
Multi-View Correspondence by Enforcement

of Rigidity Constraints

R. Oliveira ∗, J. Xavier, J. P. Costeira

Instituto de Sistemas e Robótica - Instituto Superior Técnico.

Av. Rovisco Pais, 1049-001 Lisboa Codex, PORTUGAL

Abstract

Establishing the correct correspondence between features in an image set remains a
challenging problem amongst computer vision researchers. In fact, the combinatorial
nature of feature matching effectively hinders the solution of large scale problems,
which have direct applications in important areas such as 3D reconstruction and
tracking.

The solution is obtained by imposing a geometric constraint - rigidity - that
selects the matching solution resulting in a rank-4 observation matrix. Since this is
a global criterion, issues usually associated to local matching algorithms (such as
the aperture problem) do not present an obstacle in this case. The use of a geometric
constraint of this type assumes that all feature points are visible in every image, so
as to obtain a complete observation matrix.

The rank of the observation matrix is a function of the matching solutions as-
sociated to each image and as such a simultaneous solution for all frames has to
be found. For each frame, correspondence is modeled through a permutation ma-

trix, which also allows for the rejection of wrong candidates. Although each image
is matched individually, an iterative algorithm is used to integrate correspondence
information associated to all remaining images. Each individual matching process
results in a linear problem: the reduced computational complexity allows the solu-
tion of large problems in an acceptable time interval.

Although the algorithm has intrinsically been designed for calibrated systems,
some instances of the uncalibrated case can also be solved provided a convenient
bootstrap is available.

Keywords: multi-view correspondence, feature matching, factorization,
constrained optimization

Preprint submitted to Image Vision and Computing 6 June 2006

1 Introduction

Establishing correspondences between the features of a pair of images has
proven to be an essential task in computer vision. In this article an approach
to this problem is presented that focuses on an important geometrical property
of many scenes - rigidity. Geometrical properties are appealing because they
establish a direct relation to one of the foremost applications of this kind of
method: 3D reconstruction. In fact, many successful reconstruction algorithms
rely on previously computed correspondences to determine the 3D structure
of a scene. Clear examples of this are classical factorization algorithms such
as [24] and more recent methods as [7], [9] and [23].

The difficulty of the correspondence problem is associated to its combinatorial
nature: even when matching a diminute number of features, the number of pos-
sible solutions excludes any approach degenerating in an exhaustive search.
A further step is taken by simultaneously matching features among multi-
ple frames - several issues arise that still raise the complexity of the problem.
Clearly, matching images pairwise in a cascade is not sufficient, since a match-
ing error would propagate to all subsequent images. As a consequence, specific
algorithms have to be devised for the multi-view case. Furthermore, the match-
ing of multiple frames allows the inclusion of several constraints that cannot
be applied in pairwise matching.

Several models have been proposed in order to obtain a solution with an ac-
ceptable computational cost. Most of these solutions involve an optimization
approach and vary essentially in the way the matching problem is mapped in
order to obtain a cost function that is easily optimized. In [11] and [21], the
n-frame correspondence problem is formulated as a maximum-flow problem
and is solved through graph cut algorithms. In both cases, essentially photo-
metric cost functions are mapped to the edge capacities of graphs. A different
approach involving graphs with application to matching has been presented
in [22], where a n-frame matching algorithm is proposed which represents im-
age points (in every frame) and correspondences as, respectively, vertex and
edges in a digraph. No graph cut is performed to obtain the solution, as in
other graph-based algorithms; instead, a greedy algorithm is used to optimize
a gain function (for example, correlation). A similar framework is used in [6],
where each vertex is an image region to be matched while edges represent
correspondences and are weighted according to region similarity.

∗ Corresponding Author
Email addresses: rco@isr.ist.utl.pt (R. Oliveira), jxavier@isr.ist.utl.pt

(J. Xavier), jpc@isr.ist.utl.pt (J. P. Costeira).
URLs: www.isr.ist.utl.pt/~rco (R. Oliveira),

www.isr.ist.utl.pt/~jxavier (J. Xavier), www.isr.ist.utl.pt/~jpc (J. P.
Costeira).

2

A natural way to associate a cost function to the correspondence problem is
to exploit a constant global characteristic of an important class of 3D scenes:
rigidity. The use of rigidity presents the advantage of leading to intrinsically
global algorithms; moreover, it naturally overcomes the aperture problem,
since features are not characterized by their specific local properties (i.e. tex-
ture) but by their position (i.e. coordinates), thereby allowing matching over
gradient-oriented areas, such as straight lines. This geometric constraint can
be translated into a rank constraint [14] on the matrix containing the coordi-
nates of the extracted features (the measurement matrix). Actually, it can be
shown that when features in different viewpoints are correctly aligned (and
only then) this matrix is highly rank-deficient - [13], [17].

Rank-deficiency has also been exploited in [16] (to find missing data in a
measurement matrix) and in [8] (to determine optical flow), although in the
latter work the rank constraint applies on flow vectors rather than on image
coordinates.

Earlier approaches exploiting rigidity have been made: in [15] an algorithm is
devised that checks if corresponding points from two images could be the pro-
jection of a rigid scene (no correspondence calculation is made), while in [10] it
is used for object detection. In [13] the authors use a cost function based on the
determinant of the measurement matrix to match features in a pair of images.
This approach, although theoretically sound, has two main shortcomings: it
is unable to handle the multi-image case and the cost function is intrinsically
non-linear, presenting a high computational burden. The use of a non-linear
cost function also presents the additional drawback of introducing local min-
ima in the optimization process, thereby allowing non-optimal solutions to
be retrieved. In [17] and [18] the authors presented new algorithms based on
an alternative cost function, which will detect rank-deficiency based on the
sum of the non-dominant singular values of the measurement matrix. This
cost function allows the rigidity constraint to be applied to a multi-frame sys-
tem. To obtain a low computational complexity a rank constraint is imposed
iteratively by matching each image individually with the remaining frames.
We formalize our criterion in such a way as to allow a solution based on the
execution of a set of linear programs. This guarantees that the algorithm is
computationally feasible even for large-scale problems. This aspect is partic-
ularly important since it allows the use of the method for real life problems,
which are usually high-dimensional. It should be noted that although the cost
function is globally nonlinear, each iteration of the algorithm (tackling the
problem associated to a single image) solves a linear problem thus achiev-
ing a global solution in each iteration.This advantage also reflects one of the
drawbacks - the iterative nature of the algorithm - that does not guarantee
convergence.

