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Abstract. Establishing correspondence between features of a set of im-
ages has been a long-standing issue amongst the computer vision commu-
nity. We propose a method that solves the multi-frame correspondence
problem by imposing a rank constraint on the observed scene, i.e. rigidity
is assumed. Since our algorithm is based solely on a geometrical (global)
criterion, it does not suffer from issues usually associated to local meth-
ods, such as the aperture problem.
We model feature matching by introducing the assignment tensor, which
allows simultaneous feature alignment for all images, thus providing a
coherent solution to the calibrated multi-frame correspondence problem
in a single step of linear complexity. Also, an iterative method is pre-
sented that is able to cope with the non-calibrated case. Moreover, our
method is able to seamlessly reject a large number of outliers in every
image, thus also handling occlusion in an integrated manner.

1 Introduction

The establishment of correspondence between image features extracted from
different viewpoints of the same scene is an essential step to the the 3D re-
construction process. In fact, most reconstruction algorithms rely on previously
established correspondences to determine 3D structure. Clear examples of this
are classical factorization algorithms such as [15] and more recent methods as
[6], [14] and [7]. A notable exception is presented in [3], where correspondences
are not explicitly extracted - maximum likelihood structure and motion are cal-
culated using an EM framework.

The difficulty of the correspondence problem is associated to its combina-
torial nature. Furthermore, matching in multiple frames presents an additional
difficulty to the traditional correspondence problem: coherence between every
pairwise correspondence has to be guaranteed. Several models have been pro-
posed in order to obtain a matching solution with an acceptable computational
cost. In [12] and [8], the n-frame correspondence problem is formulated as a
maximum-flow problem and is solved through graph cut algorithms. Different
approaches involving graphs have been presented in [13] and in [5].

A natural way to associate a cost function to the correspondence problem is to
exploit a constant characteristic of an important class of 3D scenes: rigidity. The



use of rigidity presents the advantage of leading to intrinsically global algorithms;
moreover, it naturally overcomes the aperture problem, since features are not
characterized by their specific local properties. This geometric constraint can
be translated into a rank constraint on the matrix containing the coordinates
of the extracted features (the measurement matrix). Actually, it can be shown
that when features in different viewpoints are correctly aligned (and only then)
this matrix is highly rank-deficient - [9], [11]. Rank-deficiency for multi-frame
correspondence has also been exploited in [10].

A first approach to correspondence exploiting rigidity has been made in [9],
where the authors use a cost function based on the determinant of the mea-
surement matrix to match features in a pair of images. This approach, although
theoretically sound, has two main shortcomings: it is unable to handle the multi-
image case and the cost function is intrinsically non-linear, presenting a high
computational burden. In [11] the authors presented a new algorithm based on
an alternative cost function, which would detect rank-deficiency based on the
sum of the non-dominant singular values of the measurement matrix. This cost
function allows the rigidity constraint to be applied to a multi-frame system.
However, to obtain an acceptable computational complexity rank is imposed it-
eratively by matching each image individually with the remaining frames. Since
rank is a global constraint this is not a desirable formulation. Moreover, occlusion
cannot be modeled even within the iterative framework.

In this text, we propose a solution that generalizes the concept of assignment
matrix used in our previous work to establish correspondences between the fea-
tures in each of the frames. We introduce the assignment tensor that defines all
correspondences in a single structure. With this formulation, linear complexity
is retained even when dealing with more than two images, while occlusion is
easily modeled.

2 Problem Formulation

We present in this paper a formulation that is capable of dealing with the multi-
frame correspondence problem in the factorization context. Our objective is to
align the observations in each image in a matrix W so that corresponding features
share the same column. Optimal alignment is achieved by exploiting the intrinsic
rank-deficiency associated to a correctly matched W .

Since our method relies solely on global geometric constraints of the scene,
we place no constraints on the feature points selected - in particular, they do
not have to contain significant texture in their vicinity. To emphasize this issue,
our matching candidates are extracted from generic contour points, i.e. in areas
prone to the aperture problem, and not from corners.

The method described herein assumes an orthographic camera, although it
is easily extendable to any generic affine camera. In fact, the only factor limiting
the camera model is the validity of the rank-defficiency condition on W .



