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2( ) Nonstationary Processes and the Sampling

Theorem
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Abstract—In [1], a sampling theorem for nonstationary random
processes is developed, under the condition that the two-dimen-
sional (2-D) power spectrum (2DPS) of the process has compact
support. In this letter, it is shown that, for 2( ) processes, only
a one-dimensional (1-D) restriction on the marginal along time of
the time-frequency distribution is necessary to guarantee the com-
pactness of the 2DPS in the 2-D plane. As a direct consequence, it
is observed that under mild conditions, a nonstationary autocorre-
lation function of a bandpass 2( ) process is nearly stationary in
small time intervals. The influence of this result in real-time detec-
tion of nonstationary stochastic signals is discussed.

Index Terms— 2( ) nonstationary processes, real-time detec-
tion, sampling theorem, time-frequency distribution.

I. INTRODUCTION

T HE SAMPLING theorem has been extensively referred
to in signal and image processing literature, either in the

deterministic case, (one-dimensional (1-D) [2] and two-dimen-
sional (2-D) [3]), as well as in wide sense stationary (WSS) sto-
chastic processes [2]. In [1], it is shown that a nonstationary
process can be recovered from its samples if its 2-D power spec-
trum (2DPS) has compact support in.

This letter reports on the sampling of random pro-
cesses and proves, as a main result, that a 1-D compactness re-
straint on the marginal along time of the time-frequency dis-
tribution (MTTFD) is equivalent to the 2-D restriction on the
2DPS, consisting thus on a sufficient condition to perform, in
the mean-square sense, sampling of nonstationary bandlimited
random processes.

It is also shown that the 1-D compactness restraint on the
MTTFD is equivalent to impose that the time-frequency distri-
bution (TFD) has, for all time values, compact support in the
frequency domain. This result is the nonstationary equivalent of
the definition of a stationary bandlimited process. The TFD can
thus be viewed as an extension of the stationary power spectrum
for nonstationary processes.

Defining the autocorrelation function of a bandpass
process through time and time-lag variables, we conclude that,
under some mild conditions, the variation along time is slower
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than along time-lag. This result confirms that a nonstationary
autocorrelation function is nearly stationary in small time
intervals, and is used in [4] to adapt compact support wavelets
to Gaussian transient processes decomposition in detection
problems. Furthermore, in real-time detection of nonstationary
signals, this result shows that the rate at which the sequential
quadratic tests must be performed may be slower than the
Nyquist rate, thus reducing the computational complexity of
the processor.

II. ONE-DIMENSIONAL (1-D) CONDITION FOR SAMPLING

NONSTATIONARY PROCESSES

Let , , be a zero-mean nonstationary
stochastic process with autocorrelation function
and 2DPS ,
where denotes the Fourier transform (FT). The
autocorrelation function is positive semidefinite by
definition [5], i.e., for any sequence and any
complex constants , one has

(1)

Suppose is continuous. Since ,
condition (1) is equivalent to

(2)
Assuming that , it may be shown that the

autocorrelation function is related to its eigenfunctions
and eigenvalues by a Mercer-like expansion [6]

(3)

In general, the literature presents Mercer’s Theorem in a sta-
tionary signal context, and being defined in finite time in-
tervals. However, as pointed out in [6], when the signals belong
to and , the corresponding time inter-
vals are extensible to the entire real line.

Next, we show that the 2DPS is also a positive
semidefinite function. We can write the Fourier equivalent of (3)

(4)
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Applying the Parseval relation to (2) and using (3) and (4), one
gets

(5)

showing that is positive semidefinite. Thus, the
Schwarz inequality translates to

(6)

We must remark that although in general, is
complex (as is also ), it can be easily verified that

is real and positive [see in the sequel expression
(12), where 0, , due to the positive-semidefiniteness of

]. All the relevant mathematical results are formally
proved elsewhere [6].

The sampling theorem for nonstationary random processes
presented in [1] is established assuming that is a bandpass
process, that is, its 2DPS is characterized by

for and for (7)

Under the above condition, a signal can be recovered, in the
mean square sense, from its samples, i.e.

sinc

(8)

when the sampling interval is such that . The sinc
functions correspond to the decomposition basis, and the sam-
ples are the resulting coefficients. However, condition
(7) is equivalent to

(9)

From (6), if satisfies (9), then (7) is also verified. On
the contrary, (9) results immediately from taking
in (7).