3

2 Problem Formulation

In this text a framework is presented that is based on the approach described
in [17]. The n-frame correspondence problem is herein formulated and solved
as a global optimization procedure in the factorization context. In particular,
a rank constraint is imposed on the matrix containing the feature coordinates
- matrices of this type have been shown to be rank-deficient, provided the
camera model is affine. In fact, the rank of these matrices is at most four, if
degenerate motion in the scene is disregarded. Under the factorization frame-
work, obtaining a rank-4 observation matrix can be interpreted as a regression
of the matrix data onto the 4D hyperplane so that the Frobenius norm of the
error is minimized. This type of subspace constraint on image coordinates
has been established explicitly for the paraperspective camera in [19] and the
orthographic camera in [24] - however, this constraint holds for any affine
camera. Note that not all matching candidates can satisfy this constraint -
some do not have a valid match. Under this approach, these candidates will
be named ’outliers’ since no solution would place them in the proximity of the
hyperplane.

It should be emphasized that the alignment of each frame is by itself a combi-
natorial problem. The multiple frame correspondence problem (i.e. the align-
ment of all images in W) is consequently an extremely complex task. Pairwise
correspondence between feature points is modeled using a permutation matrix
that determines, for each feature, the corresponding match in the other image
while rejecting any extra points it may have (Fig. 1). Note that unicity, one of
the most important assumptions of correspondence, is naturally imposed by
this formulation.

Fig. 1. The Matching Problem: rejected points are presented in red, feature points
with valid matches respectively in green, yellow, blue and pink. For every feature, all
points in the images on the right are potential matches. A correct correspondence
has to be found while rejecting outliers.

As will be detailed in subsequent sections, the calculation of the correct match
can be formulated as the search for the feature alignment that results in a
rank-deficient measurement matrix. This is (indirectly) obtained through the

4

minimization of the non-dominant singular values of the measurement matrix.
In practice, this minimization is performed by using an iterative optimization
procedure where each frame is matched individually, in a technique similar to
cyclic coordinate descent. Each iteration results in a linear cost function, thus
effectively solving a non-linear problem as a sequence of linear programs.

2.1 Feature representation

Observations on each frame are represented as a set of image coordinates con-
taining the orthogonal projection of 3D feature points in the scene. It should
be stressed that in this text the expression feature point is applicable to a
generic image point and should thus not be limited to corner points. As-
suming pf visible feature points in frame f , we represent the u and v image
coordinates in the uf and vf vectors. We assume that each set of pf feature
points is corrupted by a certain number of outliers, except for w1 which con-
tains only the points that are to be matched (i. e. inliers). The observation
matrix corresponding to frame f is thus represented by

wf =







uf
1 · · · uf

pf

vf
1 · · · vf

pf






(1)

Observations corresponding to several frames can be vertically stacked in or-
der to create a measurement matrix Wf that incorporates the projections of
feature points up to scene f . However, the outliers in each frame have to be
rejected beforehand; moreover, the remaining points have to be aligned so
that corresponding features share the same column in Wf , as in Tomasi and
Kanade [24]. Matrix Pk simultaneously aligns the feature points and rejects
the outliers in the corresponding matrix wk. Wf can consequently be written

5

as

Wf =





















w1

w2 P2

...
...

wf Pf





















=































































u1
1 · · · u1

p0

v1
1 · · · v1

p0






I[p0×p0]







u2
1 · · · u2

p2

v2
1 · · · v2

p2






P2[p2×p0]

...
...







uf
1 · · · uf

pf

vf
1 · · · vf

pf





 Pf [pf×p0]

























































(2)

In (2), each Pk, k = 2, ..., f , is a rowwise partial permutation matrix, that is
defined by the conditions in (3). In the remainder of the text, for the sake
of simplicity, these matrices will be referred to simply as partial permutation
matrices.

Pkij
∈ {0, 1},∀i = 1...pk,∀j = 1...p0

∑

i
Pkij

= 1,∀j = 1...p0

∑

j
Pkij

∈ {0, 1},∀i = 1...pk

(3)

In each of the frames, the optimal Pk allows a correct alignment of wk to be
obtained, as depicted in Figure 2.









=⇔



























=

fff

fff

f

ffff

ffff

f

vvv

uuu
Pw

vvvv

uuuu
Pw

341

341

4321

4321

010

100

000

001

Fig. 2. Rowwise Partial Permutation Matrix

In (2) p0 identifies the number of features that will be matched, i. e. not
discarded. p0 is equivalent to the number of features in w1, which contains
no outliers. Note that it is assumed that p0 ≤ pk,∀k ≥ 2 - for this reason,

6

Pk is usually a rectangular matrix, since a null row is added for each outlier.
Furthermore, it is assumed that these p0 features are visible in every frame.

2.2 Enforcing rank constraints

It has been shown in [24] that when considering rotation and translation the
stacked measurement matrix Wf can be modeled as the product of two rank-4
matrices M and Sh:

Wf = MSh =
[

R[2f×3]|T[2f×1]

]

[

S[3×p]

1[1×p]

]

(4)

In the previous expression, M contains the information necessary to recon-
struct the camera position T and orientation R in each frame, while Sh repre-
sents the 3D coordinates S of the feature points in homogeneous coordinates.
From (4) it can easily be verified that Wf is at most rank-4 (both the rows
and columns of Wf lie on 4D linear subspaces), as it is the product of the
rank-4 matrices M and Sh. This result is known as the rank theorem. Similar
results can be derived for other affine camera models - see for example [19].