2.1 The Assignment Tensor

Feature correspondence in a system containing nf viewpoints is uniquely defined
by a 2D point in each of the viewpoints such that all 2D points in the set are the
projections of the same 3D feature. Bearing this in mind, it is straightforward to
represent each correspondence in an nf -dimensional structure - the assignment

tensor. For the sake of simplicity, and without loss of generality, we will present
these properties for the 3 image case. Extension to an arbitrary number of images
is straightforward.

Suppose the three frames have p1, p2 and p3 features, respectively. Each
dimension of the assignment tensor contains a number of entries equal to the
number of matching candidates (i.e. 2D features) in the associated frame: i =
1, ..., p1, j = 1, ..., p2, k = 1, ..., p3. Tijk = 1 iff the ith, jth and kth features in the
first, second and third frames respectively are projections of the same 3D point,
i.e., if they represent a correct match. Otherwise, Tijk = 0.

We represent the three-frame case as an example in Fig. 1 below.

Fig. 1. The assignment tensor for the three-frame case. If feature i in the first image,
j in the second and k in third are a valid correspondence, then Tijk = 1

Although the tensor establishes correspondence for all frames, the match
between any subset of images can also be easily determined by summing over the
dimensions not associated to the aforementioned images. In the 3-frame case, the
relation Pmn between features in frame m and n can be easily obtained, as shown
below (note that in this special case Pmn actually reduces to an assignment
matrix). As will become evident in the next sections, the fact that any pairwise
correspondence (represented by an assignment matrix ) can be extracted from
the assignment tensor is of key importance to our algorithm, as is the fact that
the expression for each assignment matrix is linear in the elements of T . For the



three image case, all pairwise correspondences are represented by the assignment
matrices in Fig. 1:

P12 =
p3
∑

k=1

Tijk, P13 =
p2
∑

j=1

Tijk, P23 =
p1
∑

i=1

Tijk. (1)

To achieve a correct result, the assignment tensor must respect constraints
that are intrinsic to the correspondence problem, such as unicity - a certain
feature can be matched to at most one feature in another image. When matching
a pair of images, this constraint is formulated by demanding that the sum of the
rows/columns of the assignment matrix be less or equal to one. A similar set
of constraints applies to the assignment tensor. In this case, it is required that
the sum over any dimension is less or equal to one. This forces each feature to
correspond to at most another feature in each of the remaining frames. For the
three image case, the restrictions apply in the following manner:

∀j, k
p1
∑

i=1

Tijk ≤ 1, ∀i, k
p2
∑

j=1

Tijk ≤ 1, ∀i, j
p3
∑

k=1

Tijk ≤ 1, Tijk ∈ {0, 1} . (2)

To avoid the trivial (and undesirable!) result of a null assignment tensor, a
minimum number pt of ones (i.e. matches) is forced on the tensor. This is done
through the following restriction:

p1
∑

i=1

p2
∑

j=1

p3
∑

k=1

Tijk = pt (3)

The expressions for the three-frame case will be directly applied in the section
dedicated to experiments.

2.2 Feature Point Representation

Observations on each frame are represented as a set of image coordinates con-
taining the orthogonal projection of 3D feature points in the scene. Assuming
pf feature points, we represent the u and v image coordinates of a frame f in
the uf and vf vectors. We assume that each set of pf feature points is corrupted
by a certain number of outliers which will have to be rejected. The data corre-
sponding to frame f is thus represented by 2 × pf matrix wf containing the uf

and vf vectors.
Measurements corresponding to several frames can be vertically stacked in

order to create a measurement matrix Wf that incorporates the projection of
the feature points up to scene f . However, outliers in each frame have to be
rejected beforehand; moreover, the remaining points have to be aligned so that
corresponding features share the same column in Wf . Matrix Pf simultaneously
aligns the feature points and rejects the outliers in the corresponding measure-
ment matrix wf . Wf can consequently be written as
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(4)

We assume that only the best p0 matches are to determined, where p0 ≤
pk,∀k. In (4), each Pk, for k ≥ 2, represents a rank-p0 assignment matrix which
determines the correspondences between the first and the kth frame. It has been
seen in the previous section that these assignment matrices can easily be written
as a linear expression of the terms of T as defined in (1). Under these assump-
tions, each assignment matrix is defined by the conditions in (5).