III. T IME-FREQUENCYDISTRIBUTION

Defining the time-frequency distribution (TFD) and the mar-
ginal along time of the TFD (MTTFD), respectively, by

and

(10)

then, using Mercer’s Theorem and the FT definition, it is
straightforward to show that

(11)

and

(12)

Thus, is in fact the MTTFD. Regarding the conditions
for the sampling theorem to hold, it is necessary that, for

(13)

These results follow directly from the application of the
Schwarz inequality. Clearly, the MTTFD corresponds to the
signal’s energy distribution along the frequency axis.

When is a real process, some authors (see [7]) note that,
due to the fact that the TFD can take negative values in some
situations, it lacks physical meaning to represent a time varying
equivalent of the stationary power spectrum. However, the TFD
is closely related to the Wigner transform [8], considered to be a
convenient tool to analyze signals with time-varying frequency
components, like chirps. The TFD negative values appear in sig-
nals with multiple time or frequency maxima, and correspond
to cross-terms with no physical meaning. In the present context,
the Schwarz inequality in (6) shows that if the TFD has com-
pact support in the frequency domain for all time values, then
it is possible to recover with null mean-squared error (MSE)
the original signal from its samples. Neglecting the effect of the
cross-terms, the TFD can thus be considered as a time-varying
equivalent of the stationary power spectrum, also from a sam-
pling theory point of view.

IV. I NFLUENCE OF THESCHWARZ INEQUALITY

IN DETECTION PROBLEMS

In this section, we consider that belongs to a particular
class of bandpass nonstationary signals with most of their en-
ergy lying in the interval ,
i.e., 0 for , . Let
and . Then and , and we
have

and

(14)

Thus, while is a bandpass process with frequency compo-
nents represented by , the behavior of

in order with the time variable, represented in the fre-
quency domain by the function ( ), is lowpass.

This result is of interest in problems related to the real-time
detection of nonstationary bandpass signals. Two aspects are
highlighted here.

First, we consider the decomposition of a nonstationary signal
in a small number of coefficients to reduce the computational
complexity of the evaluation of the likelihood ratio. As shown
in [4], a convenient decomposition corresponds to the wavelet
transform using a mother wavelet of compact support, which
is efficient for real-time applications. The choice of the mother
wavelet is performed in the frequency domain, and a strong sim-
plification in the optimization problem results from assuming
that the frequency contents of the nonstationary process do not
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change in the support of the wavelets. Due to the fact that an au-
tocorrelation function is positive semidefinite and the Schwarz
inequality holds, the result presented in this section shows that
the variation along time of the second order statistics of this class
of nonstationary processes is lowpass and therefore, the assump-
tion of “near-stationarity” in small time intervals is valid.

Another relevant problem in real-time detection consists in
the choice of the rate at which the likelihood test (LT) must be
evaluated. It is assumed, in this case, that the continuous-time
observation process is sampled and a LT is performed from a
window consisting of the last discrete-time samples. As time
goes on and new samples arrive, the window is shifted and the
process is repeated on and on. Clearly, if the LTs are computed at
every sampling interval, the shift error between the observation
process when a signal is present and the model, represented by
the covariance matrix, is small. However, using an LT rate equal
to the sampling rate leads to a huge computational complexity of
the processor. The choice of the LT rate must not be performed
according to the frequency components of the signal (which are
obviously related to the sampling rate), but considering the evo-
lution along time of the statistics of the process. In the limit, for
stationary processes, the statistics are constant and any shift in
the observation window statistically returns the same result. In
the case of second-order nonstationary bandpass processes, the
maximum allowable shift corresponds to the time interval where
the autocorrelation function remains approximately stationary.
The Schwarz inequality in (14) shows that, for many processes,
the LT rate can be significantly slower than the sampling rate.

V. CONCLUSIONS

This letter reports on the sampling of nonstationary
random processes. It is shown herein that only a simple
1-D compactness restraint on the marginal along time of the
time-varying power spectrum is necessary for the sampling of
such processes. Furthermore, it strengthens the known idea that
the time-frequency distribution is an extension of the stationary
power spectrum for nonstationary processes. At last, it is stated
that, for a particular class of bandpass processes, the time
variation of the autocorrelation function is slow comparing to
the time lag’s, and some insight related to real-time detection
of nonstationary processes is presented.
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