Our objective is thus to find the set of permutation matrices P2, ..., Pf such
that Wf is a rank-4 matrix. Note that in the presence of bounded noise the
rank-4 condition may be unattainable - in this case, we require that Wf be
approximately rank-4, as shown in [13]. By searching for an approximately
rank-4 matrix we mean that the singular values associated to the null space
of Wf should be as small as possible; however, for simplicity, in the remainder
of this text we will simply refer to this constraint as the rank-4 or the rank
constraint. In order to deal with situations associated to degenerate feature
point distributions we assume that the total rank of Wf is known.

Work on factorization algorithms such as the ones referred previously is based
on the assumption that a matching solution between the image points has
already been found, so that image coordinates corresponding to the same
feature point occupy the same column. In the presence of incorrect matches,
the resulting Wf is (generally) of higher rank.

When considering f frames, the problem is thus to find the set of partial per-
mutation matrices P2, ..., Pf that chooses and orders features in w2, ..., wf so
as to generate a rank-4 Wf . Note that the afore-mentioned rank constraint,
as it acts on Wf as a whole, requires that all previously matched permuta-
tion matrices be recalculated each time a new frame is processed. To avoid the
complexity of solving simultaneously for all Pk, we choose to solve the problem
for each partial permutation matrix in sequence, while keeping the remaining

7

matrices constant. In practice, we use a cyclic coordinate descent (CCD) al-
gorithm to solve an optimization problem in P2 × P3 × ... × Pf , where Pk

represents the space of all partial permutation matrices of dimension pk × p0.
This process is depicted in Figure 3.

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

®

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

®

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ff

ff

ff

ff

ff

ff

Pw

Pw

Pw

w

Pw

Pw

Pw

w

Pw

Pw

Pw

w

11

22

1

11

22

1

11

22

1

MMMMMM

No

EXIT

Yes

?,)()1(k

i

k

i PPi =" +

Fig. 3. Iterative enforcement of rank. Red squares identify the permutation matrix
which is being aligned at each step.

The algorithm will continue to cycle over all partial permutation matrices until
convergence is achieved. Each step of the CCD algorithm corresponds thus to
the solution of a matching problem where the features of a certain image
are matched against the current correspondence estimates of the remaining
images. In other words, the two rows containing the u and v coordinates
of each image are aligned so as to be contained in the (approximate) 4D
subspace defined by the rows of the remaining images. Note that although each
frame is matched individually, the outcome of this single matching procedure
will influence all remaining frames whose correspondence will be recalculated
afterward, already taking into account the new result.

Since the original (non iterative) cost function is, in fact, not convex, it is
theoretically possible that the CCD algorithm can get stuck in local minima,
thereby returning a suboptimal solution. In practice, however, it was observed
that in most situations the algorithm will deliver a very close approximation
to the correct result.

2.3 Derivation of the cost function

At the kth step of the cyclic coordinate descent algorithm, we solve for Pf−k+1

individually. In this section we develop a cost function that solves the corre-

8

spondence problem for the f − k + 1th frame while assuming all other frames
are correctly matched.

We consider the SVD decomposition of Wf

Wf =





















w1

w2 P2

...
...

wf Pf





















= QΣV T (5)

and define Z as

Z = WfW
T
f =





















w1w
T
1 w1P

T
2 wT

2 · · · w1P
T
f wT

f

w2P2w
T
1 w2P2P

T
2 wT

2 · · · w2P2P
T
f wT

f

...
...

...

wfPfw
T
1 wfPfP

T
2 wT

2 · · · wfPfP
T
f wT

f





















(6)

As can be seen in (6), Z is a function of all permutation matrices. However, all
of them will be considered as constant except for matrix Pf−k+1 when solving
the problem associated to this iteration. The aim of our cost function is to
find the matching solution for frame f − k + 1 that approximates a rank-4
Wf at the kth step of the cyclic coordinate descent algorithm. The approach
to finding the matching solution that turns Wf into a rank-4 matrix is to
note that when a matrix is rank-deficient, a precise number of its singular
values (and eigenvalues!) are zero - corresponding to the difference between
the number of rows/columns (whichever is smaller) and the actual rank of
the matrix. It can be shown that Z is also rank-deficient and as such can be
equivalently used to solve for the desired permutation matrix instead of Wf .

The minimization of the sum of eigenvalues (or, equivalently, the trace), as
defined in (7), of a positive semidefinite matrix is a well known method to
minimize rank (see, for example [5] for a brief description). For a positive
semidefinite matrix such as Z, which possesses nonnegative eigenvalues, this
is equivalent to the minimization of the l1-norm of the vector of eigenvalues
Λ(Z).

trace(Z) =
2f+2
∑

i=1
λi(Z)

‖Λ(Z)‖1 =
2f+2
∑

i=1
|λi(Z)|

(7)

9

This minimization tends to create a sparse eigenvalue vector (i.e. with many
zero entries), thus effectively minimizing rank. This method is advantageous
since it results in a convex optimization problem, as opposed to the original
(non-convex) rank minimization problem. In this specific case a rank-4 matrix
is desired. Consequently, a slightly different approach will be used: the four
largest eigenvalues of Z will not be considered, i.e. only the eigenvalues λi, i >
4 of Z will be minimized. This is effectively equivalent to minimizing the
residue in terms of the rank-4 constraint.

The eigenvalues of Z can be obtained, by definition, from the following ex-
pression, where qi represents the ith column of Q, i. e. the ith eigenvector of
WfW

T
f :

λi = qT
i Z(P2, ..., Pf−k+1, ..., Pf)qi (8)

In (8), each Pn ∈ Pn. As before, Pn represents the space of all partial permu-
tation matrices of dimension pn × p0.

When processing frame f , this implies the minimization of the sum of the
2f − 2 smallest eigenvalues, since Wf has 2f + 2 rows when the f th frame is
processed (the practical need for two additional rows in Wf will be made clear
in the section dedicated to initialization).