Pkij
= {0, 1},∀i = 1...pk,∀j = 1...p0

∑

i

Pkij
≤ 1,∀j = 1...p1

∑

j

Pkij
≤ 1,∀i = 1...pk

∑

i,j

Pkij
= p0

(5)

Note that P1 has a slightly different structure: it is a rank-p0 matrix where
ones are only allowed in the diagonal. Consequently, unlike the other Pk, it does
not permute columns, it only forces certain columns of w1 (corresponding to
features that become occluded and thus do not have a match) to zero. As a
result, Wf will have a set of null columns. This does not have any influence in
subsequent calculations - in particular, this does not alter rank.

2.3 The Rank Constraint

It has been shown in [15] that a measurement matrix similar to the one presented
in (2) is highly rank deficient. More specifically, when including translation Wf

is at most rank-4. To this end it is however assumed that image coordinates
corresponding to the same 3D feature point occupy the same column. In the
presence of incorrect alignment, the resulting Wf is (generally) of higher rank.
Note that in the presence of a limited amount of noise the rank-4 constraint for
a correctly matched Wf may still be assumed as valid, as shown in [9].

Our problem is thus equivalent to finding the correct assignment tensor T .
The tensor yields a set of assignment matrices Pk - each of these matrices aligns
the corresponding wk, so that a rank-4 Wf is generated.

2.4 The Cost Function

The multi-frame correspondence problem can be stated as the search for the
assignment tensor that yields the optimal (pairwise) assignment matrices Pk as



described in (1). The assignment matrices are optimal in a sense that these result
in a rank-4 Wf (recall that Wf is a function of the assignment matrices). We
consider the SVD decomposition of Wf = QΣV T and define Z as

Z = WfWT
f =











w1P1P
T
1 wT

1 w1P1P
T
2 wT
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T
f wT
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1 w2P2P
T
2 wT
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T
f wT
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wfPfPT

1 wT
1 wfPfPT
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2 · · · wfPfPT

f wT
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(6)

Recall that the aim of our algorithm is to find the matching solution that
creates the best rank-4 Wf in the least-squares sense. This can be achieved
by minimizing the sum of all eigenvalues λi of Z, with the exception of the
four largest ones. This is a heuristic similar to the one used in [4], where rank
minimization is achieved through minimization of the dual of the spectral norm.
The eigenvalues of Z can be obtained, by definition, as the result of the following
expression, where qi represents the ith column of Q, i. e. the ith eigenvector of
Z:

λi = qT
i Z(P1, P2, ..., Pf )qi, P1 ∈ D, P2 ∈ P2, ..., Pf ∈ Pf (7)

where Pf represents the set of rank-p0 assignment matrices of dimension
[pf × p1] and D represents the set of rank-p0 diagonal matrices of dimension
[p1 × p1].The eigenvectors of Z are assumed known because these are the columns
of Q, that under the factorization context is related to motion. In a calibrated
system, Q is thus not a variable. For a rank-deficient Z, each of the non-dominant
eigenvectors is a base vector for the null space of the column space of Wf defining
in fact camera movement.

Our matching problem must thus be formalized as the search for the optimal
set of assignment matrices P ∗

1 , ..., P ∗

f (e.g. optimal assignment tensor) such that:

P1∗, ..., P
∗

f = arg min
P1,...,Pf

(

∑

i>4

λi(P1, ..., Pf )

)

=arg min
P1...,Pf

(

∑

i>4

qT
i Z(P1, ..., Pf )qi

)

(8)

3 Minimizing the Cost Function using Linear

Programming

In general, solving the multi-frame correspondence problem through the mini-
mization of (8) is a very tough problem. In particular, when considering only iso-
lated assignment matrices, as was done in [11], the cost function in (8) is clearly
quadratic, since there are certain terms (the crossed terms wiPiPk

T wk
T , i 6= k)

which cannot be expressed as a linear function of the elements of the associated
assignment matrices. Note that this is not an intrinsic property of the problem,
but rather a consequence of an inadequate formulation: in fact, when working



with single assignment matrices there are restrictions which are not considered.
This is not the case with the assignment tensor, which takes into account all
the inter-frame restrictions. In the present formulation, the crossed terms actu-
ally do have a linear form in the terms of the tensor - in other words, we can
solve the correspondence problem as a linear problem. Moreover, we show that
this problem can be easily solved through relaxation. In this section, the ten-
sor formulation of the correspondence problem will be used to generate a linear
formulation in the elements of T for the cost function presented in the previous
section.

