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SUMMARY

We overview recent progress in the field of robust adaptive control with special emphasis on
methodologies that use multiple-model architectures. We argue that the selection of the number of
models, estimators and compensators in such architectures must be based on a precise definition
of the robust performance requirements. We illustrate some of the concepts and outstanding issues
by presenting a new methodology that blends robust nonadaptive mixed µ-synthesis designs and
stochastic hypothesis-testing concepts leading to the so-called Robust Multiple Model Adaptive
Control (RMMAC) architecture. A numerical example is used to illustrate the RMMAC design
methodology, as well as its strengths and potential shortcomings. The later motivated us to develop
a variant architecture, denoted as RMMAC/XI, that can be effectively used in highly uncertain
exogenous plant disturbance environments. Copyright c© 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The solution to the so-called “adaptive control” problem is akin to the elusive search for the
“Holy Grail” in the context of feedback control system design. In spite of forty years of research,
several books and hundreds of articles we still lack, in our view, a universally accepted design
methodology for adaptive control which is based on sound theoretical issues and suitable for
engineering implementations in real-life control systems. In this paper we overview some recent
progress in adaptive designs that employ multiple-models. Currently available results seem to

∗S. Fekri is now Research Associate in Department of Engineering, Control & Instrumentation Research
Laboratory, University of Leicester, Leicester, UK. E-mail: sf111@le.ac.uk, Tel: +44-116-2522874, Fax: +44-
116-2522619 (Correspondences to: University Road, Leicester, LE1 7RH).
§M. Athans is also Professor (emeritus) of the Dept. of EE&CS, MIT, Cambridge, MA, USA.
An earlier version of this paper was based on a plenary talk by M. Athans and published in the Proceedings
of the 2005 IFAC World Congress, Prague, Czech Republic, 2005 [1].
This work is based upon S. Fekri’s doctoral thesis [2] and was supported in part by the Portuguese FCT POSI
programme under framework QCA III and by project MAYA-Sub of the AdI.
This paper was recommended for publication in revised form by Associate Editor XXX. YYYYYYY.



NEW RESULTS IN ROBUST ADAPTIVE CONTROL 1

be very promising, but still require a great deal of theoretical and pragmatic research to arrive
at the “Holy Grail” of adaptive control. Thus in our view, the solution to the adaptive control
problem is still not available.

We first discuss a general philosophy for designing “robust” adaptive multivariable feedback
control systems for linear time-invariant (LTI) plants that include both unmodeled dynamics
and uncertain real parameters in the plant state-space description. The adjective “adaptive”
refers to the fact that the real parameter uncertainty and performance requirements require
the implementation of a feedback architecture with better performance and greater complexity
than that of the best possible fixed non-adaptive controller. The word “robust” refers to the
desire that the adaptive control system remains stable and also meets the posed performance
specifications for all-possible “legal” parameter values and unmodeled dynamics.

In order to place our remarks in a proper perspective and motivate the development of our
new RMMAC method we pose a set of basic engineering questions that naturally arise when
we deal with adaptive control:

(1). What do we gain by using adaptive control?
(2). How do we fairly predict and compare performance improvements (if any) of a proposed

adaptive design vis-à-vis the “best nonadaptive” one?
(3). How do we design adaptive controllers with guaranteed robust-stability and robust-

performance in the presence of unmodeled dynamics and unmeasurable plant disturbances
and sensor noises?

(4). Is the increased complexity of an adaptive controller justified by the performance
improvement? What should be the level of complexity for designer-specified adaptive system
performance guarantees?

Even though there is no precise universally accepted definition of “adaptive control” the
above questions are (or should be) at the heart of adaptive control research; they have
motivated the perspective adopted in this paper.

It is important to stress at this point that the vast majority of approaches to adaptive
control deal with the case of constant uncertain real parameters. Furthermore, they invariably
focus upon stability without explicit quantitative specifications for the desired adaptive system
performance. However, from an engineering perspective, the true value of an adaptive system
can only be judged by its performance when the uncertain real parameters change “slowly with
time”, within their predefined limits.

Thus, one designs and tests an adaptive system for constant real parameters, using whatever
theoretical approaches developed, but it should be also tested, and its performance evaluated,
for time-varying parameters as well.

The current accepted concept of a robust (nonadaptive) feedback control system, for linear
time-invariant (LTI) plants, is that the designed compensator must be such so as to guarantee
(if possible) closed-loop stability and to also meet posed performance specifications, most
often reflecting superior disturbance-rejection. This attribute is often referred to as “stability-
and performance-robustness.” The physical plant is assumed to belong to a “legal family” of
possible plants, where the nominal plant together with frequency-dependent upper bounds
on unmodeled dynamics and upper- and lower-bounds on key uncertain real parameters
defines this “legal family” of plants. The performance specifications are explicitly stated
in the frequency domain; they typically require superior disturbance-rejection in the lower
frequency region while safeguarding for excessive control action at higher frequencies. Such
robust nonadaptive compensators can be designed, more or less in a routine manner, using the

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2006; 00:0–0
Prepared using acsauth.cls



2 S. FEKRI, M. ATHANS, AND A. PASCOAL

so-called mixed-µ synthesis methodology and associated Matlab software. At present, robust
synthesis can not deal with slowly-varying parameters, from a theoretical perspective, although
some recent research in “Linear Parameter Varying (LPV)” systems shows some promise.

It is highly desirable that the above attributes of nonadaptive robust feedback systems be
also reflected in the design of robust adaptive controllers as well. Thus, in our view, an adaptive
control design must explicitly yield stability- and performance-robustness guarantees, not just
stability (which has been the central focus of almost all adaptive control methodologies).

1.1. Brief Historical Perspective

Early approaches to adaptive control, such as the model-reference adaptive control (MRAC)
method and its variants, were concerned with real-time parameter identification and
simultaneous adjustment of the loop-gain. Representative references are [3, 4, 5, 6, 7]. In
the classical MRAC method the emphasis was on proving global convergence to the uncertain
real parameter, while using deterministic Lyapunov (hyperstability) arguments for inferring
closed-loop stability. However, the assumptions required for stability and convergence (such
as relative degree, positive-realness, knowledge of the high-frequency gain) did not include the
presence of unmodeled dynamics, unmeasurable disturbances and sensor noise. Moreover, no
explicit and quantifiable performance requirement was posed for the adaptive system; rather
the “goodness” of the MRAC design was judged by the nature of the command-following error
based upon simulations. It turned out that classical MRAC systems can become unstable
in the presence of plant disturbances, sensor noise and high-frequency unmodeled dynamics
[8]. In [9] “averaging analysis” was used to partially overcome the problems identified in [8].
Moreover the MRAC methodology was limited to single-input single-output (SISO) plants;
attempts to extend the MRAC methodology to the multi-input multi-output (MIMO) case
were extremely cumbersome. Because of these shortcomings, we shall not further address the
MRAC methodology in the sequel.

Later, and the more recent, approaches to the adaptive control problem involved multiple-
model techniques which, in principle, are also applicable to the MIMO case. The (large) real-
parameter uncertainty set was subdivided into smaller parameter subsets; each parameter
subset gives rise to a different “plant model set” with reduced real-parameter uncertainty. One
then designed a set of control gains or dynamic compensators for each model set so that, if
indeed the true parameter was “close” to a specific model, then a “satisfactory” performance
was obtained.

In most of the multiple-model approaches, the identification of the most likely model is
carried out by a “supervisor” which switches into the feedback loop different controllers,
based primarily on deterministic concepts [10, 11, 12, 13, 14, 15, 16, 17, 18]. These proofs
and results were presented for the case of SISO systems. The second approach relied upon
stochastic designs that generated on-line posterior probabilities reflecting which of the models
is more likely. In the latter approach the controllers could be designed either by classical
LQG methods [19, 20, 21, 22, 23, 24, 25, 26] or by more sophisticated RMMAC methods
[27, 28, 29, 2] which can deal with MIMO designs. A philosophically different, more direct
approach, called unfalsified control, also merits attention [30, 31, 32, 33, 34, 35] and we shall
briefly discuss it in the sequel. Finally, we do not discuss numerous approaches to adaptive
control utilizing “intelligent” methods, such as neuro-fuzzy designs, since they are void of any
analytical insights.
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In all the proposed multiple-model adaptive methods the complexity of the adaptive feedback
system directly depends on the number of models employed, N . By decreasing the size of the
parametric subsets one obtains more models. Thus, all multiple model approaches must address
the following:
(a) how to divide the initial large parameter uncertain set into N smaller parameter subsets,
(b) how to determine the “size” or “boundary” of each parameter subset, and
(c) how large should N be? Presumably the “larger” the N , the “better” the performance of
the adaptive system should be.

Although not commonly considered as an “adaptive” design, the widely used engineering
designs utilizing gain-scheduling can be viewed as multiple-model methods. Gain scheduling is
actually used to control nonlinear systems, such as aircraft and jet engines, where an exogenous
measured variable, such as dynamic pressure, defines a family of LTI models over the operating
envelope [36, 37, 38, 39, 40, 41]. A set of control gains is defined for each LTI model. The
measured dynamic pressure (or equivalent) is used to interpolate between the control gains.

The basic difference between the adaptive multiple-model approaches discussed above and
the gain-scheduled methods is the fact that in adaptive multiple-model approaches there is
no externally measured variable to accomplish the equivalent of gain-scheduling. Rather, the
information of which model is most likely (and what controller to use) must be obtained from
organic plant measurements.

1.2. The RMMAC Design Philosophy

In this paper we shall stress the use of “robust performance” requirements on the adaptive
system implemented by one of the available multiple-model methods. We follow our recent
research on “Robust Multiple-Model Adaptive Control (RMMAC),” [1, 42, 27, 28, 29, 2], which
will be discussed and evaluated in much more detail in the sequel.

If we turn our attention to the non-adaptive literature there exists a well-documented design
methodology, and associated Matlab design software, for linear time-invariant multivariable
plants (both SISO and MIMO) that addresses simultaneously both robust-stability and robust-
performance in the presence of unmodeled dynamics and parametric uncertainty as well as
unmeasurable plant disturbances and sensor noise. This methodology, pioneered by J.C. Doyle
and his colleagues, is often called the mixed-µ design method [43, 44, 45, 46, 47, 48, 49, 50]. We
assume that the reader is familiar with this robust design methodology and associated software.
The mixed-µ design method incorporates the state-of-the-art in non-adaptive multivariable
robust control synthesis and exploits the proper use of frequency-domain weights to quantify
desired performance. Typically, using the mixed-µ design method, one finds that as the size
of the parametric uncertainty is reduced the guaranteed desired performance, say superior
disturbance-rejection, increases. Unfortunately, very little has been done in integrating the
non-adaptive mixed-µ design methodology with that of robust adaptive control studies; even
though it should be apparent that the mixed-µ design method should provide us guidance on
the selection and number, N , of the models to be used in any multiple-model adaptive control
scheme. Notable exceptions are [32, 51, 16, 27, 28, 29, 2].

We now summarize our design philosophy regarding adaptive control designs that employ
multiple models. We assume that:

(1). Independent of the size of uncertainty for the plant real parameter(s), the plant always
contains unmodeled dynamics whose size must be bounded a priori only in the frequency
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domain. Therefore, the adaptive design must explicitly reflect these frequency-domain bounds
on the unmodeled dynamics. The presence of unmodeled dynamics immediately brings into
sharp focus the fact that we must use the state-of-the-art in nonadaptive robust control
synthesis, i.e. mixed-µ synthesis [43, 44, 45, 46, 47, 50]; and associated Matlab software
[48, 49].

(2). The plant is subject to unmeasurable plant disturbances whose impact upon the
chosen performance variables (error signals) must be minimized, i.e. we must have superior
“disturbance-rejection”. The modern trend is to use frequency-dependent weights to emphasize
and define superior disturbance-rejection performance. This design objective can also be
accommodated by the mixed-µ design methodology.

(3). The plant measurements are not perfect; thus sensor measurements are corrupted by
unmeasurable sensor noise. The performance variables must be “insensitive”, to the degree
possible, to such sensor noise.

(4). Performance requirements must be explicitly defined, up to constants whose values can be
optimized for superior performance. In the mixed-µ design methodology these “disturbance-
rejection” performance requirements are explicitly quantified by frequency-domain weights
typically involving the selected “error signals” and the control variables.

(5). Given the information in (1) to (4), we can design what we call the best “global non-
adaptive robust compensator (GNARC)” for the entire (large) uncertain real-parameter set and
by taking into account both the unmodeled dynamics and the performance requirements. This
non-adaptive feedback design must be optimized so as to yield the best possible performance,
i.e. superior disturbance-rejection with reasonable control effort. The GNARC design then
provides a yardstick (lower-bound) for performance, so that any performance improvements
by more complex adaptive designs can be quantified. The GNARC is designed using the mixed-
µ synthesis methodology.

(6). An upper-bound for adaptive performance can be obtained by optimizing the
performance under the assumption that the real-parameter values are known exactly, but
still reflecting the presence of complex-valued unmodeled dynamics and frequency-dependent
performance requirements. This implies that we compute for a large number of grid points in
the original parameter uncertainty set what we call a “fixed non-adaptive robust compensator
(FNARC)” which defines the best possible performance for each parameter value. The FNARC
design is carried out using the complex-µ synthesis methodology, since we still must take into
account the unmodeled dynamics and frequency-dependent performance specifications. We use
the same quantitative performance requirements as in part (5) above. The set of the FNARCs
corresponds to having an infinite number of models in the multiple-model implementation.

The difference between the lower-bound on performance defined by the GNARC in part (5)
and the FNARC upper-bound from part (6) provides a valuable quantitative decision aid to
the designer on what performance improvements are possible by some multiple-model adaptive
control method. The designer must then make a quantifiable choice on the degree of performance
improvement that he/she desires from the adaptive system. As we shall show in the sequel,
this approach will then define the number of models (parameter subsets) required, N , and
their numerical specification (boundary of parameter subsets) in a natural manner.

One possible approach is that the designer demands that the adaptive performance equals
or exceeds a certain percentage, say 75%, of the (best possible) FNARC performance for each
parameter value. Another possible approach is to demand that the adaptive system yield a
performance that equals a certain multiple, say 10, of the (lower-bound) GNARC performance,
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if possible (there may be inherent limitations due to non-minimum phase zeros and/or unstable
poles) and consistent with the FNARC upper-bound. Yet another approach is to fix the number
N of the models, i.e. specify the complexity of a multiple-model scheme, and maximize the
performance for each model. Many other approaches are also possible which use both the
GNARC lower-bound and the FNARC upper-bound for performance.

By following the above performance-driven methodology one directly arrives at the number,
N , of required models in the adaptive multiple-model system, as well as the quantification
of each model. The robust synthesis method requires that each “model” is represented by
a parameter-subset which must be a hyperparallelpiped. In general, the more stringent the
performance requirements on any adaptive implementation – consistent, of course, with the
FNARC upper-bound – the larger the number of models and the greater the complexity
of the multiple-model adaptive system. We stress that such a systematic definition of the
required models and numerical specification would not be possible if we did not explicitly pose
the performance specifications and optimized performance to the extent possible.

The procedure summarized above can be used with any of the adaptive multiple-model
methods. We shall illustrate its detailed design and properties by using the multiple-model
method in the context of dynamic hypothesis-testing, which involves generating the posterior
probability for each model, the so-called Robust Multiple-Model Adaptive Control (RMMAC)
architecture. However, it can also be used in conjunction with the “switching” supervisory
controllers developed by Morse, Anderson, Hespanha and others, as well as by the unfalsified-
control approaches (although in the unfalsified-control methods one does not assume any
models for the plant to be controlled, no lower- and upper-bounds on the real uncertain
parameters, no frequency-domain bounds on unmodeled dynamics nor explicit performance
requirements in the sense of (4)-(6) above). The important point to remember is that all
multiple-model adaptive schemes require the definition of the minimum number of models
required to achieve both robust-stability and robust-performance, and these can only be defined
after we pose realistic performance requirements for the adaptive system as discussed above.