It should be noted when minimizing the eigenvalues that the value of each λi

depends itself on the structure of Pf−k+1. Our matching problem must thus
be formalized as the search for the optimal partial permutation matrix P ∗

f−k+1

such that:

P ∗

f−k+1 = arg min
Pf−k+1

(

∑

i>4
λi(P̂2, ..., Pf−k+1, ..., P̂f)

)

=

arg min
Pf−k+1

(

∑

i>4
qT
i Z(P̂2, ..., Pf−k+1, ..., P̂f)qi

) (9)

The partial permutation matrices that are not being optimized are represented
with a ’hat’, to emphasize that their values correspond to estimates that are
being held constant at the current iteration. Note that there is an interdepen-
dency between the values of the permutation matrices and the eigenvectors of
Z, qi, i = 5, ..., 2f + 2. When working with a calibrated system, these eigen-
vectors are known, since they are strictly dependent on camera position and
not on the structure of the scene. In fact, in can be shown that each of the
non-dominant eigenvectors is a base vector for the null space of the column
space of Wf . It is known from factorization literature that the column space
of an observation matrix defines camera movement (see (4) - consequently, if
the column space of Wf is known, so are the non-dominant eigenvectors of Z.

10

In the case of uncalibrated systems, the eigenvectors are unknown unless the
permutation matrices are already available, thus effectively adding a new set
of unknowns. This case consequently requires a different approach in order to
allow the solution of the matching problem. The discussion of this problem
will be deferred to later sections of this text; for now, these eigenvectors will
be assumed as known, so that attention can be concentrated on obtaining the
optimal permutation matrix for step k of the CCD algorithm.

3 Methodology

3.1 Constructing a linear cost function

In the following paragraphs an optimization procedure for the cost function
derived in the previous section is presented; in particular, it is shown that
the cost function can be written as a linear problem and hence efficiently
minimized.

When optimizing in Pn only, each term (corresponding to a single eigenvalue)
in the sum of the cost function (9) is represented as a set of terms dependent
of Pn. By revisiting the structure of Z in (6), terms involving Pn are either of
the form wiPiP

T
n wT

n (and thus linear when considering Pi constant) or of the
form wnPnP T

n wT
n , which is apparently non-linear in the elements of Pn, the

optimization variables for the present iteration. However, since Pn is a partial
permutation matrix, this last term can be written as:

PnP T
n =























p0
∑

i=1
Pn

2
1i 0 · · · 0

0
.

...
...

. 0

0 · · · 0
p0
∑

i=1
Pn

2
pni























(10)

Note that the diagonal of the matrix in (10) contains exactly p0 unit entries,
which are also the only nonzero entries in the diagonal. Taking into account
that the elements of Pn are either 0 or 1, the jth term of the diagonal of
the matrix in (10) can be simplified to

∑p0
i=1 Pnji. In practice, this leads to a

minimization procedure which is linear in Pn. By arranging the elements of
Pn conveniently, a linear formulation for the cost function can thus be found.

Given a matrix M , the vec operator stacks its columns in order to form a
vector. Rearranging Pf−k+1 as x = vec (Pf−k+1), a modified cost function

11

can be written, whose optimization yields the solution to the linear problem
in (11). Note that the optimization is constrained in order to force x to be
the result of the vectorization of a valid permutation matrix - the relevant
constraints are detailed in the Appendix.

x∗ = arg min
x

c.x

s.t.

x = vec (Pf−k+1) , Pf−k+1 ∈ Pf−k+1

(11)

The coefficient vector c of the linear program can be determined by developing

∑

i>4

qT
i Z(P̂2, ..., Pf−k+1, ..., P̂f)qi (12)

in order to the elements of Pf−k+1. Under these conditions, c is given by (13),
assuming W f−k+1

c as the submatrix of Wf not containing wf−k+1 and qa
i , q

b
i as

the parts of qi associated, respectively, to W f−k+1
c and wf−k+1:

c =
2f−2
∑

i=5
ci,

ci = 2
[(

qa
i

T W f−k+1
c

)

⊗
(

qb
i

T
wf−k+1

)]

+

+1[1×p0] ⊗
[

(

wf−k+1
T qb

i

)T
•
(

wf−k+1
T qb

i

)T
]

(13)

In (13), ⊗ and • represent the Kronecker and Schur products, respectively.
The details of the calculation of ci are given in the Appendix.

The formulation presented in (11) still remains an integer minimization prob-
lem and as such has no efficient solution. However, it is known that the mini-
mum of a linear function over a compact convex set C is located at an extreme
point of C. Consequently, the constraint set of a minimization problem with
linear objective function can be relaxed into its convex-hull, provided that all
the points in the original set are extreme points of the new set. In the present
case, it can be shown that the convex-hull of the set of partial permutation
matrices Pk is the set of rowwise substochastic matrices Sk. This set can be
defined by the second and third equations in (3) and by the condition

Pkij ≥ 0,∀i = 1...pk,∀j = 1...p0 (14)

The resulting (continuous) problem is thus equivalent to the original, but for
this class of problems there exist several efficient algorithms that can provide

12

P
k

P
k

S
k

Exhaustive

Search

C
o
n
c
a
v
e

O
b
je
c
ti
v
e

G
u
id
e
d
 S
e
a
rc
h

Continuous

Domain

Fig. 4. Relaxation Process

an adequate solution, such as the well known simplex algorithm. The process
is depicted in Figure 4.

This method of solving the integer optimization problem has originally been
proposed in [13].

It should be noted that in terms of computational complexity the use of the
simplex algorithm allows each iteration to be solved in polynomial time (for
practical purposes it can be considered that the simplex algorithm terminates
in polynomial time - worst case exponential time will not be considered here
as its occurrence is extremely uncommon). The obvious consequence of this is
that the iterative process has polynomial complexity.

