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Abstract. In this paper we evaluate the performance of the two most
successful state-of-the-art descriptors, applied to the task of visual ob-
ject detection and localization in images. In the first experiment we
use these descriptors, combined with binary classifiers, to test the pres-
ence/absence of object in a target image. In the second experiment, we
try to locate faces in images, by using a structural model. The results
show that HMAX performs slightly better than SIFT in these tasks.

1 Introduction

A key issue in visual object recognition is the choice of an adequate local de-
scriptor. Recently Mikolajczyk et al. [1] presented a framework to compare local
descriptor performance in image region matching. However, their conclusions
are not guaranteed to be valid in object category recognition. Thus, in this work
we perform a comparative study of two of the most successful state-of-the-art
local descriptors (SIFT and HMAX), applied to object category detection and
localization in images. We aim to use the same experimental set-up, to evaluate
the actual impact of local descriptor choice.

Scale Invariant Feature Transform (SIFT) [2] is a location-histogram-based
descriptor, very successful in single object recognition. Among the several exten-
sions to SIFT descriptor, SIFT-Gabor [3] improves SIFT matching properties,
and is also used in this work. On the other side, the biologically inspired de-
scriptor HMAX [4] which combines the information of several filters and max
operators, has shown excellent performance in object category recognition.

We perform experiments with two kinds of object models: (i) appearance
only, and (ii) shape and appearance. In the first group of experiments we model
objects by a bunch of local descriptors. In this model we disregard descriptor’s
location information, so we are able to decide object presence/absence in new
images, but is not possible to estimate object position in the image. We detect



nine different object categories, considering each category recognition as a two-
class problem (object samples and background samples). In order to estimate
class models, we use AdaBoost and SVM learning algorithms.

In the second group of experiments, we model objects using local descriptors
as appearance and pictorial structure as shape model. This shape model repre-
sents an object as a star-like graph. The graph nodes correspond to image region
local descriptors (appearances), and edges connect pairs of nodes whose relative
location can be modelled by a two dimensional Gaussian (object shape). With
this model we are able to decide object presence/absence and location in new
images. This model allows object translations, and is robust to small scalings,
but it is not fully invariant to object rotations and scalings.

This paper is organized as follows: in Section 2, SIFT and HMAX descriptors
are briefly introduced. Then, in Section 3, we describe the object shape model.
Afterwards, the experiments and results are presented in Sections 4 and 5. And,
finally, we conclude the paper with the summary and conclusions.

2 Appearance models

In order to compute region appearance models, we compute three descriptors:
SIFT, SIFT-Gabor modification and HMAX.

2.1 SIFT descriptor

In the original formulation of the SIFT descriptor [2], a scale-normalized image
region is represented with the concatenation of gradient orientation histograms
relative to several rectangular subregions. Firstly, the derivatives Ix and Iy of the
image I are computed with pixel differences. Then the image gradient magnitude
and orientation is computed for every pixel in the scale-normalized image region:

M(x, y) =
√

Ix(x, y)2 + Iy(x, y)2; Θ(x, y) = tan−1(Iy(x, y)/Ix(x, y)). (1)

The interest region is then subdivided in subregions in a rectangular grid. The
next step is to compute the histogram of gradient orientation, weighted by gra-
dient magnitude, for each subregion. Orientation is divided into B bins and each
bin is set with the sum of the windowed orientation difference to the bin center,
weighted by the gradient magnitude:

hr(l,m)
(k) =

∑

x,y∈r(l,m)

M(x, y)(1 − |Θ(x, y) − ck|/∆k), (2)

where ck is the orientation bin center, ∆k is the orientation bin width, and
(x, y) are pixel coordinates in subregion r(l,m). The SIFT local descriptor is the
concatenation of the several gradient orientation histograms for all subregions:

u = (hr(1,1)
, . . . , hr(l,m)

, . . . , hr(4,4)
) (3)

With 16 subregions and B = 8 orientations bins, u size is 128. The final step is
to normalize the descriptor in Eq.(3) to unit norm, in order to reduce the effects
of uniform illumination changes.



SIFT-Gabor descriptor Using the framework provided by Mikolajcyzik et

al. [1], we improve SIFT distinctiveness for image region matching. We propose
an alternative way to compute first order image derivatives using odd Gabor
filters, instead of pixel differences [3]. We rely on filter energy, to select the most
appropriate Gabor filter width especially suited to represent scale-normalized
image regions. Image derivatives are computed as

Ix(x, y) = (I ∗ godd
0,6,4

√
2/3

)(x, y); Iy(x, y) = (I ∗ godd
π/2,6,4

√
2/3

)(x, y). (4)

where godd
θ,γ,σ(x, y) is the 2D odd Gabor function with orientation θ, wave number

γ, and width σ. Once the image derivatives are computed, we do as original SIFT
histogram computation.

2.2 HMAX model

The biologically inspired HMAX model was firstly proposed by Riesenhuber and
Poggio [4], and lately revised by Serre et al. [5], who introduced a learning step
based on the extraction of lots of random patches. On the latter version, Maŕın-
Jiménez and Pérez de la Blanca [6] have proposed some changes that we have
adopted for this work, in particular, the use of Gaussian derivatives functions
(i.e. second order) instead of Gabor functions.