In Section 2 we present an overview of four different multiple-model architectures for
adaptive estimation, identification and control. In Section 3 we discuss the designs of the
robust dynamic compensators, such as the GNARC and FNARC discussed above, and how
to determine the number N of models in the multiple-model architectures, as well as the
collection of the compensators. In Section 4 we focus upon the “identification” aspect of
the RMMAC. In Section 5 we define a variant of the RMMAC architecture, denoted by
RMMAC/XI. The RMMAC/XI was developed because of possible performance degradation
of the standard RMMAC when the plant disturbances had very wide variability [2]. We
shall demonstrate that such performance degradations are eliminated by the RMMAC/XI
architecture. In Section 6 we present numerous results and simulations using the RMMAC
and RMMAC/XI architectures. These results provide a concrete illustration of our design
philosophy as well as several performance evaluations and comparisons of the RMMAC design,
even when we violate the theoretical assumptions to a significant degree. Section 7 discusses
the commonalties and differences of the supervisory switching multiple model adaptive control
(SMMAC) and RMMAC architectures and we summarize our conclusions in Section 8.
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2. MULTIPLE-MODEL ARCHITECTURES IN ADAPTIVE CONTROL

In this section we shall discuss the architectures that utilize multiple-models. We follow a
historical development that traces the concepts over the past 40 years or so. First we shall
discuss the architecture associated with multiple-model adaptive estimation (MMAE). Second,
we discuss the early extension of the MMAE concepts to classical multiple-model adaptive
control (CMMAC). Third, we present architectures associated with SMMAC. Next, we discuss
the architecture associated with robust multiple-model adaptive control (RMMAC). Finally,
we comment briefly on the unfalsified control concept.

2.1. Multiple-Model Adaptive Estimation (MMAE)

One of the earliest uses of multiple-models was motivated by the need for accurate stochastic
state-estimation for dynamic systems subject to significant parameter uncertainty. In many
such applications the estimation accuracy provided by standard Kalman filters was not
adequate. For some early references regarding MMAE see [52, 53, 54, 55, 56]. We remark
that the MMAE algorithms were also referred to as “partitioned estimation”, especially in
the research by Lainiotis. We also remark that a similar adaptive estimation architecture, the
so-called “Sum of Gaussians” method, utilizing a bank of extended Kalman filters, was used
for nonlinear filtering problems [57, 58, 59].

Fig. 1 shows the architecture of the MMAE system. It is assumed that a discrete-time linear
time-invariant plant is driven by white process noise, as well as a known deterministic input
signal, and generates measurements that are corrupted by white measurement noise. If there
is no parameter uncertainty in the plant, then the Kalman filter (KF) is the optimal state-
estimation algorithm in a well-defined sense; see, for example, [60, 57]. Moreover, under the
usual linear-gaussian assumptions, the KF state-estimate is the true conditional mean of the
state, given the past controls and observations. If the plant has an uncertain real-parameter
vector, p, one can imagine that it is “close” to one of the elements of a finite discrete parameter

ResidualCovariances PosteriorhypothesesprobabilitesKF #N ˆ( )x t

unknown plant(t)θ(t)ξ

PosteriorProbabilityEvaluator(PPE) 1 ( )P t

2 ( )P t

( )NP t

1S

2S

NS

( )u t ( )y tKF #2KF #1
ProcessNoise SensorNoise

)(1 tr

)(2 tr

)(trN

1̂( )x t

2ˆ ( )x t

ˆ ( )Nx t

KFs
Figure 1. The MMAE architecture for adaptive estimation.
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set, PD = {p1, p2, . . . , pN}. One can then design a bank of standard Kalman filters (KFs) where
each KF uses one of the discrete parameters pk in its implementation, k = 1, 2, . . . , N . It turns
out that, if indeed the true plant parameter is identical to one of its discrete values – and
this is modeled by the hypothesis H = Hk, then the conditional probability density of the
state is the sum of gaussian densities. Then, the MMAE of Fig. 1 will indeed generate the true
conditional mean of the state and one can calculate the true conditional covariance matrix; see,
for example, [54]; [57, Chap. 10]. Appendix I summarizes the notation and formulas associated
with the MMAE algorithm for the discrete-time case.

From a technical point of view the MMAE system of Fig. 1 blends optimal estimation
concepts (i.e. Kalman filtering) and dynamic hypothesis-testing concepts that lead to a system
identification algorithm. As explained in Appendix I, each KF generates a “local” state
estimate, x̂k(t|t) and a residual (or innovations) signal, rk(t), which is the difference between
the actual measurement and the predicted measurement (the residual is precisely the prediction
error common to all adaptive systems). Furthermore, the (steady-state) residual covariance
matrix, Sk, k = 1, 2, . . . , N , associated with each KF can be computed off-line. The key to the
MMAE algorithm is the so-called “posterior probability evaluator (PPE)” which calculates,
in real time, the posterior conditional probability that each model generates the data, i.e.
Pk(t) = Prob{H = Hk|Y (t)}, k = 1, 2, . . . , N ; see eq. (2.4). Thus, the PPE represents an
identification subsystem. The “global” state-estimate is then obtained by the probabilistic
weighting of the local state-estimates as shown in Fig. 1; this “global” state estimate is precisely
the true conditional mean of the state given the set Y (t) of past measurements and controls.
The true conditional covariance can also be calculated on-line; see Appendix I for mathematical
details.

The key property of the MMAE algorithm is that, under suitable assumptions, one of the
posterior probabilities, say Pj , Pj(t) → 1, where j indexes the model that is “closest” to the
correct hypothesis H = Hj , even though the actual plant parameter is different than pj , as
t →∞. These asymptotic convergence results hinge upon information-theoretic arguments and
involve non-trivial stationarity and ergodicity assumptions. The detailed convergence proofs
involve either the so-called “Baram Proximity Measure (BPM)” [61, 62, 63], as discussed
in Appendix II, or the Kullback information metric [57, pp. 267–279]. The detailed proofs
are beyond the scope of this paper. These (asymptotic) convergence results to the “nearest
probabilistic neighbor” using the BPM represent the key “system-identification” algorithms
associated with both the CMMAC and the RMMAC algorithms discussed in the sequel.

It should be noted that the MMAE architecture is essentially identical to that of the “sum
of Gaussians” estimators used extensively in nonlinear filtering [57, 58, 59] which utilize banks
of extended Kalman filters. Furthermore, it is important to stress that the blend of dynamic
hypothesis-testing concepts and optimal estimation theory is the workhorse of all modern
defense and civilian surveillance and fusion algorithms that deal with several sensors and
several targets (crossing, manoeuvring, disappearing, re-appearing, etc.)

2.2. Classical Multiple-Model Adaptive Control (CMMAC)

The intriguing convergence properties of the MMAE algorithm, coupled with the robustness
shortcomings of MRAC systems to disturbances and sensor noise, gave rise to what we call the
classical MMAC (CMMAC) algorithms which simply integrated design concepts from Linear-
Quadratic-Gaussian (LQG) control system design [64, 65] with the MMAE architecture of
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Figure 2. The CMMAC algorithm where the “local” KF state estimates are multiplied by “local” LQ
gains to form “local” controls which, in turn, generate a probabilistically weighted “global” control.

Section 2.1 in a purely ad-hoc manner. The classical MMAC architecture (CMMAC) is shown
in Fig. 2. Each “local” state-estimate of the (steady-state) KF, x̂k(t|t), k = 1, 2, . . . , N , is
multiplied by the associated linear-quadratic (LQ) optimal control-gain matrix, Gk, to generate
a “local” control signal uk(t) by

uk(t) = −Gkx̂k(t|t), k = 1, 2, . . . , N (2.1)

Using precisely the same MMAE calculation by the PPE of the posterior probabilities Pk(t),
eq. (2.4), the “global” control applied to the plant – and to the bank of KFs – is obtained by
probabilistic weighting of the local controls, i.e.

u(t) =
N∑

k=1

Pk(t)uk(t) (2.2)

The CMMAC algorithm of Fig. 2 represented a purely ad-hoc approach to adaptive control.
It is not optimal in a stochastic LQG sense [19]. However, several adaptations, extensions
and simulations have been reported [20, 22, 21, 23, 24, 25, 26]. In the context of this paper
it is important to stress that no robustness to unmodeled dynamics was considered in early
CMMAC designs (such robustness issues were unknown in the 1970s) and that performance
specifications were generated by LQG “tricks” and not with the frequency-weight concepts
and H2 and H∞ designs widely adopted at present.

From a high-level philosophical perspective, the CMMAC represents, in our view, a form
of “probabilistic gain-scheduling.” As we remarked earlier in classical gain-scheduling designs
[10, 36, 37, 38, 39, 40, 41] an exogenous measured signal is used to “schedule” or “interpolate”
from a finite-set of gains. In the CMMAC no such exogenous signal is available; rather, it is the
posterior probabilities in Fig. 2 that are used to accomplish this “probabilistic gain-scheduling.”
As we shall see, the same situation happens in the RMMAC architecture(s) discussed in the
sequel.

It is also noteworthy to mention that a “switching” version of the CMMAC can be readily
(and naturally) implemented in which the “local” control with the largest posterior probability
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NEW RESULTS IN ROBUST ADAPTIVE CONTROL 9

is used as the “global” control; such switching versions of the CMMAC are much more sensitive
to the stochastic signals. Finally, in retrospect, the fact that both the “local” KF state estimates
and their residuals, via the posterior probabilities, were combined in the generation of the
“global” adaptive control has certain shortcomings, because one mixes state-estimation and
feedback control generation. Thus, errors in the local state-estimates will directly impact
the local controls. In the CMMAC architecture no clear-cut “separation-principle” of an
“identification subsystem” and a “control subsystem” is made.

2.3. Supervisory Switching Multiple-Model Adaptive Control (SMMAC)

During the past decade a different, with a strong deterministic flavour, approach to adaptive
control using multiple models has been initiated [11, 12, 13, 14, 16, 17, 18] and active research
along these lines is still in progress. We refer to these methodologies as Supervisory Switching
Multiple-Model Adaptive Control (SMMAC). The basic architecture of the different SMMAC
algorithms is shown in Fig. 3 (which is an adaptation of Fig. 1 in [18], so that comparisons
with the CMMAC and RMMAC become easier). We remark that in all versions of the
SMMAC architectures there exists a “separation” between identification and control (unlike
the CMMAC). In other words, the state-estimates inside each multi-estimator do not directly
influence the associated local control signal.

We briefly discuss the SMMAC architecture to point out some similarities and differences
to the CMMAC of Fig. 2 and the RMMAC architecture to be discussed below – see Fig. 4.
The approach is deterministic and the goal is to prove “local” bounded-input bounded-output
stability of the SMMAC system under certain assumptions. The plant-disturbance and sensor-
noise signals are assumed bounded rather than being characterized as stochastic processes as in
the CMMAC and RMMAC. The presence of unmodeled dynamics is also considered, although
the bound on the unmodeled dynamics is simply an H∞ bound. The theoretical results to date
are restricted to single-input single-output (SISO) systems, although research is underway to
extend them to the MIMO case [10].

In reference to Fig. 3, the SMMAC employs a finite number of stable deterministic estimators
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Figure 3. The SMMAC architecture.
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10 S. FEKRI, M. ATHANS, AND A. PASCOAL

(Luenberger observers), called multi-estimators and denoted by Ek(s), k = 1, 2, . . . , N ,
designed for a grid of distinct known parameter values pk ∈ P , where P is the compact real-
parameter set. The output of each estimator yk(t) is compared with the measured (true plant)
output y(t) to form the estimation (prediction) errors ek(t) = yk(t) − y(t), k = 1, 2, . . . , N .
We remark that the errors ek(t) in Fig. 3 are completely analogous to the residuals rk(t)
in the MMAE (Fig. 1), the CMMAC (Fig. 2) and the RMMAC (Fig. 4). The monitoring
signal generator, M(s), is a dynamical system that generates monitoring signals µk(t);
these are suitably-defined integral norms of the estimation errors ek(t). The size of these
monitoring signals indicates which of the multi-estimators is “closer” to the true plant. In
addition to the bank of multi-estimators, it is assumed that a family of multi-controllers,
Ck(s), k = 1, 2, . . . , N , has been designed so that each provides satisfactory stable feedback
performance for at least one discrete parameter pk ∈ PD. However, no quantitative design
performance specifications are defined for the CMMAC system. The basic idea is to use the
monitoring signals µk(t) to “switch-in” the suitable controller. This is accomplished – see Fig.
3 – by a switching logic S which generates a signal σ(t) ∈ PD that can be used to switch-in the
appropriate controller. A key property of the switching logic S is that it keeps its output σ(t)
constant over some suitably long “dwell time”; this avoids rapid switching of the controllers and
allows most transients to die-out between controller switchings. The details of the switching
logic algorithms differ in the cited SMMAC references.

The basic structural difference between the CMMAC and the SMMAC – compare Figs. 2
and 3 – is that in the SMMAC the “identification” process is completely separated from the
“control” process. Even in the case of the “switching” CMMAC, where the largest posterior
probability switches the corresponding LQ control gain, the identification and control get
mixed-up. The separation of the identification and control processes in the SMMAC seems to
have an advantage, coupled with the idea of infrequent controller-switching. Otherwise, the KFs
in the CMMAC serve the same objective as the multi-estimators of the SMMAC. Moreover,
the multi-controllers in the SMMAC can be more complex than the simple LQ-gains in the
CMMAC. Some potential shortcomings of the SMMAC methodology will be discussed after
we present the RMMAC approach below. Unfortunately, SMMAC numerical simulations have
been reported for only a couple of (very) academic SISO plants.

2.4. Robust Multiple-Model Adaptive Control (RMMAC)

We now overview the newest multiple-model architecture which we call RMMAC, Fig. 4, to
emphasize the fact that both stability-robustness and performance-robustness are addressed
from the start. Our preliminary results on RMMAC can be found in [1, 42, 28, 29] and a
more complete treatment is available in Fekri’s Ph.D. thesis [2]. We note that the RMMAC
architecture has a “separation” between identification and control, like the SMMAC and unlike
the CMMAC.

As in the CMMAC, the RMMAC uses a bank of (steady-state) Kalman Filters (KFs) and
relies on stochastic processes for the disturbance signals and the sensor noise measurements.
The stochastic plant disturbances provide the necessary “sufficient excitation” for identification
[66]. However, unlike CMMAC the “local” KF state-estimates (the x̂k(t|t) in Fig. 2) are not
used in generating the control signals. Only the KF residuals, rk(t), k = 1, 2, . . . , N , generated
on-line and their pre-computed residual covariance matrices, Sk, are utilized by the posterior
probability evaluator (PPE) to generate the posterior probability signals Pk(t). The calculation
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Figure 4. The RMMAC architecture.

of the posterior probabilities is identical to that in the MMAE or CMMAC (see Appendix I); see
also eq. (2.4) below. A crucial difference is that the “nominal” KF design is based upon explicit
use of the Baram Proximity Measure (BPM) to ensure asymptotic convergence of the posterior
probabilities. Another key difference lies in the construction of the bank of the “local” robust
compensators, Kj(s), j = 1, 2, . . . , N , in Fig. 4, which are designed using the state-of-the-art in
robust mixed-µ synthesis [43, 45, 44, 46, 49, 48]. These compensators, Kj(s); j = 1, 2, . . . , N ,
referred to as the “local non-adaptive robust compensators (LNARC)”, are designed so as
to guarantee “local” stability- and performance-robustness, as will be explained in detail
in Section 3. Each “local” compensator Kj(s) generates a “local” control signal uj(t). The
“global” control is then generated, as in the CMMAC case, by the probabilistic weighting of
the local controls uj(t) by the posterior probability Pj(t)

u(t) =
N∑

j=1

Pj(t)uj(t) (2.3)

A switching version of RMMAC can also be implemented by finding the largest probability
Pj(t), at each instant of time, and using the corresponding “local” uj(t) as the “global” control
u(t). Moreover, a “dwell-time” could be incorporated to avoid frequent switching.

One relies upon the convergence properties of the posterior probabilities to the nearest
probabilistic neighbor, using the Baram proximity measure (BPM) [61, 62, 63], to ensure that
the RMMAC operates in a superior manner, so as to ensure correct asymptotic identification.
See Appendix II. This requires careful design of the KFs, perhaps robustified through the use
of “fake-white-plant-noise” – a time-honoured design trick in linear and nonlinear estimation
practice [67].

One of the key algorithms in the RMMAC architecture is the “Posterior Probability
Evaluator (PPE)” in Fig. 4. Since we are concerned with both robust-stability and robust-
performance – and the LNARCs K1(s), . . . , KN (s) are designed with this objective in mind
– it is imperative that one of the posterior probabilities converges to the right model. We
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12 S. FEKRI, M. ATHANS, AND A. PASCOAL

repeat from Appendix I (eqs. (A.20) to (A.22)) the recursive formula by which the posterior
probabilities Pk(t), k=1,2,. . . ,N are generated:

Pk(t + 1) =




βk

(
e−

1
2 r′k(t+1)S−1

k rk(t+1)
)

N∑
j=1

βj

(
e−

1
2 r′j(t+1)S−1

j rj(t+1)
)
· Pj(t)


Pk(t) (2.4)

where:
rj(t) ; j = 1, 2, ..., N is the residual of the j-th Kalman filter
Sj ; j = 1, 2, ..., N is the steady-state constant residual covariance matrix of rj(t)
βj ≡ 1

(2π)m/2
√

det Sj

is a constant scaling factor.