3.2 Dealing with unknown eigenvectors

As seen in an earlier section, the use of this algorithm with an uncalibrated
system leads to a situation where two sets of unknowns (the permutation ma-
trices and the eigenvectors) have to be simultaneously determined to solve
the problem. Note that this is a very specific situation, since usually even
for systems with unknown camera positions a few correct matches from very
prominent features can be extracted from the images and used to (approx-
imately) calculate the column space of Wf , in what is usually called poor
calibration.

The uncalibrated problem can be tackled only under a feature tracking frame-
work. This assumes a short baseline and evenly spaced images, both in the
temporal and spatial sense. Under this framework, an iterative method is pro-

13

posed, which at step k of the cyclic coordinate descent alternates the optimiza-
tion on Pf−k+1 and the calculation of the set {q5, ..., q2f+2} of non-dominant
eigenvectors of Z. At each iteration of the algorithm a new Pf−k+1 is calculated
by minimizing the cost function using the current estimate of the eigenvectors.
New eigenvectors are subsequently extracted from Z corrected according to
the newly found Pf−k+1. The algorithm will continue to iterate alternatively
in Pf−k+1 and the eigenvectors until convergence is achieved.

A sufficiently accurate initial estimate is required for {q5, ..., q2f+2} in order
to start the iterative process. This estimate will usually be available directly
from the previous step of the CCD algorithm, except when a new frame is first
matched (i.e. when the frame has just been inserted in the algorithm). In this
case, benefiting from the small baseline, an estimate for the correct alignment
of the new features is obtained, by assuming a smooth movement in the scene.
From this estimate initialization values for the eigenvectors are calculated, so
that the CCD algorithm for the new frame can be bootstrapped.

An alternative approach to the technique described in the previous paragraphs
would be to use a trial-and-error method, initializing each frame multiple
times until a reasonable estimate is obtained. Note that even using a diminute
number of features this can be a computationally intensive technique.

It should be pointed out that using either method an inaccurate estimate of the
eigenvectors will lead to a situation where the algorithm might not converge
to the correct solution. It is thus highly desirable that a reasonable estimate
is obtained - this is a limitation of the present implementation of the method
under an uncalibrated setup.

3.3 Initialization of the Algorithm

When processing the first frame of an image set, Wf contains only w1 and
w2, having thus only 4 rows. Under these circumstances, Wf would be rank-4
whatever the value of P2. To be able to identify rank-deficiency, at least one
further row should be present. This problem can be tackled using two different
approaches: A correspondence algorithm such as [13] can be used to provide
an alignment between two frames - in fact, this would correspond to having
a w1 with four instead of two rows (hence the dimension of Wf being 2f + 2
instead of 2f). Wf would then have six rows (four from w1 and two from w2),
thus being rank-4 only for the correct P2. An alternative approach would be

14

to add a row of ones to w1, as shown in (15).

w1 =















1 · · · 1

u1
1 · · · u1

p0

v1
1 · · · v1

p0















(15)

Note that the addition of a row of ones to w1 does not alter the row space of
Wf . To this end, observe that Sh in (4) is in homogeneous coordinates thus
including a row of ones. Since the rows of Sh define the row space of Wf a
row of ones is, by definition, part of the row space of Wf . This approach,
unlike the former, does not require the previous match of two of the frames
in the sequence; however, since only two frames are in fact present when w2

is matched, points on the epipolar line have the same matching cost, thus
becoming indistinguishable to the algorithm. As a consequence, severe mis-
matches may happen; to avoid this, a simple photometric term may be added
that can disambiguate most situations.

4 Summary of the algorithm

Based on the previous chapters, we present in this section an outline of the
steps necessary to obtain feature correspondences in a set of images. The
second part of the algorithm is only applicable if the eigenvectors are unknown.

4.1 Iterative rank enforcement

(1) Extract the set of observations wf corresponding to a new frame. This is
the current frame (k = 1).

(2) Given w1, w2, ..., wf , run 4.2 (for uncalibrated systems) or 4.3 (for cali-
brated systems) in order to obtain the partial permutation matrix Pf−k+1

corresponding to the current frame.
(3) Correct the eigenvectors and repeat (2) with k = k + 1, until k = f − 1.
(4) If any change in the set of permutation matrices is recorded go to (2),

and repeat the algorithm with k reset to 1.

4.2 Uncalibrated - simultaneous determination of match and eigenvectors

(1) If wf−k+1 has been previously matched in a previous CCD step, go to (3).
If not, given the provisional match between wf−k−1 and wf−k extrapolate,

15

assuming a smooth movement, an estimate for the position of the features
in wf−k+1.

(2) Using the estimate in (1), determine an initial value for the non-dominant
eigenvectors of Z.

(3) With the initial value of the eigenvectors, solve the integer optimization
problem for Pf−k+1 by running 4.3.

(4) If Pf−k+1 has converged, stop.
(5) Given Pf−k+1, update the eigenvectors of Z(Pf−k+1).
(6) Return to 1.

4.3 Determination of match

(1) Given w1, ..., wf−k+1, ..., wf and the eigenvectors, build a linear cost func-
tion for Pf−k+1 as detailed in 2.3 and 3.1.

(2) Solve the integer optimization problem for Pf−k+1 by using relaxation as
referred in 3.1.

5 Experiments

We describe in this section a set of experiments in order to validate the al-
gorithm that has been presented. Experiments with synthetic data provide
a proof-of-concept solution and an analysis of the degradation of matching
precision with increasing noise. Further experiments with datasets consisting
of real images demonstrate the algorithms’ ability to function under less than
optimal conditions (i.e., with noise and deviations to the theoretical model).
Aspects such as robustness to outliers and applications to feature tracking and
reconstruction are also discussed in the following sections.

