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L2(|R) Nonstationary Processes and the Sampling
Theorem

Francisco M. Garcia, Isabel M. G. Lourtie, and Jorge Buescu

Abstract—In [1], a sampling theorem for nonstationary random than along time-lag. This result confirms that a nonstationary
processes is developed, under the condition that the two-dimen- gutocorrelation function is nearly stationary in small time
sional (2-D) power spectrum (2DPS) of the process has compactineryals, and is used in [4] to adapt compact support wavelets
support. In this letter, it is shown that, for L*(R) processes, only . . i, . .
a one-dimensional (1-D) restriction on the marginal along time of to Gaussian transient Pfocess‘?s decompos't'on In de_teCt'on
the time-frequency distribution is necessary to guarantee the com- Problems. Furthermore, in real-time detection of nonstationary
pactness of the 2DPS in the 2-D plane. As a direct consequence, itsignals, this result shows that the rate at which the sequential
is observed that under mild conditions, a nonstationary autocorre- quadratic tests must be performed may be slower than the

lation function of a bandpassL? () process is nearly stationaryin - \yquist rate, thus reducing the computational complexity of
small time intervals. The influence of this result in real-time detec- the processér

tion of nonstationary stochastic signals is discussed.

Index Terms—LZ2(R) nonstationary processes, real-time detec-

tion, sampling theorem, time-frequency distribution. II. ONE-DIMENSIONAL (1-D) CONDITION FOR SAMPLING

NONSTATIONARY PROCESSES

Let s(t), t € R, be a zero-mear.?(R) nonstationary
stochastic process with autocorrelation functiép(t;, ¢2)
HE SAMPLING theorem has been extensively referreghd 2DPSK, (w1, wy) = FT, [FTy, [ks(t1, t2)](—w2)](w1),
to in signal and image processing literature, either in thghere FT[](w) denotes the Fourier transform (FT). The
deterministic case, (one-dimensional (1-D) [2] and two-dime@utocorrelation functiork, (¢, , t2) is positive semidefinite by

. INTRODUCTION

sional (2-D) [3]), as well as in wide sense stationary (WSS) stgefinition [5], i.e., for any sequenca, t», -, £, and any
chastic processes [2]. In [1], it is shown that a nonstationa@pmplex constants:, as, - -, o, one has
process can be recovered from its samples if its 2-D power spec-
trum (2DPS) has compact supportRA. N,

This letter reports on the sampling &#(R) random pro- Z Z o ok, (i, 1) > 0. (1)
cesses and proves, as a main result, that a 1-D compactness re- =1 j=1

straint on the marginal along time of the time-frequency dis- . . .
tribution (MTTFD) is equivalent to the 2-D restriction on the>UPPOSEL, (£, £2) is continuous. Sincé, (1, £2) € L*(R?),
2DPS, consisting thus on a sufficient condition to perform, mondltlon (1) is equivalent to
the mean-square sense, sampling of nonstationary bandlimited ..o
random processes. hz/ y*(t) ks (1, to)y(te) dty dta > 0, Vy(t) € L*(R).

It is also shown that the 1-D compactness restraint on the’ == )
MTTFD is equivalent to im_pose that the time-frequency Qistri— Assuming thatk, (¢, t) € L*(R), it may be shown that the
bution (TFD) ha;, for.all tlme.values, compact suppo.rt in th§utocorrelation function is related to its eigenfunctiansét)
frequenc_y_ domain. Thls resultis the nonstatlonary equivalent d eigenvalues; by a Mercer-like expansion [6]
the definition of a stationary bandlimited process. The TFD can
thus be viewed as an extension of the stationary power spectrum 00
for nonstationary processes. ks(ty, ta) = > Nigi(t) ] (t2). 3)

Defining the autocorrelation function of a bandpds¥R) i=1

process through time and time-lag variables, we conclude that,

under some mild conditions, the variation along time is slowérl] genergl, the literature presenlts MerF:er s.Th.eprer'n ih a sta-
tionary signal context;; and¢s being defined in finite time in-

tervals. However, as pointed out in [6], when the signals belong
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Applying the Parseval relation to (2) and using (3) and (4), oraad
getsvY(w) € L*(R) >
Pw) =Y X|®i(w) = K. (w, w). (12)
=1

(b)) ks (te, to)y(to) dty dt N . .
//_oo Y70k (81, 22)y(ta) dty dz Thus,K(w, w) isin factthe MTTFD. Regarding the conditions

1\2 />~ for the sampling theorem to hold, it is necessary thatufpr> a
== Y*(w)K, Y (w2) dwy dws > 0 .
<27r> //,Oo (1)K (wr, w2)Y () oy dy 2 Pw) =Ky (w, w) =0 & 8,(Q w) =0,

) VQ & S.(t,w)=0, VYt  (13)
showing thatK,(w;, wy) is positive semidefinite. Thus, theThese results follow directly from the application of the
Schwarz inequality translates to Schwarz inequality. Clearly, the MTTFD corresponds to the

signal’s energy distribution along the frequency axis.
| K, (wi, wo)|? < Ky(wy, wi) Ko (ws, wa). (6) Whens(t) is a real process, some authors (see [7]) note that,