Notice that the propagation of the posterior probabilities involves the quadratic forms
r′j(t)S

−1
j rj(t). If the residuals are, in a sense, “regular”, i.e. their size and correlation is more-

or-less consistent with that predicted by their associated covariance matrix (say within 3 to
4 sigma levels), then the posterior probabilities will behave in a smooth manner and will
result in correct identification (convergence to the nearest probabilistic neighbour in the BPM
sense. This is accomplished by the very careful design of the KFs as explained in Section 4.
If the theoretical assumptions of Appendix II are valid or mildly violated, the RMMAC yields
excellent performance, as evidenced by thousands of simulations [2]. If, however, the theoretical
assumptions are severely violated, then the residuals can become very large compared with their
predicted size inherent in their covariances Sj , the posterior probabilities can get “confused”
and the inaccurate identification can cause the RMMAC to yield degraded performance and, in
rare circumstances, break into instability. These issues will be discussed further in the sequel;
it is important to state explicitly the potential shortcomings of any adaptive method (a rarity
in the adaptive literature).

2.5. Unfalsified Control

As we have remarked the recent unfalsified control method developed by M.G. Safonov and
colleagues [30, 31, 32, 33, 34, 35] is a promising approach to the control of uncertain plants.
We stress that in that methodology there are no assumptions about the plant to be controlled;
one applies control(s) and makes real-life measurements. It is assumed that there exists a
collection of N precomputed compensators and that at least one of them will stabilize the
actual plant. Thus, the emphasis is on stability (which is certainly robust since it involves
the actual plant). It can be argued that the availability of N compensators makes unfalsified
control a multiple-model scheme.

When one of the available compensators is connected to the plant and it does not stabilize the
plant, then a safe algorithm should recognize rapidly in real-time this instability and discard
this compensator. Next, another compensator is tried and so on. By assumption, eventually
one will find one of the stabilizing compensators.

Since there are absolutely no assumptions on the plant, we cannot make any direct
comparisons with the architectures discussed above. It is hard to say how one can design for
this method the required family of compensators to achieve not only robust-stability but also
robust-performance based upon explicit specification of closed-loop performance specifications.

For these reasons, we will not comment any further on this potentially useful methodology.
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2.6. Discussion

The three adaptive multiple-model algorithms (CMMAC, SMMAC, and RMMAC) presented
above have the following common characteristics.

(a). One must design a set of N multi-controllers or dynamic compensators.
(b). One must design a set of N Kalman filters or multi-estimators (observers).
(c). One must implement an identification process by which the actual (global) adaptive

control is generated.
Clearly, the complexity of the adaptive system will depend on the number, N , of models that

are required to implement. Ideally, N should be as small as possible. However, it should be
intuitively obvious that if N is too small the performance of the adaptive system may not be
very good. On the other hand, if N is very large, one may reach the point of diminishing returns
as far as adaptive performance improvement is concerned. It follows that we need a more-or-less
systematic procedure by which, starting from a compact parameter set p ∈ P , to define a finite
set, N , of discrete values (models), PD = {p1, p2, . . . , pN} ⊂ P, that are used subsequently in
designing the KFs in the CMMAC and RMMAC, the multi-estimators in SMMAC as well as
the compensators. The following section summarizes our suggested methodology which hinges
upon the recent developments in robust feedback control synthesis using the so-called mixed-µ
methodology and associated software.

Even though all MMAC architectures are made by piecing together LTI systems, the
probabilistic weighting in the RMMAC as well as the supervisory switching logic of
the SMMAC result in a highly nonlinear and time-varying closed loop MIMO feedback
system. Hence, it is näıve to expect foolproof global asymptotic stability results in the
near future, because there does not, as yet, exist a solid mathematical theory for global
(stochastic) nonlinear time-varying stability which can be readily adapted to the multiple-
model architectures discussed in this paper. Even in the simpler CMMAC, involving LQG
controllers, attempts to prove global stability were not successful [20, 22, 23]. Thus, it is the
opinion of the authors, what is needed in the short run is additional pragmatic understanding
of the different multiple-model approaches, their similarities and differences and consistent fair
comparisons on performance improvement over non-adaptive designs. Thus, there are numerous
opportunities for future theoretical research to investigate such global stability-robustness and
performance-robustness issues, especially in the MIMO case.

3. DESIGNING ROBUST COMPENSATORS IN THE RMMAC ARCHITECTURE

3.1. Introduction

During the past several years a very sophisticated and complete non-adaptive design
methodology, accompanied by Matlab design software, has been developed for the robust
feedback control of MIMO linear time-invariant (LTI) uncertain dynamic systems with
simultaneous dynamic and parametric errors. This design methodology is often called the
“mixed-µ synthesis” method, which involves the so-called D,G-K iteration, and it requires the
design of differentH∞ compensators at each iteration. The outcome of the “mixed-µ synthesis”
process is the definition of a non-adaptive LTI MIMO dynamic compensator with fixed
parameters, which guarantees that the closed-loop feedback system enjoys stability-robustness
and performance-robustness, i.e. it meets the posed performance specifications in the frequency
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14 S. FEKRI, M. ATHANS, AND A. PASCOAL

domain (if such a compensator exists). The “mixed-µ synthesis”, loosely speaking, de-tunes an
optimal H∞ nominal design, that meets more stringent performance specifications, to reflect
the presence of inevitable dynamic and parameter errors. In particular, if the bounds on key
parameter errors are large, then the “mixed-µ synthesis” yields a robust LTI design albeit
with inferior performance guarantees as compared to the H∞ nominal design. So the price
for stability-robustness is poorer performance. Experience has shown that if the bounds on the
parameter errors decrease, then the mixed-µ synthesis yields a design with better guaranteed
performance. Two recent applications [68, 69] illustrate this uncertainty/performance tradeoff
in a clear manner. We cannot provide details about this elegant methodology in this paper.

Whether we are dealing with non-adaptive or adaptive feedback designs we must take into
account the following engineering issues:

(a). Complex-valued plant unmodeled dynamics (e.g. unmodeled time-delays, plant-order
reduction, parasitic high-frequency poles and zeros, high-frequency bending and torsional
modes, etc).

(b). Errors in key real-valued plant parameters in its state space realization.
(c). Explicit definition of performance requirements typically in the frequency-domain

(rather than just the shape of step responses, location of dominant closed-loop poles etc);
these reflect the common objective to have small tracking errors in the low-frequency region
and small control signals in the high-frequency region.

(d). Unmeasurable plant disturbances, perhaps with information on their power spectral
densities.

(e). Unmeasurable sensor noises, perhaps with information on their power spectral densities.
From now on, we focus our attention on the problem of “disturbance-rejection” in the

presence of noisy sensor measurements so as to simplify the exposition. Adding “command-
following” to the specifications is straightforward but complicates the exposition. What we
want to stress relates to our philosophy that we cannot design adaptive control systems without
explicit quantification of desired performance.

Assume that we have a state-space description of the plant (excluding unmodeled dynamics)
of the form

d

dt
x(t) = A(p)x(t) + B(p)u(t) + L(p)d(t)

y(t) = C1(p)x(t) + D(p)n(t) (3.1)
z(t) = C(p)x(t)

where x(t) is the state vector, u(t) the control vector, d(t) the plant-disturbance vector, y(t)
the (noisy) measurement vector, n(t) the sensor noise and z(t) the performance (output or
error) vector, i.e. the vector for which we wish to minimize the effects of the disturbance d(t)
and noise n(t), i.e. have superior disturbance-rejection. The system matrices depend upon a
real-valued parameter vector p, where p is constrained to be in a (hyper) parallelepiped, p ∈ Pπ;
this is a required µ-synthesis constraint. Thus, we must have a lower- and an upper-bound
(real-valued) for each independent uncertain parameter. The disturbances, d(t), can be either
deterministic time-functions or stochastic processes. In either case, the robust µ-synthesis
requires a disturbance frequency weight for superior performance. If d(t) is a stochastic process,
its power-spectral density naturally defines this weight.

From a performance point of view, in order to achieve superior disturbance-rejection, the
designer specifies a frequency weight on z(t). Typically, to achieve superior disturbance-
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rejection in the low-frequency region, the designer specifies, in the µ-synthesis methodology, a
frequency-weight, say of the form

z̄(s) = Ap

(
α

s + α

)m

· I · z(s) (3.2)

which implies that superior disturbance-rejection is most important in the frequency range
0 ≤ ω ≤ α. The larger the performance-gain parameter Ap, the better the desired performance-
rejection.

To complete the robust design synthesis the designer must provide frequency-dependent
bounds for all (structured or unstructured) unmodeled dynamics, and frequency weights for the
control, disturbance and sensor noise vectors. The control and sensor-noise weights, together
with the bound(s) on the unmodeled dynamics, safeguard against very high-bandwidth
feedback designs.

3.2. The GNARC Design

Before a wise designer can make a decision on whether or not to implement an adaptive
system, he/she must have a solid knowledge on what is the best robust non-adaptive design. We
called the best “global non-adaptive robust compensator” GNARC-based design. The GNARC
is computed via mixed-µ synthesis and it takes into account the frequency-domain bounds
on unmodeled dynamics, the various frequency weights that quantify disturbance-rejection
requirements, control effort and, perhaps, power spectral densities for the plant-disturbances
and sensor-noises.

We certainly do not intend to provide here a tutorial exposition of the mixed-µ synthesis
method. To compute the GNARC, one fixes the performance gain Ap in eq. (3.2) to some
initial value and exercises the Matlab software which, after a sequence of the so-called DG-K
iterations, determines a compensator K(s) and generates an upper-bound µub(ω). If

µub(ω) < 1 ∀ω (3.3)

then the resulting feedback design is guaranteed to be stable for all “legal” unmodeled dynamics
and the entire parameter uncertainty p ∈ Pπ. Moreover, in addition to stability-robustness, we
are guaranteed that we meet or exceed the posed performance requirements. Therefor, in order
to find the “best” GNARC we must maximize the performance-parameter Ap in eq. (3.2) until
the µ-upper bound is just below unity, say 0.995 ≤ µub(ω) ≤ 1 ∀ω.

The GNARC is a single dynamic (SISO or MIMO) compensator that can be used by the
designer to fully understand what is the best possible robust performance in the absence of
adaptation. Since the feedback system is LTI a whole variety of performance evaluations are
possible, using representative values of the uncertain real-parameter vector p ∈ Pπ for the
plant, as summarized in Table I.

We believe that such a thorough understanding of the non-adaptive GNARC is essential
prior to making a design decision on using some sort of multiple-model adaptive control. It
has been our experience that such GNARC analyses point out which parameter uncertainty is
most critical; this can be used to eliminate from further consideration non-critical parameters.
Moreover, the performance of the GNARC, say for a SISO system, can change drastically if
one adds more measurements and/or controls. Thus, an unacceptable performance for a SISO
GNARC non-adaptive system may, indeed, become acceptable if more controls and/or sensors
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Table I. List of Performance Evaluation Tools

(1) Magnitude (or singular-value) Bode plot of the closed-loop transfer function from the plant
disturbance, d, to output, z, which measures the quality of disturbance-rejection vs frequency.
Assuming that the plant has no integrators, the magnitude of this transfer function, in the low
frequency region, will be approximately 1/Ap. This is why we must maximize the performance
parameter Ap for superior disturbance-rejection.

(2) Magnitude (or singular-value) Bode plot of the closed-loop transfer function from the sensor
noise, n, to output, z, which measures the quality of insensitivity to sensor noise vs frequency

(3) Magnitude (or singular-value) Bode plot of the closed-loop transfer function from the plant
disturbance, d, to control, u, which measures the impact of the plant-disturbance on the control
vs frequency

(4) Magnitude (or singular-value) Bode plot of the closed-loop transfer function from the sensor
noise, n, to control, u, which measures the impact of the sensor noise on the control vs frequency

(5) Root-mean-square (RMS) tables assuming that the plant-disturbance, d, and the sensor
noise, n, are stationary stochastic processes. Such RMS values are readily evaluated via the
solution of Lyapunov equations. Individual or combined RMS tables for the output, z, and the
control, u, as a function of the plant-disturbance, d, and the sensor noise, n, can be computed.

(6) Time-domain responses, e.g. step- or sinusoidal-disturbance, stochastic signals, etc for
different values of the uncertain constant parameters and for slowly time-varying parameters
(within their predefined ranges).

are introduced [2] and a MIMO GNARC analyzed, thereby eliminating the need for complex
adaptive control.

3.3. The FNARC Design

If the GNARC analyses discussed above indicate the need for adaptive control, they
provide a lower-bound upon robust performance. The “fixed non-adaptive robust compensators
(FNARC)” provide the means for quantifying an upper-bound on robust performance.
“Ideally”, the FNARC analyses assumes an infinite number of models, N →∞, in any multiple-
model adaptive scheme. Thus, we understand what is the best possible performance if we knew
the real parameter(s) exactly.

In practice, to determine the FNARC one uses a dense grid of parameters pj , j →∞, in Pπ

and determines the associated robust compensator for each pj using exactly the same bounds
on unmodeled dynamics and frequency weights employed in the GNARC design. Thus, we can
make fair and meaningful comparisons. For each pj we use the complex-µ design methodology
and Matlab software [49], because both the performance weights and bounds on unmodeled
dynamics are complex-valued and there are no real parameter uncertainties. For each pj , we
again maximize the performance-parameter Ap in (3.2) until the complex-µ upper-bound,
µc

ub(ω) is just below unity for all frequencies, say µc
ub(ω) ≈ 0.995 ∀ω, to be consistent with

the GNARC lower-bound.
One can then again analyze each FNARC design using the six techniques outlined in Table I.
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Our experience indicates that detailed analyses, especially at the corners and faces of the hyper-
parallelepiped Pπ, provide useful insights regarding the impact of the subset of the uncertain
real parameters upon performance; this determines the need for sophisticated adaptive control.

3.4. The Potential Benefit of Adaptive Control

Recall that we had posed the following question: do we need adaptive control? The GNARC
and FNARC results provide the designer with the means to answer this question.

In Fig. 5 we visualize a hypothetical plot of the outcome of the GNARC and FNARC designs
by plotting the (maximized) performance parameter Ap, see (3.2), as a function of a scalar
uncertain real parameter, p, pL ≤ p ≤ pU . We denote the (constant) value associated with
the GNARC design by AG

p . We denote the parameter-dependent value associated with the
FNARC by AF

p (p), pL ≤ p ≤ pU . The difference, AF
p (p) − AG

p ≥ 0 quantifies the impact
of the uncertain parameter p ∈ [pL, pU ] upon performance. The FNARC process indicates
that if the parameter p were known exactly, then the (low-frequency) disturbance-rejection is
approximately 1/AF

p (p). The GNARC process indicates that if the parameter p were unknown,
then the (low-frequency) disturbance-rejection is approximately 1/AG

p . Note that to obtain the
FNARC benefits we must implement a multiple-model architecture with an infinite number
of models. In this manner we have quantified the potential performance benefits of adaptive
control; the non-adaptive (single-model) GNARC provides the lower-bound upon expected
performance, while the adaptive (infinite-model) FNARC provides the performance upper-
bound. This information is critical in deciding whether to implement an adaptive control
system or not.

The shapes of the curves in Fig. 5 provide additional valuable information. In the
hypothetical case of Fig. 5, we should expect the benefit of using adaptive control to be
greatest if the true parameter was near its upper-bound, i.e. p ≈ pU . The benefits decrease if
the unknown parameter is closer to its lower-bound, i.e. p ≈ pL. Indeed it may well happen
that AF

p (pL) = AG
p . This can occur, for example, if the parameter p, in rad/sec, represents

the value of a non-minimum phase zero which places inherent restrictions upon disturbance-
rejection (see, e.g. [70]). Such a non-minimum phase system has been analyzed, using the
RMMAC, in [27].

Up

pA

pLp

GNARC design: Scalar parameterPerformance parameter FNARC design( )F
pA p

G
pA

Figure 5. Hypothetical comparison of the performance parameter, Ap, for the GNARC and FNARC
for the case of a scalar uncertain real parameter, p, pL ≤ p ≤ pU .
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If we have an uncertain m-dimensional parameter vector, constrained in a hyper-
parallelepiped, i.e. p ∈ Pπ ⊂ Rm, the calculations are more complex to construct the two
hypersurfaces along the lines suggested by Fig. 5 [2]. However, the same philosophy still applies.
In [42] a two-input two-output RMMAC system with two uncertain real parameters is designed
and analyzed.

3.5. Determining the Number of Models and Designing the LNARCs

Let us suppose that we have decided that there is a substantial benefit in using adaptive
control and that we wish to use a multiple-model architecture. As we remarked before, the
adaptive complexity is directly related to the number N of models in either the SMMAC or
RMMAC implementation. Recall that the non-adaptive GNARC requires N = 1 model while
the FNARC requires N = ∞ models. Clearly, there must be a happy medium.