3.1 Unicity constraints revisited

The unicity constraints governing the structure of the assignment tensor, as they
have been presented in (2), are awkward to use in the following calculations. We
will consequently derive an equivalent formulation for these constraints.

We recall that the unicity condition requires that the sum over any dimension
of the assignment tensor be at most one. Although these restrictions are trivially
extendable to an arbitrary number of frames we will once more focus on the three-
frame case, which allows a simple insight on the technique. This formulation
would amount to:

∀j, k,m, n,
∑

i=1

Tijk.Timn =

(

∑

i=1

Tijk.Timn

)

.δjmδkn,

∀i, k, l, n,
∑

j=1

Tijk.Tljn =

(

∑

j=1

Tijk.Tljn

)

.δilδkn,

∀i, j, l,m,
∑

k=1

Tijk.Tlmk =

(

∑

k=1

Tijk.Tlmk

)

.δilδjm,

(9)

In practice, this formulation is equivalent to saying that any two vectors
in the same dimensions are orthogonal. This in turn will prevent two non-zero
elements of the tensor of sharing the same dimension, thus enforcing the unicity
conditions.

3.2 Solving for the Assignment Tensor

In this section we show that the cost function can be written as a linear pro-
gram, thus effectively solving multi-frame correspondence with a low computa-
tional cost. Recall that the cost function has the following structure (the index
i represents the order of the eigenvectors of Z):

∑

i>4

qT
i WfWT

f qi (10)

Our objective is to extract the optimal assignment tensor T , which is uniquely
determined by the optimal set of assignment matrices P2, ..., Pf . Given a tensor
T , the vec operator stacks its dimensions successively (from the first to the last)
in order to form a vector: x = vec(T ).



Note the relation between T and the structure of the assignment matrices
(P2, ..., Pf ): the elements of these matrices are a linear function of the elements of
T , as explained in section 2.1. Furthermore, products of matrices (such as P2P

T
3 )

actually represent pairwise correspondences (in this case between the second and
third frame - P23) and are thus also a linear cost function of x - the simplification
becomes evident when using the constraints in the form presented in (9). Given
each of the qi, we can thus rearrange (10) as a linear function of x. Optimal
correspondence will consequently be given by (11), where T represents the set
of all assignment tensors of dimension p1 × p2 × p3 and rank p0; in the generic
case, the number of dimensions contained in the dimension set is determined by
the number of frames in the system.

x∗ = arg min
x

c.x, s.t. x = vec (T ) , T ∈ T (11)

The coefficient vector c can be calculated directly from the original formu-
lation of the cost function by developing the expression in (10) in order to the
elements of the assignment tensor. The calculation of c for the three image case
is presented in the Appendix.

The formulation presented in (11) still remains an integer minimization prob-
lem and as such has no efficient solution. However, in the continuous domain
there are algorithms that allow the solution to this problem to be obtained in
a simple and swift manner. Fortunately, it can easily be shown that the assign-
ment tensor possesses equivalent properties that allow an exact relaxation to
take place - all that is needed is to demonstrate that the matrix containing the
restrictions on the vector x is totally unimodular, as shown in [2].

The resulting problem is thus equivalent to the original, but for this class of
problems (linear programming problems) there exist several efficient algorithms
that can provide an adequate solution such as the simplex algorithm.

This method of solving the integer optimization problem has originally been
proposed in [9].

4 Extensions to the algorithm

4.1 The non-calibrated case

Up to this point, Q has been considered as known. However, an iterative solu-
tion has been devised which allows the solution of non-calibrated systems with
small baselines provided a reasonably good initialization is available. Under this
assumption, an initial estimate of the qi is used to solve an approximate match-
ing problem, which in turn returns an improved value for the qi. This process
is repeated until convergence is achieved; a similar method has already been
published by the authors in [11].