5.1 Sphere Dataset: proof of concept

The synthetic ’Sphere’ dataset consists of 100 orthographic images of a spher-
ical structure represented by eight meridians. The meridians are defined by
a total of 1216 equally distributed points, which will be used as matching
candidates. Of these, 16 points (two on each meridian) have been singled out
as the features to match. Unlike real images, coordinates are in this case real
numbers and thus unrelated to pixels; in fact, matching candidates are very
densely packed and several of them are present within one unit interval (note
that matching candidates are at most 0.3 units apart and most of them are
significantly closer). Due to its synthetic nature, a precise ground-truth is
available.

16

Fig. 5. Superimposed first and last images of the ’Sphere’ dataset, with feature
trajectories

In the first experiment, features in each of the 100 frames of the dataset are
matched in an uncalibrated system. Correspondences for the first two images
have in this case been fixed beforehand (see the section related to initializa-
tion). No noise has been introduced in this experiment, since its sole objective
is to demonstrate the ability of the algorithm to tackle an uncalibrated set of
images.

Features have been marked in blue and their corresponding trajectories in
red. Results can be seen in Fig. 5.1. As could be expected under theoretically
ideal conditions, zero error was achieved for all correspondences in every frame.
Furthermore, the algorithm also rejects outliers that are densely packed beside
each correct feature.

Although the method uses a standard non-commercial algorithm to solve the
linear program, the solution for each iteration is obtained in 0.75 seconds for
an LP with 19456 variables. Construction of the linear program takes only
a few hundreds of seconds. Logically the use of commercial algorithms could
further speed up the process.

5.2 Sphere dataset: performance degradation with noise

In this section the previous experiment is repeated with increasing levels of
noise corrupting the observations (i.e. each of the wf). Recall that the sphere
data set is synthetic, that is, the image coordinates in the dataset are uncor-
related to a physical measure as pixels. Results must thus be interpreted in
view of object size, a sphere of diameter 80, and candidate spacing (at most
0.3). The noise added to each of the observations is gaussian with standard
deviation between 0.05 and 0.1. Note that an error level of this magnitude,
for candidates that are this close apart is significant. Also, noise effects are

17

10
20

30
40

50

0.1

0.2

0.3

0.4

0.5
0

5

10

15

20

frame numbernoise level − gaussian std.deviation

R
M

S
 E

rr
or

(a) Matching error (RMS) - uncali-
brated setup.

10
20

30
40

50

0.1

0.2

0.3

0.4

0.5
0

0.2

0.4

0.6

0.8

1

frame numbergaussian noise level − std. deviation

R
M

S
 e

rr
or

(b) Matching error (RMS) - calibrated
setup.

10
20

30
40

50

0.1

0.2

0.3

0.4

0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

frame numbermean residual singular value

no
is

e
le

ve
l −

 g
au

ss
ia

n
st

d
de

vi
at

io
n

(c) mean value of residual singular val-
ues - uncalibrated setup.

10

20

30

40

50

0.1

0.2

0.3

0.4

0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

frame number

noise level − gaussian std deviation

m
ea

n
re

si
du

al
 s

in
gu

la
r

va
lu

e

(d) mean value of residual singular val-
ues - calibrated setup.

Fig. 6. Performance degradation with increasing noise - ’Sphere’ dataset.

cumulative as the algorithm advances through the sequence, because noisy
measurements are integrated into Wf . Also note the in the uncalibrated case
wrong matches will have a repercussion on subsequent initialization vectors.
To isolate this factor, the experiment has additionally been run under cali-
brated conditions, i.e. with known initialization vectors.

In the uncalibrated case, it can be seen that for a variance smaller than 0.1
the sequence is processed with virtually null error and no error integration is
noticeable. For larger noise levels error integration is significant in the second
half of the sequence and a degradation of performance occurs rather quickly.
This has to do with features ’jumping’ between intersecting meridians. If this
experiment were scaled to a 512x512 image, this would amount to a 2 pixel
error standard deviation at the breaking point (i.e. where the algorithm no
longer provides a satisfactory match - for a gaussian noise level of 0.2 standard
deviation).

The calibrated experiment, on the other hand, shows no error integration,
as well as significantly higher overall performance - note that the scale in the
corresponding RMS error graphic is 1/20th of the one in the uncalibrated case.
It can thus be concluded that the lower results of the uncalibrated experiment

18

’Hotel’

min max

0,10 pxl 1,51 pxl

Table 1
Disparities between corresponding pixels for the ’Hotel’ sequence.

are related to a sensitivity of the initialization vectors to higher levels of noise.
Apart from this aspect, the algorithm has demonstrated to be reasonably
robust to noise.

5.3 Hotel dataset: feature tracking in an uncalibrated image sequence

In this experiment the algorithm’s capacity under a feature matching context
is tested. An image sequence originally obtained from CMU’s Image database
(http://vasc.ri.cmu.edu/idb/) is used. Its 30 images of a toy house can be
considered orthographic for all practical purposes. Matching candidates are
extracted as the points composing the contours of each image(typically 11000
points per image). The 37 features to be tracked have all been placed on
straight lines and would thus suffer from the aperture problem if matched with
a local method. Initialization is provided by the user: two initial matches are
selected manually for bootstrap. Results are presented in Fig. 7. Additionally,
a reconstruction has been made using Tomasi and Kanade’s algorithm that
shows the 3D shape of the house when viewed from above (Fig. 5.3). Although
ground-truth is not available for this sequence it can be verified by visual
inspection that the returned correspondences have a high degree of precision.

The matching solution to a frame will typically result in a linear program
with hundreds of thousands of variables (in this case more than 400000). The
number of variables is the result of the product of the number of features in
the matched frames (37) with the number of candidates in the frame that is
to be matched (around 11000). A linear program of this type takes less than a
second to build and about 4 min. to solve (i. e., 4 min. per iteration). In order
to speed up the process, a priori knowledge is used, by assuming that there
is a limited disparity between consecutive images. Under this assumption,
matching solutions that would result in a very large movement of the features
can be ruled out - in practice, this is equivalent to forcing some of the entries
of the partial permutation matrix to 0. In this way, an important reduction
of dimensionality is achieved. It has been verified that this reduction does not
affect the final result, but only the time required to obtain it.