3.5.1. A “Brute-Force” Approach. A “brute-force” approach is to decide on the number of
models, say N=4, and their parameter variation as illustrated in the hypothetical visualization
of Fig. 6.

pA

p

11Lp p=

GNARCPerformance parameter FNARC
12 21p p= 22 31p p= 32 41p p= 44 Up p=

M #1 M #2 M #3 M #41
pA

2
pA

3
pA

4
pA

Figure 6. Illustration of a “brute-force” selection of four models. An ad-hoc decision is made on the
number of models, N=4, and the specification of their “boundaries”, [pkL, pkU ], k = 1, 2, 3, 4, for each

model M#k. The Ak
p denote the maximized value of the performance parameter in eq. (3.2).

Essentially, in this approach, the designer fixes the “adaptive complexity”, quantified by N ,
of the multiple-model system. Each model, denoted by M#k (k=1,2,3,4) requires definition of
its “local” lower-bound, pkL, k = 1, 2, 3, 4, and upper-bound, pkU , k = 1, 2, 3, 4, i.e.

Model #1 (M#1) : pL = p1L ≤ p ≤ p1U

Model #2 (M#2) : p1U = p2L ≤ p ≤ p2U

Model #3 (M#3) : p2U = p3L ≤ p ≤ p3U

Model #4 (M#4) : p3U = p4L ≤ p ≤ p4U = pU

The model upper- and lower-bounds must be found by trial-and-error in this brute-force
method.

After the models are selected, all frequency-dependent bounds and weights are fixed as in
the GNARC and FNARC designs. Next, for each model the performance parameter Ap – see
(3.2) – denoted now by Ak

p, k=1,2,3,4, is maximized using the mixed-µ software, in an iterative
mode, for the smaller parameter uncertainty subset associated with each model. Thus, for each
model, we are again attempting to attain as large a disturbance-rejection as possible. Moreover,
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at the end of this iterative optimization process, the software also generates what we call the
“local non-adaptive robust compensator (LNARC)” which we denote by Kj(s), j = 1, 2, 3, 4.

The values of the Ak
p, k=1,2,3,4, as illustrated in Fig. 6 can be used as a “guide” for adjusting

the boundaries of each model or changing the number of models. Each of the resulting LNARC
designs can be evaluated in more detail by following the suggestions in Table I.

The RMMAC numerical results presented in [27, 29] followed such an ad-hoc approach for
determining the models and the associated LNARCs. The same process can be used to design
the multi-controllers in the SMMAC.

3.5.2. A More Systematic Approach to Model Selection and Definition: The % FNARC
method. The numerical simulations for the RMMAC design in Section 6 utilize a much
more systematic approach to the determination of the number of models and their numerical
specification. This method fully exploits the information provided by the FNARC curve in
Fig. 5.

We have remarked that the number of models required for any adaptive multiple-model
design should be the natural outcome of performance design specifications. In the so-called %
FNARC approach the designer specifies that the performance parameter, Ap, should be equal
or greater than X% of the best possible performance as defined by the FNARC.

The basic idea is illustrated in Fig. 7, starting from the GNARC and FNARC curves of Fig. 5.
Using the designer-specified value of X%, we construct the X% FNARC, shown in Fig. 7, and
we proceed as follows. Since the FNARC is maximum at p = pU , we slowly increase, starting
from the upper limit, the size of the parameter uncertainty set Ωα = {p : α ≤ p ≤ pU}. For
each value of α, we use the mixed-µ software to design the best robust controller by maximizing
the performance parameter Ap denoted by Aα

p max. As long as Aα
p max > (X%) ·AF

p (α), where
AF

p (α) is the parameter value of the FNARC at p = α, then we decrease α until at α = α∗ we
have Aα∗

p max = (X%) · AF
p (α∗). The outcome of this process defines the dashed curve labeled

Γ1 in Fig. 7. The point α∗ is at the intersection of the Γ1 curve with the X% FNARC curve.
This defines Model #1 (M#1) with uncertainty set Ω1 = {p : α∗ ≤ p ≤ pU}; we also remark
that the µ-software determines in addition the LNARC #1 controller denoted by K1(s).

The process is repeated from the (right) boundary of M#1, α∗. Starting at p = α∗, we
define the set Ωβ = {p : β ≤ p ≤ α∗}. For each value of β, we use the mixed-µ software to

Up

pA

p
Lp

GNARCPerformance parameter FNARC
( )F

pA p X% of FNARC
1Ω2Ω

M #2 M #1
*β *α

12. . .
Figure 7. Visualization of the % FNARC model definition process.
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design the best robust controller by maximizing the performance parameter Ap denoted by
Aβ

p max. As long as Aβ
p max > (X%) · AF

p (β), where AF
p (β) is the parameter value of the

FNARC at p = β, then β is decreased until at β = β∗ we have Aβ∗
p max = (X%) · AF

p (β∗).
The outcome of this process defines the dashed curve labeled Γ2 in Fig. 7. The point β∗ is at
the intersection of the Γ2 curve with the X% FNARC curve. This defines Model #2 (M#2)
with uncertainty set Ω2 = {p : β∗ ≤ p ≤ α∗}. It is noted that the µ-software also determines
the LNARC #2 controller denoted by K2(s). The process is repeated until the parameter
lower-bound is reached.

The % FNARC method is straightforward for systems involving a single scalar uncertain
real parameter. In the case of two, or more, uncertain parameters the procedure has to be
modified. For the case of two or more uncertain parameters, the GNARC, FNARC and %
FNARC become surfaces. The above process yields intersection of surfaces (the equivalent
of Γ1, Γ2, . . . are also surfaces). Unfortunately, the intersection of these surfaces does not
occur along rectangular (or parallelepiped) parameter subsets. However, recall that the mixed-
µ software requires rectangular (or parallelepiped) constraints for uncertain parameter sets.
Suggested modifications to the % FNARC concept are discussed in [2].

3.6. Discussion

In this section we presented an overview of what we believe is the proper way of designing
compensators or multi-controllers for the RMMAC and SMMAC architectures. We are driven
by the desire that we must guarantee (local) robust-stability and robust-performance. This
implies that we must exploit the state-of-the-art of the mixed-µ synthesis methodology and
software. We also stressed the value of having optimized performance lower-bounds (via the
GNARC) and upper-bounds (via the FNARC) to aid the control system designer in the
selection of the models, their number and their numerical specification (and hence complexity
of the adaptive system). We presented two methods (there are more) for defining the models
and the associated compensators (the LNARCs) driven by designer-specified performance or
complexity specifications.

4. DESIGNING THE BANK OF KALMAN FILTERS FOR THE RMMAC
ARCHITECTURE

4.1. Introduction

In this section we discuss the critical issues related to the design of the Kalman filters (KFs)
in the RMMAC architecture. We remark that the design of the bank of KFs is much more
systematic (and complex) that the ad-hoc multi-estimators employed in SMMAC architectures.

The proper design of each KF in the RMMAC architecture of Fig. 4 is crucial in order to
satisfy the theoretical assumptions [61, 62, 63] which will imply that the PPE will yield the
correct model identification. The KF design explicitly utilizes the Baram proximity measure
(BPM) Appendix II presents the summary concepts leading to the on-line generation of the
posterior probabilities and contains the key equations for calculating the Baram proximity
measure (BPM).

The design of the KFs is done after the number of models and their boundaries have been
established using the procedures in Section 3.5. Recall that the original parameter set, p ∈ Pπ (a
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parallelepiped) is subdivided into N subsets (parallelepipeds) denoted by Ωk, k = 1, 2, . . . , N ,
such that

N⋃

k=1

Ωk = Pπ (4.1)

and each Ωk defines the associated Model #k. We need to design a discrete-time steady-state
KF for each Ωk. To accomplish this we need to specify the “nominal” value of the parameter,
denoted by p∗k ∈ Ωk, which will be used to design the kth Kalman filter. Each KF requires
specification of the intensity matrices of the plant white noise and of the sensor white noise.

The “näıve” point of view would be to choose p∗k at the center of Ωk. Unfortunately, this may
lead to unpredictable behavior in the convergence of the posterior probabilities. The correct
way is to select the p∗k using the Baram proximity measure (BPM).

The presence of unmodeled dynamics (and their frequency-domain bounds) is neglected
in the design of the KFs. Unfortunately, we are not aware of any theory that is currently
available to help us design KFs that are “robust” in the presence of unmodeled dynamics.
Thus, to robustify the KFs we often use “fake plant white noise”. This engineering trick [67] is
extremely common in engineering estimation applications. It causes the KF gains to increase
and pay more attention to the measurements, which after all contain the actual information
about the uncertain plant.

4.2. The Baram Proximity Measure (BPM)

Let p ∈ Ω and let p∗ denote the nominal value used to implement a KF. If p = p∗, then the
steady-state KF residual, r∗(t), would be a stationary white-noise sequence with a specific
covariance matrix S∗. If the data were generated by a different LTI system, with p 6= p∗, then
the KF residual r(t) would no longer be white. The BPM is a real-valued function, denoted
by L (p, p∗) which measures how large is the “stochastic distance” between the residuals r(t)
and r∗(t). See Appendix II for details.

Now suppose that p ∈ Ω, as above, but we have designed two different KFs, one (KF #1)
with nominal value p∗1 ∈ Ω and another (KF #2) with p∗2 ∈ Ω. Now we can calculate two
BPMs, L1 ≡ L (p, p∗1) and L2 ≡ L (p, p∗2).

Fig. 8 illustrates this idea for a scalar parameter, p, where we visualize the BPMs L1 and
L2 for all p ∈ Ω. For the specific value p = pA shown, we can see that L (pA, p∗1) < L (pA, p∗2).
The implication of this is that for a 2-model MMAE, when the true value is p = pA,
the posterior probabilities P1(t) → 1, P2(t) → 0, so that we have convergence to Model
#1 (defined by KF #1), even though the Euclidean distances would indicate the opposite
(|pA − p∗1| > |pA − p∗2|).

Fundamental convergence result: In [61] this result was generalized and proved for an
arbitrary number of stable KFs designed for the nominal values p∗1, p

∗
2, . . . , p

∗
N . If the BPM

satisfies the inequality

L(p, p∗j ) < L(p, p∗k) ∀k 6= j = 1, 2, . . . , N (4.2)

then, under some additional stationarity and ergodicity assumptions – see Appendix II – the
posterior probabilities converge almost surely to the correct model, i.e.

lim
t→∞

Pj(t) → 1 (4.3)
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Figure 8. Illustration of Baram proximity measures (BPM).

4.3. Integrating Probability Convergence Results for the RMMAC

The outcome of the controller design of Section 3 yielded the number of models, N, and their
boundaries, in terms of the parallelepipeds Ω1, Ω2, . . . , ΩN which define the models M#1,
M#2, . . . , M#N. The question now is: how do we select the nominal values p∗1, p

∗
2, . . . , p

∗
N to

design the KFs?

The idea, illustrated for three models in Fig. 9 for a scalar parameter, is to use an iterative
algorithm to calculate the nominal KF values p∗1, p

∗
2, p

∗
3, so that the BPMs are equal at the

boundary of adjacent Ωs.

In this manner, the fundamental probability convergence result will guarantee that p ∈
Ωj ⇒ Pj(t) → 1 a.s. This, is the method we use in the numerical RMMAC simulations of
Section 6.

This method becomes more complicated when we have two, or more, uncertain parameters.
It becomes necessary to use some sort of genetic algorithm to determine the optimized nominal
KF design points so that the BPM surfaces agree at the model boundaries [42, 2].

iL

p

BPM 2L

*
1p*

2p

3L

1L

*
3p

1Ω2Ω3Ω

Ω

Figure 9. Optimizing the KF nominal design points using the BPMs so that they are equal at the
boundaries of adjacent models.
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4.4. Discussion

We have presented a brief summary on how to optimize the design of the KFs in the RMMAC
architecture using the BPM, so as to ensure “correct model identification” by the posterior
probabilities. We stress that a KF is optimal if indeed the data is generated by the same
model as that used to design the KF. In adaptive control, however, the true parameter is
NOT identical to that of the “closest” KF in the sense of Section 4.3. Also, the unmodeled
dynamics are not taken into account in the design of the KF. Moreover, the KFs and the PPE
must perform well even when some of the stochastic assumptions are violated. Thus, we may
need to “robustify” the KF to be tolerant of such “errors”. The engineering practice of using
suitable “fake plant white noise” is a very useful tool. We have found [42, 2] that judicious
use of “fake plant white noise” (which causes the KF gains to increase and pay more attention
to the measurements [67]) can be a very valuable tool in improving the quality and speed of
probability convergence. We believe that future fundamental studies of robustifying KFs, in
the context of multiple-model adaptive control, are very relevant. Also, the identification must
work when the parameters change “slowly” as a function of time.

It is also important to note that similar probability convergence results for the MMAE can
be found in [57, pp. 267–279] and cited references therein) which used the so-called Kullback
information metric. The Kullback metric, however, is not a true norm (it violates the triangle
inequality). Nonetheless, it would be highly desirable that future research examines in-depth
the relationship of the BPM and the Kullback metric, especially with respect to posterior
probability convergence behavior.

5. THE RMMAC/XI ARCHITECTURE

The simulations in Section 6 will demonstrate that the RMMAC works quite well even if we
violate the theoretical assumptions for MMAE convergence in a “mild” manner. This fact is
supported by hundreds of different simulations in Fekri’s Ph.D. thesis [2]. Nonetheless, we
must always remember that: theories have limitations, stupidity does not!

Obviously, the superior performance of the RMMAC hinges upon the rapid convergence of
the posterior probabilities to the correct model (see eq. 2.4 and Appendices I and II). As we
remarked in Section 2.5 such a convergence critically depends upon the “regularity” of the
residuals generated by the bank of Kalman filters (KFs) in Fig. 4. Each KF is designed for a
particular covariance matrix cov[ξ(t); ξ(τ)] = E{ξ(t)ξ′(τ)} = Ξδ(t− τ) of the continuous-time
zero-mean plant white noise ξ(t), where Ξ is the plant-noise intensity matrix. The numerical
value of the intensity noise Ξ will determine the size of the KF gains and the residual covariance
matrices Sk. These will determine the size of the colored stochastic disturbances applied to
the plant.

Under normal operating conditions these exogenous plant disturbances will fall within a
specific range. It may very well happen that once-in-a-while the actual plant disturbances
become very much larger than the normal ones∗. During these “abnormal” time-intervals, the

∗Flight load-alleviation automatic control systems are often designed for different levels of turbulence and the
pilot can “switch-in” the appropriate control system. However, in case of extreme turbulence (not anticipated
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actual KF residuals will be much larger than those predicted by their associated “normal”
residual covariances, Sk. Our experience has been that during these “abnormal” time intervals
[2], the posterior probabilities generated by eq. (2.4) can undergo rapid oscillations and frequent
switching among the models and, as a consequence, the RMMAC performance deteriorates;
often it is worse than that of the nonadaptive GNARC design. A numerical example in Section
6 will provide concrete evidence of this phenomenon.

In short, the RMMAC can behave poorly when the true stochastic plant disturbances, as
quantified by the intensity matrix Ξact of the actual plant white noise, are very different from
those associated with the intensity Ξd used to design the linear KFs. If Ξact À Ξd, then
the actual residuals are much higher than, say, the 3-sigma values expected by the residual
covariance matrices Sk – see eq. (2.4) – and this can lead to rapid switching of the posterior
probabilities, “confused identification” and poor RMMAC performance.

If, on the other hand, Ξact ¿ Ξd, then the actual residuals are much lower than, say, the
3-sigma values expected by the residual covariance matrices Sk and this can also lead to rapid
switching of the posterior probabilities, or slow convergence, “confused identification” and
poor RMMAC performance. In this case, the smaller actual plant disturbance may not indeed
provide sufficient persistent excitation, required by the identifiability conditions, to generate
signals that are not masked by the measurement noise.

These pragmatic considerations led us to develop the so-called RMMAC/XI architecture
illustrated in Fig. 10. By increasing the complexity of the RMMAC we can mitigate the
RMMAC performance deterioration problems. The basic idea in RMMAC/XI is to introduce
additional models, i.e. increase the number of hypotheses, to reflect different ranges of the
plant noise intensity matrix Ξ. Let us assume that the number, N , of models and their size
has been determined by the required adaptive performance specifications and that we have
already calculated the N LNARCs denoted by Kk(s), k = 1, 2, . . . , N. Let us further suppose
that the plant noise intensity Ξ is bounded by

Ξ ∈ [ΞL, ΞH ]
and that, for the sake of simplicity, we decide to select two intermediate values, Ξ1 and Ξ2,
such that

ΞL < Ξ1 < Ξ2 < ΞH

Then we design two sets of linear KFs, one set indexed by k = 1, 2, . . . , N using the noise
intensity Ξ1 and the second set indexed by k = N + 1, N + 2, . . . , 2N using the noise intensity
Ξ2. It is important to stress that the nominal points for designing each KF, as determined by
the BPM method of Section 4 will be different (and must be recomputed) for each value of
Ξ1 and Ξ2. Essentially, we have doubled the number of hypotheses in the associated MMAE;
but we can still apply the MMAE-based identification methodology. This allows us to define
the RMMAC/XI architecture shown in Fig. 10.