Note that in the non-calibrated case two sets of unknowns are present: the
elements of T and the columns of Q. Our iterative optimization scheme is anal-
ogous to a cyclic coordinate descent algorithm, in the sense that it optimizes a
set of unknowns while keeping the remaining unknowns constant.



4.2 The support tensor

As can be inferred from the previous sections, the size of the linear program to
be solved in order to obtain a matching solution can be potentially rather large.
If some a priori knowledge is available, improbable matches can be excluded,
thus reducing the dimensionality of the problem. To this end, a support tensor
is used, which is a binary structure in which allowable matches are marked. All
null variables are consequently eliminated from the x vector, thus rendering a
smaller xc vector.

5 Experiments

We describe in this section a set of experiments in order to validate the algo-
rithm that has been presented. An experiment with real data provides a proof-
of-concept solution, while demonstrating the ability of the algorithm to function
under less than optimal conditions (i.e., with noise and deviations to the theo-
retical model). A non-calibrated example is also presented that illustrates how
absence of information regarding motion may be circumvented.

5.1 The LEGO Grid

In this experiment three images of a LEGO grid are used. The grid defines two
perpendicular planes in the 3D space. In this experiment, only contour points
in the images are considered. In the first image, 99 points from the contour
are selected as features. Note that the features are selected in areas where the
contour is a straight line , so as to demonstrate the robustness of the method
to the aperture problem. In the remaining images, the matching candidates are
simply the contours of the images. In order to illustrate the handling of occlusion,
parts of the contour have been removed in the second and third frames in order
to create a situation under which some features in the first image do not have a
valid match. No ground-truth is available, but correspondences can be verified
by visual inspection.

Note that only a minimal error is noticeable by visual inspection, despite the
fact that the camera was modeled as orthographic and that only approximate
values were available for the qi. Features which did not have valid matching
candidates were successfully rejected. In this experiment a support tensor based
on epipolar geometry was applied, so that candidates for each feature only exist
in the vicinity of its epipolar lines. In total, ca. 3600 matching candidates were
available for the 99 features in each of the frames. Using support, only 11000
matches were possible - consequently, only a subset of the total number of match-

ing candidates is an actual candidate for each feature. It should be underlined
that the use of the support tensor does not alter the result of the experiment;
however, it does speed it up considerably - this problem, including support com-
putation, can be solved in less than 15 min. on MATLAB. The actual matching
algorithm, implemented in C, takes but a few seconds.



Fig. 2. Results for the LEGO Grid data set. Counter-clockwise from upper left: First
image with features selected in red; second and third images with matching candidates
in green and correspondences in red; feature trajectories in the third image.

5.2 The Hotel Sequence

In this experiment information about camera motion is inexistent in the se-
quence, except in the first three frames. In the first two images 43 points (37
features and 6 points without matching candidates) have been singled out. Ev-
ery image is matched against the first two using approximate values for motion
information, i.e. the qi. These are extrapolated based on the movement of frames
already matched. These estimates are then iterated upon as referred in section
4.1. Note that this is a simplified version of the presented algorithm, used only to
illustrate the possibility of applying this work to uncalibrated images sequences;
as such, matches are done pairwise to accelerate the procedure. Support based
on maximum disparity between images is used.

No significant error is noticeable in this experiment, as the 37 features are
correctly tracked and the 6 occluded points are rejected in every frame. Recon-
struction based on the matches is precise. Each of the frames presents a total
of ca. 11000 matching candidates, which after application of support reduces to
only 1100 points.

6 Conclusions

We have presented in this text a novel approach to multi-view matching that
allows correspondence to be obtained with linear complexity. This is achieved
through a generalization of the concept of assignment matrix to the multidi-
mensional assignment tensor. This tensor shares most of the properties of the



Fig. 3. Results for the Hotel data set. Counter-clockwise from upper left: First image
with features in red and occluded points in blue; last image with correspondences in
red; last image with trajectories; point cloud resulting from reconstruction, viewed from
above.

assignment matrix, while adding constraints that allow a coherent solution be-
tween frames to be enforced. A cost function based on rigidity, as understood
under the factorization context, has been used in conjunction with the assign-
ment tensor to successfully determine correspondence between images. This cost
function not only yields a global solution but also overcomes the aperture prob-
lem, owing to the fact that it does not depend on photometry as most present
methods.