) ~due to the fact that the TFD can take negative values in some
We must remark that although in generdl;(wi, w2) IS gjtyations, it lacks physical meaning to represent a time varying
complex (as is alsd:, (1, t2)), it can be easily verified that gqyivalent of the stationary power spectrum. However, the TFD
K (w, w) is real and positive [see in the sequel expressiq@ciosely related to the Wigner transform [8], considered to be a
(12), where); > 0,V4, due to the positive-semidefiniteness ofqnyenient tool to analyze signals with time-varying frequency
ks(t1, t2)]. All the relevant mathematical results are forma”X:omponents, like chirps. The TFD negative values appear in sig-
proved elsewhere [6]. _ nals with multiple time or frequency maxima, and correspond
The sampling theorem for nonstationary random proces§ggross-terms with no physical meaning. In the present context,
presented in [1] is established assuming &} is a bandpass {he Schwarz inequality in (6) shows that if the TFD has com-
process, that is, its 2DPS is characterized by pact support in the frequency domain for all time values, then
it is possible to recover with null mean-squared error (MSE)
the original signal from its samples. Neglecting the effect of the
Under the above condition, a signdt) can be recovered, in the Cross-terms, the TFD can thus be considered as a time-varying
mean square sense, from its samples, i.e. equivalent of the stationary power spectrum, also from a sam-
pling theory point of view.

Ko(wi, w2) =0 for |wi|>a andfor |ws|>a. (7)

2
o>
E {s(t)— Z s(nTs) sino(t/TS—n)} =0, VteR IV. INFLUENCE OF THE SCHWARZ INEQUALITY
n=-—0co IN DETECTION PROBLEMS
®) In this section, we consider thaft) belongs to a particular
class of bandpass nonstationary signals with most of their en-

when the sampling interval is such tHBt < =« /a. The sinc

functions correspond to the decomposition basis, and the sattH

ples s(nT,) are the resulting coefficients. However, conditiofy & J=(f, @) =0forw ¢ IVt € R. Let Aw = Winax — Winin

(7) is equivalent to andL, () = S,(Q, w). ThenVw € I and|?| > Aw, and we

Yy |yll’lg in the intervall = [_wmax; _wmin] U[wmin; wmax]y

have
K, (v,w)=0 for |w|>a. 9) L,(0) = P,(w)
From (6), if K, (w, w) satisfies (9), then (7) is also verified. on2nd
the contrary, (9) results immediately from taking = ws = w |L.(Q)|? < P, <w + Q) P, <w — Q) ~0. (14)
in (7). 2 2

Thus, whiles(¢) is a bandpass process with frequency compo-
[ll. TIME-FREQUENCY DISTRIBUTION nents represented I8 (¢, w), the behavior of;;(t +7/2, t —

Defining the time-frequency distribution (TFD) and the marf/Q) in order with the time variable, represented in the fre-

ginal along time of the TFD (MTTFD), respectively, by quency domaﬁn by_the fungtiobw(Q) (w € 1), is lowpass. .
This result is of interest in problems related to the real-time

S.(t, ) = FT, [ks (t + I) b I)} () d_ete<_:tion of nonstationary bandpass signals. Two aspects are
2 2 highlighted here.
and oo First, we consider the decomposition of a nonstationary signal
P(w) = / S.(t, w)dt (10) in a small number of coefficients to reduce the computational
—co complexity of the evaluation of the likelihood ratio. As shown

it i'gﬂ [4], a convenient decomposition corresponds to the wavelet
transform using a mother wavelet of compact support, which
is efficient for real-time applications. The choice of the mother

gS(Q W) = FT[S.(t, w)|(Q) = K, <w + 87 w — 9) wc_ayele_t is performeq in_the_ frequency domain, and astrong_sim-
2 plification in the optimization problem results from assuming

(11) thatthe frequency contents of the nonstationary process do not

then, using Mercer's Theorem and the FT definition,
straightforward to show that
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change in the support of the wavelets. Due to the fact that an au- V. CONCLUSIONS
tocorrelation function is positive semidefinite and the Schwarz
inequality holds, the result presented in this section shows tip
the variation along time of the second order statistics of this cl

This letter reports on the sampling of nonstationaA(R)
gﬁdom processes. It is shown herein that only a simple
) . arh compactness restraint on the marginal along time of the
of nonstationary processes is lowpass and therefore, the assump- X . .
. " ! S U . . time-varying power spectrum is necessary for the sampling of
tion of “near-stationarity” in small time intervals is valid. ; X

such processes. Furthermore, it strengthens the known idea that

Another rejevant problem in real-time detection consists fe time-frequency distribution is an extension of the stationar
the choice of the rate at which the likelihood test (LT) must b 4 y y

evaluated. It is assumed, in this case, that the continuous—:ir&oé'}[/ e;j‘rpzctr;?t]i::3Irar;oglsats:Oc:}agyaﬁaocaessssesrbﬁgisé’s't Itzeszt?itrii
observation process is sampled and a LT is performed fro ',t' f?h ¢ lation f t'p . pl P i
window consisting of the lasV discrete-time samples. As timeva”‘? lon IO , € al:j ocorrela |(_)nhtun(|: |tor:j|ts s OWI ;:_omp;rltngt_o
goes on and new samples arrive, the window is shifted and H?g 'm? ?g S, and some insignt re ated 0 real-ime detection
process is repeated on and on. Clearly, ifthe LTs are compute§5onstationary processes is presented.
every sampling interval, the shift error between the observation
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