Note that each of the 2N KFs will now generate a different residual, rk(t), k = 1, 2, . . . , 2N.
Also, we pre-compute the 2N residual covariance matrices Sk. These are introduced to the
PPE of Fig. 10 which will generate 2N posterior probabilities, Pk(t), k = 1, 2, . . . , 2N , one for
each of the 2N hypotheses. Note, however, that the bank, and number, of the N LNARCs is
unchanged, since their design does not depend on Ξ; the LNARCs are only influenced by the

in the design phase) the pilot typically disconnects the control system and flies the aircraft himself.
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Figure 10. The RMMAC/XI architecture.

disturbance frequency weight that is independent of Ξ. Thus, it is important to note in Fig. 10
that each LNARC control signal uk(t), k = 1, 2, . . . , N, is multiplied by the two different
associated posterior probabilities, Pk(t) and Pk+N (t), to generate the overall adaptive control
u(t).

It is obvious how to generalize this idea for more than two values of Ξ. It remains an open
research question on how to select “intelligently” the values of Ξ, other than by brute-force
and trial-and-error.

The advantages of implementing the RMMAC/XI architecture will be clearly demonstrated
in the numerical simulations of Section 6. There we will compare the performance of the
standard RMMAC with that of the RMMAC/XI during “abnormal” disturbance conditions.

6. RMMAC SIMULATIONS

We described above how the RMMAC architecture combines the state-of-the-art in mixed-
µ robust synthesis and multiple model adaptive estimation (MMAE) system identification.
Furthermore, we described the step-by-step design process required to implement a RMMAC
design.

In this section we test and evaluate the disturbance-rejection performance of the RMMAC
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feedback system as compared to the “best” GNARC non-adaptive design. We also illustrate,
in a concrete way, the step-by-step design methodology of Section 3,4, and 5.

We present the outcome of several Monte Carlo (MC) simulations, which demonstrate the
RMMAC performance improvements, as compared to that of the best non-adaptive GNARC
system. Overall, for the example considered, the proposed RMMAC design yields significant
performance improvements over the non-adaptive GNARC, thereby confirming the positive
aspects of this adaptive control method.

We present simulation results when we satisfy or “mildly violate” the theoretical assumptions
for both a constant as well as a slowly time-varying uncertain scalar parameter. We also
discuss what happens when we “severely violate” the theoretical assumptions and compare
the performance of the standard RMMAC and RMMAC/XI in “abnormal” disturbance
environments.

6.1. The Two-Cart Example Dynamics

The RMMAC was tested and evaluated using the two-cart mass-spring-damper (MSD) system,
shown in Fig. 11. A different topology of the two-cart system was analysed by the RMMAC
in [29].

se τ−

Figure 11. The two-cart MSD system. The spring-constant k1 is uncertain. Also, the time-delay, τ , is
uncertain; it represents unmodeled dynamics.

The system in Fig. 11 includes a random colored disturbance force, d(t), acting on mass
m2 and sensor noise on the only measurement of the position of mass m2. The control force
u(t) acts upon the mass m1. The disturbance force d(t) is a stationary first-order (colored)
stochastic process generated by driving a low-pass filter, Wd(s), with continuous-time white
noise ξ(t), with zero mean and unit intensity, i.e Ξ = 1, as follows:

d(s) =
α

s + α︸ ︷︷ ︸
Wd(s)

ξ(s) (6.1)

The overall state-space representation, including the disturbance dynamics via the state
variable x5(t), is:

ẋ(t) = Ax(t) + Bu(t) + Lξ(t)
y(t) = Cx(t) + θ(t)

(6.2)

where the state vector is

xT (t) = [x1(t) x2(t) ẋ1(t) ẋ2(t) d(t)]
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and

A =




0 0 1 0 0
0 0 0 1 0

− k1
m1

k1
m1

− b1
m1

b1
m1

0
k1
m2

− (k1+k2)
m2

b1
m2

− (b1+b2)
m2

1
m2

0 0 0 0 −α




BT =
[
0 0 1

m1
0 0

]
;C =

[
0 1 0 0 0

]

LT =
[
0 0 0 0 α

]

The following parameters in (6.2) are fixed and known:

m1 = m2 = 1, k2 = 0.15, b1 = b2 = 0.1, α = 0.1 (6.3)

The upper and lower-bounds for the uncertain spring constant, k1, are:

Ω = {k1 : 0.25 ≤ k1 ≤ 1.75} (6.4)

The performance variable (output) z(t) is the position of mass m2,

z(t) ≡ x2(t) (6.5)

All feedback loops utilize a single measurement y(t), that includes additive white sensor noise
θ(t), independent of ξ(t) defined by

y(t) ≡ x2(t) + θ(t)

E{θ(t)} = 0, E{θ(t)θ(τ)} = 10−6 δ(t− τ)
(6.6)

The desired disturbance-rejection requires that the effects of d(t) and θ(t) be minimized at
the output, so that z(t) ≈ 0.

Remark: The control problem is hard even if the spring, k1, is known. Clearly, the control
problem becomes much harder in our adaptive design, because the control u(t) is applied via
the uncertain spring, so we are not sure how much force is exerted through the uncertain
spring to the mass m2. Thus, we have a non-collocated actuator problem because the control
is not applied to the mass m2 whose position we wish to regulate.

In addition to the uncertain spring stiffness, we assume that there is, in the control channel,
an unmodeled time-delay τ whose maximum possible value is 0.05 sec, i.e.

τ ≤ 0.05 sec (6.7)

The frequency-domain upper-bound for the unmodeled time-delay, which serves, for this
example, as a surrogate for unmodeled dynamics, is required by the mixed-µ synthesis design
and is the magnitude of the first order transfer function

Wunmod(s) =
2.1s

s + 40
(6.8)
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6.2. Designing the Global Non-Adaptive Robust Compensator (GNARC)

In this section we discuss the details behind the mixed-µ design of the GNARC system,
which guarantees the “best” robust-stability and robust-performance for the entire large spring
uncertainty of (6.4). As explained in Section 3, the GNARC system will define what we can
best expect in the absence of adaptation.

As it is common in H2 or H∞ designs, we use the following frequency domain weights on
the control and measurement noise,

Control weight: Wu(s) =
10(s + 10)
s + 103

Measurement noise weight: Wn = 10−3 (constant)
(6.9)

These, together with the unmodeled dynamics weight (6.8), limit the bandwidth of the closed-
loop system by penalizing large high-frequency control signals. The control weight Wu(s)
allows large controls at lower frequencies, where we desired superior disturbance-rejection,
while penalizing controls at higher frequencies. The frequency weights (6.8) and (6.9) are
incorporated in the definition of the nominal generalized plant, together with (6.2) with
k1 = 1.0. The weights (6.1), (6.8), and (6.9) will not change in any of the subsequent designs.

To carry out the mixed-µ synthesis, the parameter uncertainty of (6.4) is represented by

0.25 ≤ k1 ≤ 1.75 ⇒ k1 = 1.0 + 0.75 δk1 ; |δk1 | ≤ 1 (6.10)

In order to design the “best possible” non-adaptive feedback system the following type of
performance weight upon the output z(t) is used.

Wp(s) = Ap
0.1

s + 0.1
(6.11)

which reflects our specification for good disturbance-rejection for the frequency range ω ≤
0.1 rad/sec where the disturbance d(t) has most of its power; see eq. (6.1). Notice that the
performance weight Wp(s) penalizes the output error in the same frequency range as the
disturbance dynamics Wd(s), while the gain parameter Ap in Wp(s) specifies our desired level
of disturbance-rejection. The larger Ap, the greater the penalty on the effect of the disturbances
on the position. As we described in Section 3, for superior disturbance-rejection Ap should be
as large as possible; how large it can be is only limited by the required guarantees on robust-
stability and -performance inherent in the mixed-µ synthesis methodology.

Fig. 12 shows the MSD plant with weights as required by mixed-µ synthesis. One can
note that there are two frequency-weighted “errors” z̃(t) and ũ(t). This figure is in fact
a block diagram of the uncertain closed-loop MSD system illustrating the disturbance-
rejection performance objective namely the closed-loop transfer function from ξ(t) → z(t),
or d(t) → z(t).

The “position error” z̃ is our main performance variable for evaluating the quality of the
disturbance-rejection. Since

z̃(s) = Wp(s) z(s) = Ap

(
0.1

s + 0.1

)
z(s) (6.12)

we communicate to the µ-design that position errors are most important below the “corner
frequency” 0.1 rad/sec. The larger the “performance parameter” Ap, the more one cares about
position errors at all frequencies.
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Figure 12. The MSD system with weights for mixed-µ synthesis.

The “control error” ũ(t) is defined by

ũ(s) = Wu(s)u(s) = 10
(

s + 10
s + 103

)
u(s) (6.13)

Thus, Wu(s) is a high-pass filter that penalizes the system for using large controls at high
frequencies.

Using the mixed-µ software [48] the performance parameter Ap in (6.11) is increased, as
much as possible, until the upper-bound on the mixed-µ, µub(ω), satisfies the inequality

µub(ω) ≤ 1, ∀ω (6.14)

which is only a sufficient condition for both stability- and performance-robustness. The largest
value of the performance parameter Ap in (6.11) was to be

AG
p = 50.75 (with µub ≈ 0.995) (6.15)

which leads to the GNARC design, i.e. the “best” LTI non-adaptive compensator K(s)
that guarantees stability- and performance-robustness for the entire parameter uncertainty
interval (6.4). As explained in Section 3, the performance characteristics of the GNARC are
to be used as the comparison-basis for evaluating performance improvement (if any) of our
proposed RMMAC design. See Section 3.2.

6.3. Designing the Local Non-Adaptive Robust Compensators (LNARCs)

Following the procedure presented in Section 3, the plots of the maximized performance
parameter Ap for the GNARC design and the FNARC designs (requiring an infinite number
of models) is shown in Fig. 13. This figure shows that there is a potential 20-fold improvement
in performance by using adaptive control.

Remark: In Fig. 13, the GNARC and FNARC look flat for all values of k1. Actually, the
FNARC becomes a little smaller as we approach small values of k1, but this can not be noticed
in the figure. This “flatness” disappears if we change our control specifications [2].

Next, we specify a desired level of adaptive performance to be 70% of the FNARC, i.e.
X = 70%, following the discussion of Section 3.5.2.
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Figure 13. Best GNARC and FNARC performance gains for spring-stiffness uncertainty interval in
(6.4); note the log scale along the vertical axis.

Fig. 14 shows how four models (subintervals) are determined to be used for the RMMAC
based upon the required performance level of X = 70%.

Their characteristics are summarized in Table II. Explanation. We now provide a bit more
detail on how the four models of Fig. 14 are obtained. Starting at the North-East corner labeled
F1, k1 = 1.75, (because the FNARC is maximum there) we slowly open-up the uncertain
interval denoted by Ωb = {k1 : b ≤ k1 ≤ 1.75}. For each interval, we iterate (using the mixed-
µ software [48]) to calculate the maximum performance parameter Ab

p which results in the
dashed curve, labeled Γ1 in Fig. 14. When the curve Γ1 intersects the 70% FNARC curve we
stop. In this example, this occurs at k1 = 1.02 which yields the subset Ω1 = [1.02, 1.75], i.e.
1.02 ≤ k1 ≤ 1.75, Model M#1, and LNARC #1. The left boundary of M#1 defines the point
labeled F2 on the FNARC. Starting from this point we slowly open up the interval denoted by
Ωc = {k1 : c ≤ k1 ≤ 1.02}. Once more, we iterate using the mixed-µ software to calculate the
maximum performance parameter Ac

p which results in the dashed curve, labeled Γ2 in Fig. 14.
When the curve Γ2 intersects the 70% FNARC curve we stop. In this example, this occurs
at k1 = 0.64 which yields the subset Ω2 = [0.64, 1.02], i.e. 0.64 ≤ k1 ≤ 1.02, Model #2, and
LNARC #2. Repeating this process leads to the curves labeled Γ3 and Γ4 in Fig. 14 and the
four models summarized in Table II.
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Figure 14. Construction of the four models using the performance requirement X=70% of the FNARC.
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Table II. Summary of models and performance parameters

Compensator Ω X% A∗p
GNARC Ω = [0.25, 1.75] 5.1% AG

p =50.75
LNARC #1 Ω1 = [1.02, 1.75] 70% A1

p=694.5
LNARC #2 Ω2 = [0.64, 1.02] 70% A2

p=694.5
LNARC #3 Ω3 = [0.40, 0.64] 70% A3

p=694.5
LNARC #4 Ω4 = [0.25, 0.40] 70% A4

p=694.5
∗ Best performance gains for the GNARC and each of the

four LNARCs used in subsequent designs vs “FNARC”

As a result, the entire initial uncertainty set of (6.4) is covered by four models requiring four
local compensators. Clearly, the reduction in parameter uncertainty allows larger performance
gains for designing the LNARCs, resulting into guaranteed both stability- and -performance
robustness over the corresponding subintervals of Table II. Note that we should expect, on the
average, about 20 times better performance from the RMMAC as compared to the GNARC (
694.5/50.75)

The above model selection procedure also generates four “local” robust compensators, K1(s),
. . . , K4(s), designed for each subinterval (model) defined in Table II; these are referred to as
LNARCs. In the mixed-µ synthesis, the weights (6.1), (6.8) and (6.9) were the same as in the
GNARC design of Section 6.2. However, for each LNARC design, the performance parameter
Ap in (6.11) is maximized until the mixed-µ bound of (6.14) is achieved, and their optimized
values are shown in the last column of Table II.

Fig. 15 compares the GNARC compensator K(s) with the four LNARCs, namely K1(s), . . . ,
K4(s) by examining their Bode magnitude plots; it is clear that at low frequencies the LNARCs
generate a loop-gain about 20 times as large compared to the GNARC and this, naturally,
leads to the performance improvements in disturbance-rejection discussed below, especially in
the specified frequency region ω < 0.1 rad/sec. We emphasize that each individual LNARC
closed-loop design has guaranteed performance- and stability-robustness over its associated
parameter subinterval of Table II. These also confirm the “rough” predictions implied by
Table II. These also confirm the “rough” predictions implied by Table II.

Remark: In the design philosophy adopted in this paper we have stressed that the adaptive
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Figure 15. Compensator frequency-domain characteristics (Bode plot) of the GNARC and the four
LNARCs.
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controller complexity, as measured by the number of models in the RMMAC should be the
natural by-product of the performance requirements. We have just demonstrated that if we
demand that the performance equals or exceeds X=70% of the FNARC, we require the four
models summarized in Table II.

If we are willing to accept a somewhat inferior performance and select, say, X=50% then
the procedure outlined yields only two models. If we wish to have much better performance
and select, say, X=90%, then the outlined procedure yields nine models. Therefore, as we
demand better and better performance we must increase the RMMAC complexity, and this
agrees with engineering intuition. If explicit performance requirements were used in the design
of the SMMAC, the same philosophy could be applied for those architectures as well.

6.4. Predicting Potential RMMAC Performance Benefits

Testing the RMMAC requires significant computation using multiple Monte Carlo (MC) runs
under different scenarios. It is highly desirable, as explained in Section 3, to use the LTI
feedback designs, using the GNARC and LNARCs, to quantify the potential benefits of using
adaptive control in general, and the RMMAC in particular. From a pragmatic engineering
perspective we must have tradeoffs that contrast the performance improvements (if any) of the
very sophisticated RMMAC vis-a-vis the much simpler non-adaptive GNARC design. To the
best of our knowledge, such performance tradeoffs have not been explicitly quantified in other
adaptive control studies.

Referring to Fig. 4, the RMMAC requires the on-line computation of its four Kalman
filters (KFs) as well as of its four dynamic LNARCs, K1(s), . . . , K4(s), in addition to the
calculation of the four posterior probabilities, P1(s), . . . , P4(s), by the posterior probability
evaluator (PPE) – a lot of computations!

In order to understand how one can easily predict the potential RMMAC performance
characteristics, assume that one of the posterior probabilities converges to its nearest
probabilistic neighbor (which it does, as we demonstrate in the sequel); it follows that, after
a transient time, a specific LNARC is used. After the probability convergence, the RMMAC
essentially operates as an LTI stochastic feedback system!