References

1. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge Univerity Press 2000.

2. G. Nemhauser and L. Wolsey. Integer and Cobinatorial Optimization, John Wiley
& Sons 1999.

3. F. Dellaert et al., Structure From Motion Without Correspondence. In Proc. CVPR,
South Carolina, USA, June 2000

4. M. Fazel, H. Hindi and S. Boyd. A Rank Minimization Heuristic with Application
to Minimum Order System Approximation. In Proc. ACC, June 2001.



5. V. Ferrari, T. Tuytelaars and L. van Gool. Wide-Baseline Multiple-View Correspon-
dences. In Proc. ICCV, October 2003.

6. A. Heyden, R. Berthilsson and G. Sparr. An iterative factorization method for
projective structure and motion from image sequences. Image and Vision Comput-

ing(17), 13(1), pp. 981-991, November 1999.
7. M. Irani and P. Anandan. Factorization with Uncertainty. In —textitProc. ECCV,

June 2000.
8. V. Kolmogorov and R. Zabih. Multi-camera Scene Reconstruction via Graph Cuts.

In Proc. ECCV, May 2002.
9. J. Maciel and J. Costeira. A Global Solution to Sparse Correspondence Problems.

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25(2), Febru-
ary 2003.

10. D. Martinec and T. Pajdla. 3D Reconstruction by Fitting Low-Rank Matrices with
Data. In Proc. CVPR, June 2005.

11. R. Oliveira, J. Costeira and J. Xavier. Optimal Point Correspondence through the
Use of Rank Constraints. In Proc. CVPR, San Diego, USA, June 2005.

12. S. Roy and I. Cox. A Maximum-Flow Formulation of the N-Camera Stereo Corre-
spondence Problem. In Proc. ICCV, January 1998.

13. K. Shafique and M. Shah. A Non-Iterative Greedy Algorithm for Multi-frame Point
Correspondence. In Proc. ICCV, October 2003.

14. P. Sturm and B. Triggs. A factorization based algorithm for multi-image projective
structure and motion. In Proc. ECCV, pp. 709-720, April 1996.

15. C. Tomasi and T. Kanade. Shape from motion from image sreams under orthog-
raphy: a factorization method. IJCV,9(2):137-154, November 1992.

Appendix

In this section an explicit expression for the coefficient vector of the linear pro-
gram in (11) is presented, for the three-frame case. Each ci is divided into a set
of terms as in (12) corresponding, respectively, to the terms depending only on
P2, and P3, and to the terms in P2P3

T , P1P
T
1 , P2P2

T and P3P3
T .

ci = 2cP2
+ 2cP3

+ 2cP2P3
+ cP 1P1 + cP2P2

+ cP3P3
,

cP2
= 1[1×p3] ⊗

(

qi1:2
T w1 ⊗ qi3:4

T w2

)

cP3
=

(

qi5:6
T w3 ⊗ qi1:2

T w1

)

⊗ 1[1×p2]

cP1P1
= 1[1×p3] ⊗

(((

qT
i1:2

w1

)

•
(

qT
i1:2

w1

))

⊗ 1[1×p2]

)

cP2P3
= vecr

((

qi5:6
T w3

)

⊗
(

qi3:4
T w2

))

cP2P2
= vec

(

1[pt×p3] ⊗
(

diag
((

I[p2×p2] ⊗ qi3:4
T w2

)

E2E2
T

(

I[p2×p2] ⊗ w2
T qi3:4

)))T
)

cP3P3
= vec

(

(

diag
((

I[p3×p3] ⊗ qi5:6
T w3

)

E3E3
T

(

I[p3×p3] ⊗ w3
T qi5:6

)))T
⊗ 1[pt×p2]

)

Ei =
[

e1e
T
1 · · · epi

eT
pi

]T

(12)
The vecr operator acts in a similar way to vec, except that it stacks the

rows of a matrix instead of its columns. ei represents the ith versor in the pi-
dimensional space. The complete c is constructed by the sum of all ci.