In this experiment, such a procedure was applied by assuming that consecutive
frames have a limited disparity and thus limiting the number of candidates
for a given feature. Using this method each linear problem will take no more

19

(a) First image of the sequence with
singled out features (contours only).

(b) Last image of the sequence with
singled out features (contours only).

(c) Last image of the sequence
(grayscale).

(d) Feature trajectories.

Fig. 7. Results for the ’Hotel’ dataset.

−200

−100

0

100

200

−200 −150 −100 −50 0 50 100 150

−200

−150

−100

−50

0

50

100

Fig. 8. 3D reconstruction of the ’Hotel’ dataset, viewed from above.

20

than a few seconds to solve, depending on the number of candidates allowed.

It can easily be seen that the number of rows of Wf grows linearly with the
number of frames. Although the number of variables in each linear program
does not suffer an increase the minimum number of cyclic coordinate descent
iterations will increase significantly, thereby significantly slowing down the al-
gorithm. In practice, this problem can be avoided by assuming that after a
certain number of frames have been processed the first n matching solutions
can be considered correct and will thus not be iterated upon. This approxi-
mation has led to a significant decrease in processing time, while not affecting
the final result’s precision.

5.4 Hotel dataset: resistance to outliers

In this experiment a single frame of the hotel dataset is matched in a highly
cluttered environment. To the correct matches a massive number of uniformly
distributed outliers is added to the image. Nevertheless, the method proposed
in this paper is able to single out the features with a very low degree of error.
In fact, when comparing with the matching solution provided by [13], almost
90% of the features present less than five pixels of error, as can be seen in the
histogram of Fig. 5.4.

Solution to this problem (with 410000 variables) was obtained in a matter of
4min. Note that unlike in the previous experiment, no a priori knowledge was
used here.

5.5 Grid dataset: calibrated sequence

The ’Grid’ dataset comprises a set of images of a LEGO grid with two perpen-
dicular walls. As in the hotel sequence, the matching candidates are the points
defining the contour of the image. Among these, 99 features are selected, all
of them on straight edges. Note that this image is not perfectly orthographic
and as such presents a further challenge to the algorithm. Unlike previous
experiences, this dataset has been calibrated by solving correspondence for
a few corners with an implementation of the Lucas-Kanade algorithm (note
that this algorithm has to rely on corners and as such would not be able to
match features such as the ones that were chosen). Images of the dataset with
tracked features superimposed can be seen in Fig. 11.

The solution of each linear problem takes 9min. and 50 sec. Using a priori
knowledge about the maximum disparity, as in the first ’Hotel’ experiment,
processing time for each LP was reduced to a few seconds.

21

(a) Matching candidates. (b) Matching Candidates - points be-
longing to the house have been colored
in red.

(c) Matching candidates with
correct matches (in green) - house
(in red) is superimposed for
reference only.

(d) Matching solution (in red)
and correct matches (blue circles).

Fig. 9. Results for the outlier robustness test.

6 Future work

In this version of the algorithm, adequate initialization for the present frame is
achieved using the result of the previous matching process and extrapolating
the new initialization vector by assuming a smooth movement. Better results
can be achieved by using more sophisticated ways to extrapolate future move-
ment and thus calculate initialization vectors that are valid over a larger set
of disparities.

The fact that the initial set of features has to be visible over the whole sequence
is an issue that imposes restrictions on the choice of image points to match.
Handling occlusions is at the moment still an open issue.

The algorithm can be made to run radically faster by subdividing the simplex
problems so that only a subset of the image points are matched at a time.
As the simplex algorithm is typically solved in polynomial time, processing n

22

0 5 10 15
0

10

20

30

40

50

60

70

80

matching error (pixels)

nu
m

be
r

of
 m

at
ch

es

Fig. 10. Histogram of the number of matching errors.

(a) First image of the sequence with
singled out features (contours only).

(b) Last image of the sequence with
singled out features (contours only).

(c) Last image of the sequence
(grayscale).

(d) Feature trajectories.

Fig. 11. Results for the ’Grid’ dataset.

d-dimensional problems is usually much faster than processing a single (n×d)-
dimensional problem.

Our algorithm is presently constrained to use images obtained from affine cam-
eras. The extension to projective cameras might be obtained using Heydens

23

work in [7]. However, an analysis on the convergence properties of the altered
method will have to be performed in order to ensure that performance is not
affected.

7 Discussion and conclusions

We have presented a method that is capable of matching image points ex-
tracted from feature points presenting inadequate texture to be matched by
photometric methods. This algorithm is able to calculate the match of sev-
eral images, thus optimizing the result in the whole image sequence. Iterative
enforcement of rank was shown to be an effective way to enforce a geometric
constraint on the scene while maintaining a low computational cost.

Our algorithm is able to cope with a high percentage of outliers without any
significant decrease in performance. We have run experiments with a high
number of points, demonstrating that our method is computationally feasi-
ble. Reconstruction performance visually demonstrates the capabilities of this
method.

A Calculation of c

This section of the appendix details the calculation of the coefficient vector c
of the linear program, resulting from the matching problem at step k of the
CCD algorithm.

Calculations can simplified, without loss of generality, by reordering Wf so
that the frame that is to be aligned - wf−k+1 - occupies the last pair of rows.
The submatrix of the remaining 2f rows W f−k+1

c will be considered constant
- its elements can thus be disregarded, since they do not depend on Pf−k+1.
This allows a considerable simplification of the calculations and, since only
constant terms are eliminated, does not affect the value of P ∗

f−k+1. In the
following expressions, the f − k +1 index will for simplicity be dropped, since
it is implicit at all moments that calculations refer to the kth step of the CCD
algorithm.