In the spirit of Table I, this allows us to calculate two key transfer functions for disturbance-
rejection and control signal characteristics

Disturbance - rejection:
Mξz(s) ≡ z(s)

ξ(s) or Mdz(s) ≡ z(s)
d(s)

Control - signal:
Mξu(s) ≡ u(s)

ξ(s) or Mdu(s) ≡ u(s)
d(s)

(6.16)

for different values of the uncertain spring stiffness of (6.4), for the GNARC and for each
LNARC design.

Fig. 16 illustrates the above using the different spring constants quantifying the potential
RMMAC improvement in disturbance-rejection in the frequency domain. Fig. 16 predicts
that the RMMAC has the potential to significantly improve disturbance-rejection on the
order of 1

Ap
. These predictions will be again validated in the sequel.

Similar plots for control signal characteristics can be made for other values of the uncertain
spring constant. Other transfer functions could also be computed (not shown) from the plant
disturbance ξ(t) and the sensor noise θ(t) to the control u(t).
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Figure 16. Potential improvement from RMMAC visualized by Bode plots of the disturbance-rejection
transfer function |Mξz(jω)| of eq. (6.16).

Fig. 17 evaluates the potential performance improvement of using RMMAC by using
stochastic metrics, namely by comparing the steady-state RMS errors of the output z and the
control u, for different values of k1. Assuming that ξ and θ are indeed white noises, these RMS
results are readily computed by solving standard covariance algebraic Lyapunov equations
for stochastic LTI systems, e.g. [60]. The graphs of Fig. 17 vividly suggest that RMMAC
has the potential of decreasing the output RMS by a factor of 2–5 over that obtained from
the GNARC system. Note that the potential improvement in output RMS requires controls
with higher RMS values, as expected. Note also that, since we are using µ-synthesis, the
GNARC, FNARCs and LNARCs we design are H∞ compensators. These H∞ compensators
do not necessarily minimize RMS errors, unlike H2 controllers. Nonetheless, RMS metrics are
important in engineering analyses and complement the frequency-domain plots of Fig. 16.

Finally, it is important to construct what we call the “Mismatch Model/LNARC” table
shown in Table III.

The interpretation of Table III answers the question: what happens to closed-loop stability
if we use the LNARC #Kj(s) when the true spring constant is in subinterval (or model) #i?
The diagonal entries in this table are always robustly-stable, by construction. Examining the
first row in Table III it is observed that for Model #1, i.e. for all k1 ∈ [1.20, 1.75], if we use the
LNARC #4 we always have instability (U); if we use the LNARC #2 we have instability for
smaller values of k1, but have stability for larger values (CU). This is due to the fact that the
mixed-µ upper-bound inequality (6.14) is only a sufficient condition for both robust-stability
and robust-performance and, hence, each LNARC design will actually have a wider robust-
stability region. It turns out that for this example, LNARC #1 maintains stability for all
k1 ∈ [0.69, 1.75], LNARC #2 for all k1 ∈ [0.43, 1.58], LNARC #3 for all k1 ∈ [0.25, 1.01], and
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Figure 17. Predicted potential RMS performance of the RMMAC vs GNARC. We assume zero sensor
noise for these plots. (a): Output RMS comparisons from ξ(t) to z(t). (b): Control RMS comparisons

from ξ(t) to u(t).

Table III. Mismatched Model/LNARC Stability

Model LNARC
# #1 #2 #3 #4
1 S CU U U
2 CU S CU U
3 U CU S S
4 U CU S S

Legend: S ≡ always stable
U ≡ always unstable
CU ≡ conditionally unstable

LNARC #4 for all k1 ∈ [0.25, 0.73]. Of course, performance-robustness is only guaranteed for
the models defined in Table II.

6.5. Designing the MMAE and RMMAC Identification Subsystem

We now follow the process described in Section 4 to design the four Kalman filters (KFs)
outlined in the RMMAC architecture of Fig. 4.

As explained in Section 4, a great deal of care must be exercised in designing the Kalman
filters (KFs) in the RMMAC architecture, since the convergence of the appropriate posterior
probability to its nearest probabilistic neighbor is at the heart of the RMMAC identification
process (see Appendices I and II). The basic decision in designing the KFs in Fig. 4 is how
to select the nominal value of the uncertain spring stiffness, k1, denoted by k∗1i, i = 1, 2, 3, 4,
which must be used for designing each of the four KFs. We stress that these nominal values
are not at the centers of the sets Ωj defined in Table II. Rather, as explained in Section 4, the
KF design points, k∗1i, i = 1, 2, 3, 4, must be determined by an iterative optimization process
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so that the Baram proximity measures (BPMs) agree at the boundaries of adjacent sets Ωj .
The outcome of this optimization process is shown in Fig. 18 using the optimized KF nominal
values.
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−8.13
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Model#4
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Figure 18. Baram proximity measures (BPM) for the optimized four KFs. Note that the BPMs are
the same at the boundaries of adjacent model pairs.

In Fig. 18 the curves show the BPM, denoted by Li, for any value 0.25 ≤ k1 ≤ 1.75 for each
of the four optimized KFs. This process is required so that for any k1 ∈ Ωj , the corresponding
posterior probability Pj → 1, Pk → 0 ∀k 6= j. The specific nominal KF numerical values for
this example were obtained by iteration and are

K∗1 = [1.2 0.75 0.47 0.30] (6.17)

where k∗1i = K∗1[i] is the nominal spring constant k1 used in Model #i associated with KF #i.
In Fig. 18 the numerical values (6.17) are shown as “diamonds” on the k1 axis.

Although the GNARC and LNARC compensators are designed in continuous time, all
simulations for this example were implemented in discrete-time using a zero-order hold with a
sampling time of Ts = 0.01 secs. The KFs in the MMAE algorithm were designed in discrete-
time using the sampling interval Ts.; all continuous-time dynamics (plant, frequency weights,
etc) were transformed to their discrete-time equivalents. In addition, the correct covariance
intensities of the discrete-time white noise sequences, ξ(.) and θ(.), defined in (6.1) and (6.6),
were calculated [60] and used to design the four steady-state discrete-time KFs as well as the
posterior probability evaluator (PPE) in Fig. 4; these discrete-time numerical results were used
in all Monte Carlo (MC) simulations that are presented in the sequel.

As explained in Section 2.4, the real-time KF residual sequences in Fig. 4, rj(t); j = 1, . . . , 4;
t = 0, 1, 2, . . ., are used by the PPE to generate on-line the four posterior probabilities, Pj(t);
j = 1, . . . , 4; t = 1, 2, . . ., which are next used to generate the overall RMMAC control signal
u(t) by probabilistic weighting, i.e.

u(t) =
4∑

j=1

Pj(t)uj(t) (6.18)

where the uj(t) are the “local” controls generated by each LNARC, Kj(s), designed in
Section 6.3.
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6.6. RMMAC Stochastic Simulations and Performance Evaluations

Unless stated otherwise:
(a) all simulations use a plant-stochastic disturbance and white measurement noise generated
according to (6.1) and (6.6). The true system includes an actual (but unmodeled) “legal”
time-delay of 0.01 secs in the control channel.
(b) all initial model probabilities are initialized to be Pk(0) = 0.25 (k = 1, . . . , 4) at t = 0 secs.
(c) we present numerical averages for 5 MC simulations.

In the sequel some representative stochastic simulations are shown using the complete
RMMAC closed-loop system. Due to space limitations, we only show “typical” plots; however,
our conclusions are based on thousands of other MC runs not explicitly shown in this paper
[2].

6.6.1. “Easy” Identification, I: The dynamic evolution of the four posterior probabilities
when the true k1 = 1.65, well inside the Model #1 subinterval, and the corresponding outputs
for the RMMAC and the GNARC systems are shown in Fig. 19. The correct model (Model #1)
is identified quickly in about 2 secs. The significant improvement in disturbance-rejection by
the RMMAC vis-a-vis that of the GNARC is evident as shown in 19(b).

6.6.2. “Easy” Identification, II: The dynamic evolution of the four posterior probabilities
when the true k1 = 0.3, well inside the Model #4 subinterval, and the corresponding outputs
for the RMMAC and the GNARC systems are shown in Fig. 20(a). The correct model
(Model #4) is identified quickly in about 10 secs. The improvement in disturbance-rejection
by the RMMAC is again evident as shown in Fig. 20(b).

6.6.3. “Harder” Identification: When the actual spring constant is near the boundary
between two models, it takes longer (more data) to resolve the true hypothesis. In this example,
k1 = 0.405 is selected which belongs to Model #3 but is also very “close” to Model #4, see
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Figure 19. Simulation results for k1 = 1.65 in Model #1.
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Figure 20. Simulation results for k1 = 0.3 in Model #4.

Fig. 18. The probabilities vs time as well as output comparisons are shown in Fig. 21. It takes
about 50 secs to resolve the ambiguity between Models #3 and #4.

Fig. 21(a) shows that the probabilistic weighting of the control according to (6.18) persists
for about 50 secs. However, as evidenced by Fig. 21(b), there is no significant degradation of
the RMMAC disturbance-rejection as compared to the GNARC.

In order to demonstrate that the probabilistic weighting (6.18) works very well we present
the following result. In Fig. 22 the performance of the nonadaptive system is shown when we
fix P3(t) = 1,∀t = 0, 1, 2, . . . , i.e. when we have “perfect” identification from the start, with
that of the RMMAC and compare the resulting output response. The results shown in Fig. 21
demonstrate that the probabilistic averaging results in insignificant performance deterioration.
Hence our “probabilistic gain-scheduling” works well.
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Figure 21. Simulation results for k1 = 0.405 (in Model #3), but also close to Model #4.
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Figure 22. LNARC #3 (perfect identification) and RMMAC output comparisons for k1 = 0.405. Note
the insignificant deterioration in disturbance rejection by the RMMAC.

6.6.4. Mismatch Model/LNARC Instability: In Section 6.4 we raised the critical issue of
Model/LNARC mismatch instability. In Table III the mismatch-stability properties of the
LNARC designs are summarized. We discuss this important issue by some simulations.

First, we evaluate the RMMAC response when we force it to be unstable at time t = 0.
Fig. 23 illustrates a typical result selected from several different MC simulations. In Fig. 23
the true value of k1 is 1.75 in Model #1. From Table III we know that if we use LNARC #4,
K4(s), with Model #1 we have an unstable closed-loop system. In order to force this initial
instability, the initial values of the probability vector are selected to be

P1(0) = P2(0) = P3(0) = 0.01, P4(0) = 0.97

so that initially, at least at t = 0, the RMMAC system is forced to be unstable. However,
as illustrated in Fig. 23, the RMMAC rapidly recovers to a stable configuration. Fig. 23(a)
shows that the “correct probability” P1(t) → 1 within 1.3 secs, starting from its initial value
P1(0) = 0.01; the other three probabilities converge to zero within 1.3 secs as well. Fig. 23(b)
shows the output response in which, after an initial period of brief “instability”, the RMMAC
recovers and returns to its predictable superior disturbance-rejection.

Fig. 24 illustrates another mismatch-instability result, similar to the above case with
k1 = 1.75 in Model #1. This test was suggested by Prof. B.D.O. Anderson. To force this
instability, using LNARC #4 as above, we force the posterior probabilities starting at time
t = 60 secs to be

P1(T ) = P2(T ) = P3(T ) = 0.01, P4(T ) = 0.97; for all T, 60 < T < 60.1 secs

This forces the RMMAC system to be unstable at time t = 60 for 0.1 secs which corresponds
to 10 discrete-time measurements. Fig. 24 shows that the RMMAC rapidly recovers to a stable
expected configuration. Fig. 24(a) shows that initially P1(t) → 1 so that the correct Model #1
is identified. Then it is forced to P1(60) = 0.01. Fig. 24(b) shows the output response in which
the RMMAC quickly recovers, following some oscillations induced by the forced instability, re-
identifies the correct Model #1 and returns to its predictable superior disturbance-rejection.
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Figure 23. The RMMAC recovers from forced unstable configuration at t = 0, when k1 = 1.75 in
Model #1.
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Figure 24. The RMMAC recovers from a forced unstable configuration at T = 60 secs with k1 = 1.75
in Model #1.

Comments on Instability: The RMMAC is designed to operate in a stochastic environment.
Thus, it is conceivable that very unlikely events of very small probability can infrequently
occur. Such an event may occur by having at the same instant of time a plant noise and sensor
noise, say, at the 10+ sigma-level of their associated gaussian distributions and this would
lead to an unstable RMMAC mismatch configuration of the type shown in Figs. 23 and 24. In
the case of Fig. 24 the same unlikely event must persist for 10 consecutive measurements
and since the white noises are independent this event has truly infinitesimal probability
of occurrence. Even so, as long as the remainder of the theoretical assumptions are valid,
Figs. 23 and 24 demonstrate that the RMMAC can rapidly recover as long as the forced
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temporary instability does not make the KF residuals to be completely inconsistent with their
precomputed covariances – see eq. (2.4). This fact is supported by numerous similar simulations
[2] not shown here.

For the system discussed in this subsection, a forced instability starting at t = 60 secs and
lasting until t = 62.6 secs (a total of 260 discrete-time consecutive measurements) caused one
out of 10 Monte Carlo runs to be completely unstable, while nine recovered and eventually
identified the correct model after a prolonged period of violent oscillations (as expected). A
forced instability for the time interval 60 ≤ t ≤ 63.4 (a total of 340 consecutive measurements)
caused all 10 MC RMMAC simulations to be unstable. Clearly, the probability of such events
is immensely infinitesimal!

Future adaptive simulations, especially those involving multiple-models, should explicitly
report upon such mismatch-instability simulations. After all, the more models we use the
higher the performance and loop-gain and of the associated local compensators, i.e. LNARCs.
This fact will certainly imply that a large subset of the N local compensators can potentially
lead to severe mismatch-unstable combinations.

6.7. Mild Violations of the RMMAC Convergence Assumptions

The theory which guarantees the convergence of the posterior probabilities [61, 62] assumes
that all MMAE signals are stochastic stationary random processes. With some additional
ergodicity conditions, all results presented in Section 6.6 satisfied those assumptions, and
we have indeed observed convergence to a nearest probabilistic neighbor. In this section
we evaluate the RMMAC performance when we intentionally “mildly violate” some of the
above assumptions, because this will always happen for real systems. We shall show that
the RMMAC still performs quite well; in a sense it appears “robust” to mild violations of
the theoretical assumptions. We evaluated the RMMAC performance over a wide variety
of operating conditions, for different values of the uncertain spring stiffness [2]. In all the
RMMAC worked well and no instabilities were observed. The following representative cases
are presented.

6.7.1. Step Plant Disturbance: In this set of simulations we used a deterministic periodic
square-wave disturbance, ξ(t) = ±2.0, with a period of 60 secs, rather than pure plant white-
noise. The sensor noise was white as in Section 6.6. The KFs in the RMMAC were NOT
aware of the square-wave ξ disturbance; they continued to use (6.1) to model the disturbance
dynamics. The true spring stiffness is k1 = 1.75 in Model #1. Fig. 25 shows the simulation
results for one MC run.

Note that after 2 secs the posterior probabilities converge to the correct Model #1, i.e.
P1(t) → 1 as shown in Fig. 25(a). The RMMAC performance is excellent, as shown in
Fig. 25(c).

6.7.2. Sinusoidal Sensor Noise: We also tested “robustness to the assumptions” by using a
high frequency sinusoid for the measurement noise, θ(t) = 10−3 sin(10t), rather than pure
white noise. Fig. 26 shows a representative simulation using the value k1 = 0.3, which is
in Model #4. Fig. 26(a) shows that the “correct” probability P4(t) → 1 within 5 secs. The
improvement in disturbance-rejection is again obvious from Fig. 26(b). Fig. 26(c) shows a
comparison of the control signals. Both GNARC and RMMAC control signals have sinusoidal
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Figure 25. RMMAC performance when the actual disturbance d(t) is a ±2 periodic (filtered) square-
wave. The true k1 = 1.75 (in Model #1).

components at steady-state. As expected, the amplitude of the RMMAC control is slightly
larger than that of the GNARC since the RMMAC yields improved disturbance-rejection.
Only one MC run is shown.

6.7.3. Slow Parameter variation: As mentioned in Section 1, a driving engineering motivation
for using adaptive control is the need to deal with “slow” changes in the plant uncertain
parameters. In all the numerical simulations presented up to now, we constrained the
uncertain parameter to remain constant for all time. Of course, the presence of a time-
varying spring stiffness violates the plant LTI assumption, and hence all stationarity and
ergodicity assumptions (required to prove the posterior probability convergence results) do
not hold. Nevertheless, it is important to understand, for any adaptive system, its behavior
and performance in the presence of slow parameter variations.

