kve (25a)

Ṙe = −kω(ReXX
T −XXTRT

e ). (25b)

We can immediately conclude that the proposed control law

decouples the position and orientation errors systems and

that the position subsystem (25a) has a global exponentially

stable equilibrium point at e = 0.

To analyze the stability and convergence properties of the

orientation subsystem, it is convenient to consider the angle

of rotation θ and axis of rotation n (recall that Re can be

written as Re = rot(θ,n)). The expressions for θ̇ and ṅ are

specified in the following Lemma, whose proof can be found

in [8].

Lemma 3.5: Let Re ∈ SO(3) be represented as a rotation

of angle θ about the axis n. Then, for 0 < |θ| < π, the time

derivatives of θ and n can be written as

θ̇ = −nTR∗T

ω (26)

ṅ =
1

2

(

sin θ

1 − cos θ
S(n) + I3

)

S(n)R∗T

ω, (27)

respectively.

Given the control law ω = kωR
∗Q(θ,n)Pn, it is straight-

forward to show that, in closed-loop, (26) and (27) become

θ̇ = −kω sin θ nTPn (28)

ṅ = kωS(n)2Pn, (29)

respectively.

Recalling that P > 0, we can immediately conclude

from (28) that the proposed controller guarantees not only

the convergence of θ to the origin, but also the decreasing

monotonicity of |θ|. Considering now (29), if all eigenvalues

of P are equal, i.e. P = αI3 for some α > 0, then ṅ = 0
and so the convergence of R to R∗ is achieved by rotating

along a constant axis of rotation, which is determined by

the initial condition of the system. On the other extreme

case, where all the eigenvalues of P are distinct, we can

divide the two-sphere S
2 into the positive and negative half-

spaces associated with the smallest eigenvalue of P and

show that n converges to the corresponding eigenvector, with

positive or negative sign depending on which of the half-

spaces the system has started. The boundary between the two

sets constitutes an invariant set of the system. The following

result formalizes these considerations and also intermediate

cases not yet discussed.

Lemma 3.6: ([8]) Let P ∈ R
3×3 be the positive definite

matrix, with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3. Then, (28)

has an asymptotically stable equilibrium point at θ = 0,

with region of attraction {θ : |θ| < π}. Moreover, |θ| is

monotonically decreasing. When the eigenvalues of P satisfy

λ1 < λ2 ≤ λ3, the asymptotically stable equilibrium points

of (29) are given by the unitary eigenvectors n1 and −n1

associated with λ1 and n(t) → sign(n(0)T n1)n1 as t →
∞, provided that n(0)T n1 6= 0; when λ1 = λ2 < λ3, the

asymptotically stable equilibrium points form the set {n :
n ∈ span(n1,n2)∩S

2} and the system converges to a point

in this set provided that n(0) 6= ±n3.

This lemma turns out to be very useful, because it tells us

how to select the axis of rotation to which n converges, by

choosing the landmarks’ placement.

IV. SIMULATION RESULTS

In this section, we present simulation results that corrob-

orate the stability characteristics of the system and illustrate

the properties discussed in the previous section. We con-

sider two different landmark configurations, corresponding

to matrices X1 =
[

1 1 −1 −1
2 −2 −2 2
0 0 0 0

]

and X2 =
[

0 0 0 0
1 −1 −1 1
2 2 −2 −2

]

.

Figures 3(a) and (b) show the trajectories described by the

system using control laws based on X1 and X2, respectively.

Both were initialized at the same position and orientation and

share the same target state (p∗, R∗) = ([0 0 10]T , I3).
We can see that, in both cases, the system starts by de-

scribing an almost straight-line trajectory in position, which

reflects the quick convergence of e to a small neighborhood

of the origin. From then on, the behaviour of the system is

very much determined by the attitude controller, since the po-

sition evolves so as to keep e close to zero. At this point, the

difference between trajectories becomes more pronounced.

This behaviour is directly related to the placement of the

measured points. As shown in Fig. 4, when X1 is used,

the axis of rotation converges to [0 − 1 0]T (dashed line)

whereas when X2 is used, it converges to [0 0 1]T (solid

line). We recall that each of these vectors corresponds to

the eigenvector associated with the smallest eigenvalue of
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Fig. 3. System trajectories.

P1 = tr(X1X
T

1 )I3−X1X
T

1 and P2 = tr(X2X
T

2 )I3−X2X
T

2 ,

respectively.

The obtained result suggests that a careful placement of

the measured points with respect to the desired configuration

can give rise to better-behaved trajectories. More specifically,

if X is selected such that the axis of rotation converges to

±p∗/‖p∗‖ (in the example, X2 verifies this condition), the

last stage of convergence will only involve a rotation about

that axis, producing no translational motion.

V. CONCLUSIONS

The paper presented a solution to the problem of stabiliza-

tion on SE(3). An output-feedback controller was defined,

which guarantees almost global asymptotic stability of the

desired equilibrium point. The output vector considered,

which is formed by the body coordinates of a set of land-

marks fixed in the environment, is relevant for a number of

practical applications. The dependence of both the region of

attraction and dynamic behaviour of closed-loop system on

the geometry of the landmarks was specified. Future work

will focus on extending these results to address the tracking

problems and advance from the kinematic to a dynamic

model.
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