Z0 =







0[2f×2f] 1[2f×2]

1[2×2f] 1[2×2]





 •







WcW
T
c WcP

T wT

wPW T
c wPP T wT





 (A.1)

The ith term of the cost function in (9) (which corresponds to the minimization

24

of the ith eigenvalue of Z) can then be written as:

qT
i Z0qi =















q1
i

...

q2f+2
i















T







0[2f×2f] WcP
T wT

wPW T
c wPP T wT





















q1
i

...

q2f+2
i















(A.2)

In order to present this problem as a linear program, qi is divided in the
following manner :

qi =
[

qa
i[2f×1]

T qb
i[2×1]

T

]T

(A.3)

Using (A.3) we can develop (A.2) as follows:

qT
i Z0qi = 2

p
∑

m=1

p0
∑

n=1

(

2
∑

l=1
(qb

i)
T

l wlm

)

(

2f
∑

j=1
(Wc)

T

jn(qa
i)j

)

Pmn

+
p
∑

m=1

p0
∑

n=1

(

2
∑

l=1
(wlm)T (qb

i)l

)2

Pmn

(A.4)

Note that in the second term we take advantage of the fact that PP T is a
diagonal matrix. We can express (A.4) as a function of x = vec(P). Note that
this calculation need be performed 2f −2 times, corresponding to the number
of non-dominant eigenvalues that have to be minimized in order to obtain a
rank-4 Z. The complete c is given by the sum of all ci as in (A.4).

c =
2f−2
∑

i>4

2
[(

(qa
i)

T Wc

)

⊗
(

(qb
i)

T
w
)]

+ 1[1×p0] ⊗
[

(

wT qb
i

)T
•
(

wT qb
i

)T
]

(A.5)

B The constraints of the linear program

The linear program presented in (11) is a constrained optimization problem
- in fact, these constraints exist to guarantee that x actually is the result
of the vectorization of a valid partial permutation matrix. Consequently, the
constraints of the linear problem can be derived directly from the expressions
that define this kind of matrix, as presented in last three equations of (3). By
reformulating these constraints according to the vectorized x, the following

25

equations are obtained:

A1 =







1[1×p0] ⊗ I[p×p]

−1[1×p0] ⊗ I[p×p]





 b1 =







1[p×1]

−1[p×1]







A2 = I[p0×p0] ⊗ 1[1×p] b2 = 1[p0×1]

A3 =







1[1×p0p]

1[1×p0p]





 b3 =







p0

−p0







(B.1)

Each of the submatrices presented above enforces one of the constraints in (3),
except for the first one, since the problem is actually solved in the continuous
domain. The complete constraint can then be formulated as in (B.2).

Ax ≤ b,

x ≥ 0

A =















A1

A2

A3















b =















b1

b2

b3















(B.2)

References

[1] G.Golub and C. van Loan. Matrix Computations. John Hopkins University
Press, 1996.

[2] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press 2000.

[3] H. Lütkepohl. Handbook of Matrices, John Wiley & Sons 1996.

[4] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization, John
Wiley & Sons 1999.

[5] M. Fazel, H. Hindi and S. Boyd. A Rank Minimization Heuristic with
Application to Minimum Order System Approximation. In Proc. ACC, June
2001.

[6] V. Ferrari, T. Tuytelaars and L. van Gool. Wide-Baseline Multiple-View
Correspondences. In Proc. ICCV, October 2003.

[7] A. Heyden, R. Berthilsson and G. Sparr. An iterative factorization method
for projective structure and motion from image sequences. Image and Vision

Computing(17), 13(1), pp. 981-991, November 1999.

26

[8] M. Irani. Multi-Frame Optical Flow Estimation Using Subspace Constraints.
In Proc. ICCV, September 1999.

[9] M. Irani and P. Anandan. Factorization with Uncertainty. In Proc. ECCV, June
2000.

[10] M. Irani and P. Anandan. A Unified Approach to Moving Object Detection
in 2D and 3D Scenes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 20(6), 1998.

[11] V. Kolmogorov and R. Zabih. Multi-camera Scene Reconstruction via Graph
Cuts. In Proc. ECCV, May 2002.

[12] B. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. In Proc. of the 7th International Joint Conference

on AI, 1981.

[13] J. Maciel and J. Costeira. A Global Solution to Sparse Correspondence
Problems. IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 25(2), February 2003.

[14] Y.Ma, Kun Huang et al. Rank-Conditions on the Multiple View Matrix.
International Journal of Computer Vision 59(2), 115137, 2004.

[15] D.McReynolds and D. Lowe. Rigidity Cheking of 3D Point Correspondences
under Perspective Projection. IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 18(12), December 1996.

[16] D. Martinec and T. Pajdla. 3D Reconstruction by Fitting Low-Rank Matrices
with Data. In Proc. CVPR, June 2005.

[17] R. Oliveira, J. Costeira and J. Xavier. Contour Point Tracking by Enforcement
of Rigidity Constraints. In Proc. 3DIM, June 2005.

[18] R. Oliveira, J. Costeira and J. Xavier. Optimal Point Correspondence of
Contour Points Through the Use of Rank Constraints. In Proc. CVPR, June
2005.

[19] C. J. Poelman and T. Kanade. A paraperspective factorization method for shape
and motion recovery. In Proc. ECCV, pp. 97-108, August 1994.

[20] C. Rother. Linear Multi-View Reconstruction of Points, Lines, Planes and
Cameras using a Reference Plane. In Proc. ICCV, October 2003.

[21] S. Roy and I. Cox. A Maximum-Flow Formulation of the N-Camera Stereo
Correspondence Problem. In Proc. ICCV, January 1998.

[22] K. Shafique and M. Shah. A Non-Iterative Greedy Algorithm for Multi-frame
Point Correspondence. In Proc. ICCV, October 2003.

[23] P. Sturm and B. Triggs. A factorization based algorithm for multi-image
projective structure and motion. In Proc. ECCV, pp. 709-720, April 1996.

[24] C. Tomasi and T. Kanade. Shape from motion from image streams under
orthography: a factorization method. IJCV,9(2):137-154, November 1992.

27