In the following numerical MC simulations, the uncertain spring stiffness is assumed to be
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Figure 26. RMMAC robustness to sinusoidal sensor noise, for k1 = 0.3 in Model #4.

sinusoidal with frequency 0.01 rad/sec, i.e.

k1(t) = 1− 0.75 cos 10−2t (6.19)

as shown in Fig. 27(a). The dashed-lines in Fig. 27(b) indicate the times that the spring
stiffness crosses the boundaries of the four models of Table II. Fig. 27(b) also shows the
dynamic evolution of the four posterior probabilities, while Fig. 27(c) compares the GNARC
and RMMAC output responses and demonstrates that the RMMAC continues to work very
well.

It is tempting to interpret Fig. 27(b) as demonstrating a “transient” in the identification
process. This may well be true, but the reader should realize that the signals generated by the
time-varying plant cannot be interpreted using “frozen model” reasoning. After all changing the
spring stiffness according to (6.19) implies an exogenous energy transfer as a function of time,
which is not accounted for in a “frozen” model. This opens up avenues for future research,
especially with LPV system-theoretic concepts [71, 72, 73, 74]. Nonetheless, the results of
Fig. 27 (and many others not presented herein) demonstrate the ability of the RMMAC in
dealing with slowly-varying uncertain parameters. However, we cannot specify how slow is
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Figure 27. RMMAC responses for the sinusoidal parameter variation of eq. (6.19) using 5 MC
simulations.

“slow”, and still obtain satisfactory RMMAC performance, without simulations.

6.8. Widely Varying Disturbance Environments and the RMMAC/XI Architecture.

We shall now demonstrate the poor performance of the standard RMMAC when the plant
disturbance environment is highly uncertain; this represents a severe violation of the underlying
assumptions. We shall also demonstrate how the RMMAC/XI architecture, developed in
Section 5, overcomes these shortcomings and yields outstanding disturbance-rejection.

First, let us suppose that the N=4 model standard RMMAC, designed for unit intensity,
Ξ = 1, of the plant white noise ξ(t) (see eq. (6.1)) has been implemented as in the previous
simulations of this section. Let us now suppose that the actual plant white noise ξ(t) is
generated by the square-wave intensity sequence, shown in Fig. 28(a), which changes from the
“normal intensity” Ξ = 1 to the “abnormal intensity” Ξ = 100. Thus, periodically, every 100
secs the standard RMMAC is subjected to the very large (an unanticipated) disturbance d(t)
shown in Fig. 28(b) generated by eq. (6.1). Figure 28(c) shows the evolution of the four posterior
probabilities using the value k1 =1.5 in Model #1. It is evident from Fig. 28(c) that during
the time-intervals associated with the “normal” disturbance, P1(t) → 1 so that the correct
model #1 is identified. However, during the time-intervals of the “abnormal” disturbance
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Figure 28. The standard RMMAC performance when we have a periodic severe violation of the
theoretical assumptions. The KFs are designed for the “normal” intensity Ξ = 1, but the actual
noise intensity is a periodic square-wave with Ξact ∈ {1, 100}. The true spring stiffness is k1 =1.5 in

Model #1. Only a single Monte Carlo simulation is shown.

all posterior probabilities switch rapidly and exhibit “model-identification confusion.” The
impact upon the standard RMMAC performance is shown in Fig. 28(d). There is no long-
term instability; however, during the “abnormal” time-intervals the disturbance-rejection of
the RMMAC is about the same as that of the (nonadaptive) GNARC. Hence, we conclude
that this severe violation of the theoretical assumptions drastically degrades the RMMAC
performance. Similar behavior was observed in many other “abnormal” simulations [2](not
shown here).

We next demonstrate how the use of the RMMAC/XI architecture of Fig. 10 with N=4
alleviates the performance-deterioration noted above. We implement eight KFs. The first four
KFs (k=1,2,3,4) are designed for the noise intensity Ξ=1 and are identical to those used before.
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The last four KFs (k=5,6,7,8) are designed for the noise intensity Ξ=100; for these the BPM
procedure discussed in Section 6.5 was repeated to design KF #5,6,7,8 (results not shown).
The four LNARCs remain the same since they do not depend upon the value of the intensity
Ξ.

We show simulations for the same spring constant k1 =1.5 as in Fig. 28. In this case, the
true model is Model #1 when Ξ=1 but changes to Model #5 when Ξ=100. Figure 29 shows
the results obtained from simulations using the same square-wave Ξ intensity as in Fig. 28(a),
repeated in Fig. 29(a). The time-evolution of the eight posterior probabilities is shown in Fig.
29(c); note that the posterior probabilities identify the correct models almost immediately, i.e.

P1(t) → 1 for t ∈ [0, 50] ∪ [150, 250] ∪ [350, 400]
P5(t) → 1 for t ∈ [50, 150] ∪ [250, 350]

Fig. 29(b) compares the disturbance rejection of the standard RMMAC (from Fig. 28(d))
with that of the RMMAC/XI. It is clear that in this example the RMMAC/XI yields truly
outstanding disturbance-rejection; similar conclusions were arrived at in [2] from numerous
other similar simulations.

6.9. Discussion of Numerical Results

The stochastic simulation results presented in this paper demonstrate the excellent
performance of the RMMAC system. Compared to the “best” non-adaptive design, GNARC,
the RMMAC and RMMAC/XI consistently had superior disturbance-rejection. No closed-loop
instabilities were noted in thousands of MC simulations, with the exception of forced prolonged
mismatch instabilities as noted in Section 6.6.4.

The example illustrated how to predict (and then validate) the potential performance
characteristics of the RMMAC. This was done by analyzing the corresponding LTI feedback
loops involving the GNARC and each of the four LNARCs so as to generate RMS
predictions, frequency-domain visualizations for disturbance-rejection etc. We emphasize that
this constructive capability is critical so that quantitative tradeoffs can be carried out, before
one constructs and tests the full-blown RMMAC design with numerous MC simulations.

The RMMAC performance conclusions reported here validate earlier simulations by the
authors. In [27] we analyzed, using a five-model RMMAC, an academic SISO non-minimum
phase (NMP) plant with a single uncertain right-half plane zero which poses fundamental limits
to superior disturbance-rejection near its frequency; see, for example, [70]. In that example,
the GNARC “hedged” for the minimum value of the NMP zero. If the true zero was near its
minimum value, the RMMAC performance was essentially the same as for the GNARC (no
magic properties). The true value of the RMMAC shows when the true NMP zero is large;
then the RMMAC produces truly superior performance vis-à-vis the GNARC. The interested
reader may also review the RMMAC results reported in [29] for a different two-cart mass-
spring-dashpot non-collocated system with a mass uncertainty. However, the previous results
[27] and [29] did not use the systematic FNARC based approach for defining the models (in
the spirit of Fig. 14) nor the optimized KF design using the BPM (in the spirit of Fig. 18).
Several other SISO and MIMO results and examples can be found in the doctoral dissertation
of S. Fekri [2].

The computation time required by the RMMAC is modest for the numerical example
considered in this section. In a single Monte Carlo simulation we carry out, in real-time, the
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Figure 29. The RMMAC/XI performance for varying plant noise intensity. The true spring constant
is k1 =1.5 in Model #1 when Ξ=1 but in Model #5 when Ξ=100. Note that the correct probabilities,
P1(t) and P5(t), almost instantaneously go to unity whenever Ξ changes. Only a single Monte Carlo

run, with the same seed as in Fig. 29, is shown.

required on-line calculations and simulations for the four KFs, the PPE and the four LNARCs
using a sampling time of 0.01 secs. These were done thirteen times faster than real-time using
a Toshiba Satellite Pro laptop with an Intel Pentium M 1.5GHz processor, running under
Windows XP Pro (SP2) and Matlab 7.0.

We also carried out several simulations using the “switched version” of the RMMAC
discussed in Section 2.4 [2]. Our experience is that the “switched RMMAC” leads to larger
RMS errors during the identification transient interval for constant uncertain parameters.
After the posterior probability converges, of course both RMMAC versions behave in the same
manner. This is the reason that we focused upon the RMMAC architecture of Fig. 4 that
utilizes probabilistic weighting of the control signals via eq. (2.3).
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Finally, we stress that all mixed-µ computations to determine the GNARC and LNARCs
were carried out by the (as yet non-commercially available) software provided to us by
Prof. G. Balas [48]. If we had designed these compensators with the commercial version of
Matlab [49], which uses only the D-K scales in the iterative design of the H∞ compensators,
they would be much more conservative and the performance improvements would be inferior
[69].

7. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

We have presented a brief overview of different approaches to adaptive control that utilize
multiple-model architectures. Recent research in the area of the CMMAC and RMMAC
architectures seems most promising, but we still have no widely accepted solution to the robust
adaptive control problem. As a consequence, there is still a great deal of work that needs to be
done, both theoretical and applied, to fully understand the similarities and difference among
the two architectures and the variants within each one, and suitable extensions.

Any future theoretical research must adopt a design methodology. We strongly believe that
the adaptive problem formulation should always include unmodeled dynamics, unknown plant
disturbances and sensor noise, in addition to the (slowly-varying) uncertain real parameters.
Furthermore, the design methodology should contain explicit performance specifications and
performance-robustness should be an integral part of the adaptive problem formulation. Thus,
closed loop-stability arguments are not enough. This implies that the “local” compensators,
the LNARCs, must be designed to exhibit both local robust-stability and robust-performance,
following the ideas presented in Section 3 and as utilized in our RMMAC architectures. In
the unfalsified control methodologies, if robust-performance is to be considered, the available
results must be significantly extended; most probably, the family of robust compensators
available for unfalsified and safe control will also have to be designed using the methodology
suggested in Section 3. Recent results in unfalsified control [30, 31] claim stability, but
performance is not addressed (after all, an open-loop stable highly-uncertain plant remains
robustly-stable with no feedback, albeit with lousy performance).

The structure of the multi-controllers used in the SMMAC architecture does not explicitly
reflect a robust-performance requirement. Indeed, for the most part, the SMMAC multi-
controllers have a common Ac-matrix (so all controllers have the same poles). This was done for
the purpose of computational simplicity and “bump less transfer” to avoid control transients.
However, such controller structures are not appropriate if performance-robustness is desired.
A recent exception [75] uses multi-controllers that have an LQG structure, but they use pole-
placement ideas, which are also notorious for their lack-of-robustness properties. On the other
hand, the RMMAC architecture deals directly with such robust-performance issues and the
dynamic characteristics of the RMMAC compensators are quite different.

We believe that, as stressed in Section 3, one cannot arrive at a systematic procedure
for defining the number of models required in any multiple-model scheme without explicit
performance specifications. Specification of complexity requires fixing the number, N , of
models; however, one still needs to properly calculate their “boundaries.” Specification of
the required performance, such as in the % FNARC method, would naturally lead to the
required number of models and their boundaries. In either case, one needs to utilize the mixed-µ
methodology to maximize performance and derive the LNARCs.
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We note that for many industrial applications, where “tuned” PID controllers are judged
to yield satisfactory performance, designing the LNARCs may be an overkill. Based upon
operator experience, one can define the N models in an ad-hoc manner as opposed to systematic
procedures of Section 3. In such cases, one can still design the KFs, using the BPM methodology
of Section 4 and obtain and implement the “identification subsystem” of the resulting RMMAC.

We now consider the “system identification” part of the SMMAC and RMMAC architectures.
In the RMMAC architecture the approach is stochastic and relies on the residuals generated
by the bank of KFs. These must be designed very carefully so as to meet the probability
convergence results, as explained in Section 4 and Appendices I and II. In the SMMAC
architectures the approach is deterministic and relies upon the prediction errors generated
by a bank of multi-estimators, which are a special class of Luenberger observers. In all cited
SMMAC references, with the exception of [75], each estimator uses the same “AE” matrix, i.e.
all observers have identical stable poles. This was done to minimize on-line computation.
An integral norm of the prediction errors is used for the system identification function.
Research should be done to remove the common “AE” matrix assumption and use more
general observers. Also, the assumption of scalar prediction errors must be removed to make
the SMMAC architectures extendable to the MIMO case. In [75] this was done, but the
problem of designing suitable deterministic MIMO Luenberger observers, say by eigenstructure
assignment, becomes quite complex.

Our experience has shown that the RMMAC can effectively deal with “slowly time-varying”
parameters. It may be interesting to examine if one can integrate the RMMAC philosophy
and methodology with the evolving theory of Linear Parameter Varying (LPV) systems
[36, 37, 38, 39, 40, 41, 71, 72, 73, 74, 76].

A weakness of the MMAE algorithm is that the Baram Proximity Measure (BPM) – see
Appendix II – cannot be defined or calculated for open-loop unstable plants. Thus, if in an
RMMAC application the plant is unstable one would not be able to use the ideas of Section 4,
which are based on the BPM, to design the KFs. One can still design KFs (and RMMACs) for
unstable plants, but one would most likely have to use trial-and-error methods in designing
the KFs and ensuring convergence of the posterior probabilities. This defines a key and very
important area for future research.

With respect to the RMMAC and RMMAC/XI architectures, if one or more of the LNARCs
is unstable (but leads to a stable feedback loop) remains an open question. All the LNARCs
that we have designed [2] were stable. However, if the open-loop plant is both unstable and
nonminimum phase then some of the LNARCs may be unstable. Since we cannot define the
BPM for unstable open-loop plants noted above, this remains a very important future research
area for RMMAC architectures.

Finally, we need to stress that in all available SMMAC and RMMAC results we cannot prove
– as yet – global robust-stability, because a suitable theory is lacking for handling the nonlinear
time-varying (stochastic) closed loop dynamics arising from these architectures. Needless to
say, any advances in stability theory along these directions would be welcomed. At present,
the promise of the SMMAC and RMMAC architectures is in their “local” and “asymptotic”
results related to stability and performance. With respect to the RMMAC one can design
real-time monitoring systems for the “regularity” of the residuals. If “abnormal” situations
are observed (see the discussion in Sections 2 and 6), which may lead to long-term instability,
one should be able to design a “fail-safe” logic that disconnects the LNARCs and uses the
GNARC until the residuals return to a “regular” behavior and the LNARCs are reconnected.
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Equally important to the theoretical research investigations would be to fairly compare the
different adaptive methods using a variety of common “test-bed examples”, with identical
performance requirements.

8. CONCLUDING REMARKS

We have witnessed the development and evolution of a variety of novel multiple-model
architectures for robust adaptive control during the past decade. In order to compare them
in a fair manner we have suggested that all should utilize the available results and software
associated with mixed-µ synthesis. If we explicitly state the specifications for required stability-
robustness and performance-robustness for the adaptive closed-loop system, then we can evolve
the present architectures so that they can be confidently used in real applications.

We view our RMMAC architecture and design methodology as a potential contribution to
adaptive feedback engineering system design. As we have remarked, we can not prove global
stability results and we only have numerous simulation studies that demonstrate its excellent
performance. Thus, a reader may ask an important question: why should one pay attention to
the RMMAC procedure in the absence of solid theoretical guarantees?

The best way to view our perspective is by an analogy. Thousands of real engineering systems
are operating using methods that also lack a solid theoretical foundation, but are based upon
common-sense integration of rigorous results. We list just three, all of them involving nonlinear
systems:

(a) gain-scheduling feedback control system designs (with no global stability guarantees),
(b) surveillance, tracking and other estimation systems that utilize the extended Kalman

filter (which may diverge), and
(c) surveillance, tracking systems and other estimation systems that are based on the sum-

of-gaussian multiple model estimation method, when the extended Kalman filter performance
is not good enough (but they still may not always work well).

None of the above “practical” design methods is backed by a complete body of solid theory.
Their extensive engineering utility is based upon exhaustive simulations, engineering insight
and know-how to inevitably “tune” certain parameters in the algorithms. However, all utilize
reasonable extensions of theoretical results valid for linear systems, e.g. the Kalman filter. The
gain-scheduling method also pieces together linear feedback control results in a common sense
manner. Since almost all real applications involve nonlinear systems the engineering utility of
(a), (b) and (c) is extensive. Our perspective is that the highly nonlinear proposed RMMAC
method is akin to the above. Maybe we are nearing the end of the search for the adaptive
“Holy Grail.”
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APPENDIX I. SUMMARY OF THE MMAE FILTER

In this appendix, the equations of the multiple model adaptive estimation (MMAE) algorithm, shown
in Fig. 1, and some of its properties are summarized. Here we shall restrict our attention to linear
systems driven by white Gaussian inputs having time-invariant statistics. It is also assumed that the
system has attained steady-state, i.e. that all signals of interest are stationary.

Consider the discrete-time (unknown) system

x(n + 1) = F∗x(n) + J∗u(n) + G∗w(n)

y(n) = H∗x(n) + v(n)
(A.1)

where {u(n)} is the deterministic (control) input and {w(n)} and {v(n)} are zero-mean white Gaussian
sequences, mutually independent with

E{w(n)w(n)T } = Q∗

E{v(n)v(n)T } = R∗
(A.2)

Let us assume that N discrete-time stochastic LTI models are given that include disturbance dynamics
(if any). These models blend a finite set of families of models

℘ = {M : Mk = (Fk, Jk, Gk, Hk, Qk, Rk) ; k = (1, 2, . . . , N)} (A.3)

The k-th model is then described by the state space dynamics

xk(n + 1) = Fkxk(n) + Jku(n) + Gkw(n)

yk(n) = Hkxk(n) + v(n)
(A.4)

where the time index is n = 0, 1, 2, . . . and the model index is k = 1, 2, . . . , N .
It is assumed that the true system that generates the data is one of the models in (A.4). The set of

past controls, u(0), u(1), u(2), . . . , u(n−1), and the set of past noisy measurements, including the one
at the present time n, y(1), y(2), . . . , y(n− 1), y(n), are also known at time n. We want to determine
the true steady-state conditional mean of the present state vector, x(n), i.e. as n →∞

x̂(n|n) = E
�
x(n)| u(0), u(1), . . . , u(n− 1); y(1), . . . , y(n− 1), y(n)| {z }

Y (n)

	
and the true steady-state conditional covariance matrix of x(n), i.e.

Σ(n|n) = E
��

x(n)− x̂(n|n)
��

x(n)− x̂(n|n)
�′|Y (n)

�
(A.5)

The MMAE filter shown in Fig. 1 is driven by the sequence of past controls and noisy sensor
measurements while it generates both a state-estimate vector and a corresponding error-covariance
matrix. Let us first establish some notation for the discrete-time steady-state Kalman filter (KF).
Predict-cycle:

x̂k(n + 1|n) = Fkx̂k(n) + Jku(n)

ŷk(n + 1|n) = Hkx̂k(n + 1|n)
(A.6)

Update-cycle:

x̂k(n + 1|n + 1) = x̂k(n + 1|n) + Kkrk(n + 1) (A.7)

The residual rk(·), residual covariance matrix Sk, and the constant steady-state KF gain matrix, Kk,
are respectively defined as follows.
Residual:

rk(n + 1) = y(n + 1)− ŷk(n + 1|n) (A.8)
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Residual covariance:
Sk = cov[rk(n + 1); rk(n + 1)] = HkΣp

kHT
k + Rk (A.9)

KF gain:

Kk = Σp
kHT

k S−1
k (A.10)

The constant steady-state covariance equations are
Predict-cycle covariance Σp

k :

Σp
k = FkΣkAT

k + GkQkGT
k (A.11)

Update-cycle covariance Σk :

Σk = Σp
k − Σp

kHT
k S−1

k HkΣp
k (A.12)

We stress that both the MMAE state-estimate and state-covariance matrix (A.5) represent true
conditional state estimate and its conditional covariance at steady-state [54, 57]. This is because, one
can explicitly calculate the conditional probability density function p (x(n)|Y (n)) , which turns out to
be a weighted sum of gaussian densities, where the weights are found from the posterior probability
evaluator (PPE); see Fig. 1.

The problem reduces to a combination of a hypothesis-testing problem and a state-estimation
problem. The fact that one of the N models is the true one is modeled by a hypothesis random
variable that must belong to a discrete set of hypothesis {H1,H2, . . . ,HN}. It turns out that online
generation of the posterior conditional probabilities determines which hypothesis is true. Let suppose
that H indicates the hypothesis random variable (scalar) which can attain only one of N possible
values,

H ∈ {H1,H2, . . . ,HN} (A.13)

The event H = Hk means that the k-th system is the true one, i.e. the one that is generating the data.
The prior probabilities at initial time n = 0, Pk(0) ≡ Prob(H = Hk), are assumed known (typically
Pk(0) = 1

N
), and

Pk(0) ≥ 0,

NX
k=1

Pk(0) = 1 (A.14)

The posterior probabilities, Pk(n) = Prob(H = Hk|Y (n)), must also satisfy

Pk(n) ≥ 0,

NX
k=1

Pk(n) = 1 (A.15)

and can be calculated on-line by the PPE in the MMAE system. It turns out that the conditional
PDF, p (y(n + 1)|u(n),Hk, Y (n)) , is Gaussian with mean

E {y(n + 1)|u(n),Hk, Y (n)} = Hk x̂k(n + 1|n) (A.16)

and steady-state covariance

cov [y(n + 1); y(n + 1)|u(n),Hk, Y (n)] = HkΣp
kHT

k + Rk , Sk (A.17)

Furthermore,

p (y(n + 1)|u(n),Hk, Y (n)) =
1

(2π)m/2
√

det Sk

· e− 1
2 rT

k (n+1) S−1
k

rk(n+1) (A.18)

By using Bayes rule we deduce that

Pk(n + 1) =
p
�
y(n + 1) |Hk, u(n), Y (n)

�
NP

j=1

Pj(n)p (y(n + 1) |Hj , u(n), Y (n))

· Pk(n) (A.19)
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For notational simplicity, define

wj(n + 1) = r′j(n + 1) S−1
j rj(n + 1) (A.20)

βj =
�
(2π)m/2

p
det Sj

�−1
(A.21)

where m is the number of measurements. Then, from (A.19)–(A.22) the posterior probabilities can be
computed on-line by the PPE using the recursive formula

Pk(n + 1) =
βk e−

1
2 wk(n+1)

NP
j=1

βj e−
1
2 wj(n+1)Pj(n)

· Pk(n) (A.22)

where Pk(0) are the prior model probabilities as in (A.14).
Thus, at steady-state the MMAE generates the state estimate (exact conditional mean) by

x̂(n|n) =

NX
k=1

Pk(n) x̂k(n|n) (A.23)

and the exact conditional covariance matrix

Σ(n|n) =

NX
k=1

Pk(n) · �Σk(n|n) +
�
x̂k(n|n)− x̂(n|n)

��
x̂k(n|n)− x̂(n|n)

�′�
(A.24)

We stress that the above results hold when the true (unknown) plant is assumed to belong to the
model set of (A.4).

APPENDIX II. BARAM PROXIMITY MEASURE (BPM)

The purpose of this appendix is to summarize the underlying results from probability and estimation
theory that yield the identification procedure which converges to a model in the set which is closest
to the true model in an information-theoretic sense, as proved by [61]. The posterior probabilities will
converge if certain ergodicity and stationarity assumptions of residuals (innovation signals) are true.
These conditions are briefly discussed in this appendix; see [61] for more details.

Stationarity and Ergodicity

In this section we provide definitions and convergence results for ergodic sequences used in the
paper. It is not intended to provide an elaborate presentation of the ergodicity concept. For a precise
development of ergodicity theory the reader is referred to, e.g. [77, 78].

Definitions:

1. Consider a probability space (Ω, U, P ). A transformation T from Ω to U is said to be measure
preserving if

P (T−1A) = P (A)

for all A ∈ U.
2. A stochastic sequence {x(n)} on (Ω, U, P ) is said to converge almost everywhere (a.e.) or almost

surely (a.s.) to a random variable x on (Ω, U, P ) if

lim
n→∞

x(n) = x a.e.

3. Given a measure preserving transformation T, a U -measurable event A is said to be invariant if

T−1A = A
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4. Let {x(n)} be a stochastic sequence on (Ω, U, P ) with values in (R`, B`), where (R`) is the l-
dimensional Euclidean space and (B`) is the σ algebra of Borel sets of Rl; see [79, Chap. 3]. Let B`

∞
be the σ-algebra of Borel sets of R`

∞ where R`
∞ = R`×R`× · · · . Then {x(n)} is said to be stationary

if for each κ ≥ 1 and for every C ∈ B`
∞

P [{x(1), x(2), . . . , x(n)} ∈ C] = P [{x(κ + 1), x(κ + 2), . . . , x(κ + n)} ∈ C] (B.1)

5. The covariance matrix defined by

R(κ) ≡ E{x(n) xT (n + κ)}
plays a fundamental role in the study of stationary processes in the wide sense [77]. A zero mean
stationary Gaussian process is ergodic if and only if [80, pp. 257–260]; [77, pp. 494]

lim
n→∞

1

n + 1

nX
κ=0

|R(κ)|2 = 0 (B.2)

where |R(κ)| denotes the determinant of R(κ).

Calculating the Baram Proximity Measure (BPM) [61]

Consider a bank of N discrete Kalman filters, and a set of N models for the system of (A.1) described
by

xj(n + 1) = Fjxj(n) + Gjw(n)

yj(n) = Hjxj(n) + v(n)
(B.3)

in the absence of deterministic inputs but with the assumption of a stationary processes. Note
that these results can be extended to the case where the system (B.3) is driven by an additional
deterministic (known) stationary random sequence..

Let M∗ = {∗ ∪ ℘} denotes the model set that also includes the true model, denoted by ∗.
For each i, j ∈ ℘ let

Sj ≡ E
n

[y(n)− ŷj(n)][y(n)− ŷj(n)]T |Hi = Hj

o
denote the residual covariance matrix generated by the j-th Kalman filter and

Γi
j ≡ E

n
[y(n)− ŷj(n)][y(n)− ŷj(n)]T |Hi 6= Hj

o
according to Mj , when Mi is the correct model.

We shall use the following condition [61, pp. 77] in addition to the other stationarity and ergodicity
conditions.

Condition B1 (C.B1). For each j ∈ M∗, the residual covariance Sj exists and has a finite positive
definite value.

A sufficient condition for B1 is that each model corresponding to j ∈ M∗ is detectable and
controllable. For each j ∈ M∗, Sj is generated by the discrete Kalman filter #j corresponding to
the model Mj = (Fj , Gj , Hj , Qj , Rj).

Assuming that index ’i’ denotes the true parameter in M∗, the augmented dynamic equation
generating simultaneously the state x(n) and its updated estimate generated by the j-th Kalman
filter, x̂j(n), is�

xi(n + 1)
x̂j(n + 1)

�
=

�
Fi 0

FjKjHi Fj(I −KjHj)

� �
xi(n)
x̂j(n)

�
+

�
Gi 0
0 FjKj

� �
w(n)
v(n)

�
(B.4)
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where Kj is the (steady-state) Kalman filter (KF) gain corresponding to the model Mj . The KF
gain matrix is given by

Kj = ΣjH
T
j (HjΣjH

T
j + Rj)

−1

where Σj denote the prediction error covariance matrix according to Mj .
For notational purposes, define:

F i
j ≡

�
Fi 0

FjKjHi Fj(I −KjHj)

�
Gi

j ≡
�

Gi 0
0 FjKj

�
Qi ≡

�
Qi 0
0 Ri

�
Hi

j ≡
�

Hi | −Hj

�
Then the matrix

Ψi
j(n + 1) ≡ E

(�
xi(n + 1)
x̂j(n + 1)

� �
xi(n + 1)
x̂j(n + 1)

�T
)

is generated by the dynamic Lyapunov equation

Ψi
j(n + 1) = F i

j Ψi
j(n)F i

j
T

+ Gi
jQ

iGi
j
T

(B.5)

The (steady-state) limit of the Lyapunov equation of (B.5) is computed by:

Ψi
j = lim

n→∞
Ψi

j(n) (B.6)

It exists and is finite if and only if the augmented state matrix F i
j has all its eigenvalues inside the

unit circle, i.e. the spectral radius satisfies

ρ(F i
j ) < 1 (B.7)

This is the case if for each j ∈ M∗, Fj has all its eigenvalues inside the unit circle and (Fj , Hj) is
observable.

Therefore, to calculate the limit matrix Ψi
j of (B.5) we simply solve, using Matlab, the discrete-time

algebraic Lyapunov equation

Ψi
j = F i

j Ψi
jF

i
j

T
+ Gi

jQ
iGi

j
T

(B.8)

It can be shown that
Γi

j = Hi
jΨ

i
jH

i
j
T

+ Ri (B.9)

where Ψi
j is the steady-state solution of (B.5).

It can also be shown that the state covariance matrix can be calculated as follows.

R(κ) =

(
Hi

jΨ
i
jH

iT

j + Ri = Γi
j ; κ = 0

Hi
jΨ

i
j

�
F iT

j

�κ

HiT

j ; κ > 0
(B.10)

This is shown in [61, pp. 80–81]. However, note that the stability and observability of the models
are only sufficient, and not necessary. In fact, [61, Theorem 5.1] has proved ergodicity of the state
residuals {x(n) − x̂j(n)}, which is not necessary, to show the ergodicity of {y(n) − ŷj(n)}. Thus, in
the sequel we shall directly use the following assumption.

Condition B2 (C.B2). For each j ∈M∗ the residual sequence {y(n)− ŷj(n)} is ergodic.
The ergodicity condition of (C.B2) is important and must be checked. If it is not satisfied, one

might use a “fake-white-plant-noise” as mentioned in Section 2.4; see [67, Chap. 7] for more details.
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The conditional probability density function corresponding to Model #j (j ∈M∗) is

pj(y(n)|Y (n− 1)) = [(2π)m |Sj |]−
1
2 · exp{−1

2
[y(n)− ŷj(n)]T Sj

−1 [y(n)− ŷj(n)]} (B.11)

where m is the dimension of y(n), i.e. the number of measurements.
For each j, k ∈ M∗ the mean information in y(n) favoring “model” k against j is defined by

[61, 62, 63]

Īn(k; j) = E log
pk

�
y(n)|Y (n− 1),H = Hk

�
pj

�
y(n)|Y (n− 1),H = Hj

�
and the distance measure is defined as

dn(k; j) =
��Īn(k; j)

��
For each j ∈M∗, using ∗ to denote the true plant in M∗, we have

E log pj

�
y(n)|Y (n− 1),H = Hj

�
= −m

2
log 2π − 1

2
log |Sj | − 1

2
tr
�
S−1

j Γ∗j
	

(B.12)

and for each pair j, k ∈M∗

Īn(k; j) = Īn(j; k) =
1

2
log |Sj |+ 1

2
tr
�
S−1

j Γ∗j
	− 1

2
log |Sk| − 1

2
tr
�
S−1

k Γ∗k
	

(B.13)

The Baram proximity measure (BPM) of the j-th filter denoted by Li
j is generated by

Li
j ≡ log |Sj |+ tr

n
Sj
−1Γi

j

o
; i, j ∈M∗ (B.14)

Therefore,

Īn(k; j) =
1

2

�
L∗j − L∗k

�
; i, j ∈M (B.15)

Also,

Īn(∗; j) ≥ 0 ; j ∈M (B.16)

It is easy to check that

d(∗; j) ≥ d(∗; k)

if and only if

L∗j ≥ L∗k

for which the following condition is essential.
Condition B3 (C.B3). There exists some parameter k ∈M such that

L∗k < L∗j for all j ∈M ; j 6= k (B.17)

If the convergence conditions hold for the MMAE to converge, i.e. eq. (B.2) and conditions (C.B1)–
(C.B3), then it will converge to the j-th filter (corresponding to the appropriate plant model) governed
by

L∗j =min
i
{Li

j} ; i = 1, . . . , N

where Li
j is the BPM of the models as in (B.14).

In conclusion, the Baram proximity measure (BPM), is an appropriate distance metric between the
true model and each of the other models that form the bank of Kalman filters.
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Remarks

The application of deterministic inputs, rather than stationary random sequences, to the dynamic
system, for the purpose of identification and their optimal selection, is not addressed in this paper.
Generally speaking, the convergence analysis in the presence of deterministic inputs requires a more
elaborate analysis, a topic for future research.

Ref. [61, Chap. 6] discusses a case that any deterministic input sequence, that satisfies a suitable
assumption of [61, Theorem 6.3], will provide convergence in the mean of the identification procedures
at a certain rate; see [61] and [81] for more details.

Ref. [66] uses the prediction error parameter estimate obtained by minimizing a scalar function of
the matrix

tX
τ=0

[R1/2(τ) r(τ ; p)][R1/2(τ) r(τ ; p)]T (B.18)

where R(τ) is some positive definite weighting matrix, and shows that under general conditions of
bounded fourth moments of the residuals r(t; p), by searching over models leading to stable Kalman
filters and overall system stability, this prediction error estimate converges into the set of models that
yield the same output prediction as the true system in the following sense.

lim
t→∞

inf
1

t + 1

tX
τ=0

|ŷ(τ ; p0)− ŷ(τ ; p)|2 = 0 (B.19)

which is similar to the ergodicity condition (B.2). This set depends in general on the input signal and
will be contained in the set of all models with the same input-output relation as the true model, if the
input is general enough to excite all modes of the system. It is shown in [66] that a sufficient condition
would be for u(t) to be independent of the process noise and persistently exciting. The input u(t) is
persistently exciting if, for all M , there exists δ(M) and N0(M) such that

δI <
1

N

NX
1

uM (t)u′M (t) <
1

δ
I

for N > N0 and where
u′M (t) ≡ [u′(t) . . . u′(t−M)].
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