We include a brief description of the steps of the HMAX model to generate
C2 features (see [5] for details):

1. Compute S1 maps: the target image is convolved with a bank of oriented
filters with various scales.

2. Compute C1 maps: pairs of S1 maps (of different scales) are subsampled and
combined, by using the max operator, to generate bands.

3. Only during training: extract patches Pi of various sizes ni × ni and all
orientations from C1 maps, at random positions.

4. Compute S2 maps: for each C1 map, compute the correlation Y with the
patches Pi: Y = exp(−γ‖X − Pi‖

2), where X are all the possible windows
in C1 with the same size as Pi, γ is a tunable parameter.

5. Compute C2 features: compute the max over all positions and bands for each
S2i map, obtaining a single value C2i for each patch Pi.

3 Object Shape model

The objects are composed by a set of P parts, and modelled by the relative
locations between parts and appearance of every part. The locations between
parts is a star-like graph, where the star’s reference point (landmark) must
be present in the image in order to detect an object. The pictorial model is
parametrized by the graph G = (V,E). V = {v1, . . . , vp, . . . , vP } is the set of
vertices and v1 is the landmark point. E = {e12, . . . , e1p, . . . , e1P } is the set
of edges between connected parts, where e1p denotes the edge connecting part
1 and part p. We model the edge parameters as Gaussian distributions of the



x and y coordinates referenced to the landmark location. The edge model is
e1p = (µxp−x1

, σ2
xp−x1

, µyp−y1
, σ2

yp−y1
), p = 2, . . . , P ; e1p ∈ E, where the mean(µ)

and variance(σ2) are estimated in the training set. Additionally to edge parame-
ters, the set of appearance models related to vertices is u = {u1, . . . , up, . . . , uP }.

The statistical framework proposed in [7], computes the probability of an
image3 I, given an object configuration L = {l1, . . . , lp, . . . , lP }, li = (xp, yp) and
a model θ = (u,E) as

p(L|I, θ) ∝ p(I|L, θ)p(L|θ). (5)

Assuming non-overlapping parts in the object, the likelihood of I given the con-
figuration L and model θ can be approximated by the product of probabilities
of each part, so p(I|L, θ) = p(I|L, u) ∝

∏P
p=1 p(I|lp, up). The prior p(L|θ) is cap-

tured by the Markov random field with edge set E. Following the reasoning pro-
posed in [7], the prior is approximated by p(L|θ) =

∏

e1p∈E p(x1, xp|θ)p(y1, yp|θ).

Thus replacing the likelihood and prior in Eq. (5), and computing the negative
logarithm, the best object configuration is

L∗ = arg min
L

−

P
∑

p=1

log p(I|lp, up)−
∑

(e1p∈E)

log p(x1, xp|cp)−
∑

(e1p∈E)

log p(y1, yp|cp).

(6)
The Eq.(6) computes in a new image I the most probable configuration L∗, after
learning the model θ = (u,E).

4 Object Detection Experiment

In this group of experiments we model an object category by a set of local de-
scriptors (SIFT/HMAX). We select N points from training set images of object
class c, and compute local descriptor uc

i at selected point i. With SIFT descrip-
tors, u is the gradient histogram vector in Eq. (3) and, with HMAX descriptor
u is the patch Pi described in Section 2.2. During training, for all cases, we se-
lect points searching for local maxima of Difference of Gaussians (DoG), but in
original HMAX points are selected at random.

In order to detect an instance of the category modelled in a new image we:

1. Select J interest point locations by applying DoG operator. But in original
HMAX, all the image points are candidates (see section 2.2 ).

2. Compute local descriptors in the new image uj , j = 1, . . . , J at interest point
locations.

3. Create class-similarity feature vector v = [v1, . . . , vi, . . . , vN ] by matching
each class model point descriptor uc

i against all image descriptors uj . In the

case of SIFT descriptor vi = minj ‖u
c
i − uj‖

2
, and in the case of HMAX

descriptor vi = maxj exp(−γ‖Pi − uj‖
2).

4. Classify v as object or background image, with a binary classifier.



Fig. 1. Typical images from selected databases.

The experiments are performed over a set of classes provided by Caltech 4:
airplanes side, cars side, cars rear, camels, faces, guitars, leaves, leopards and
motorbikes side, plus Google things dataset [8]. We use category Google things as
negative samples. Each positive training set is comprised of 100 images drawn at
random, and 100 images for testing drawn at random from the unseen samples.
Figure 1 shows some sample images from each category. For all experiments,
images have a fixed size (height 140 pixels), keeping the original image aspect
ratio and converted to gray-scale format. We vary the number of local descriptors
that represent an object category, N = {5, 10, 25, 50, 100, 250, 500}. In order to
evaluate the influence of the learning algorithm, we utilize two classifiers: SVM
[9] with linear kernel5, and AdaBoost [11] with decision stumps.

The experimental set-up for each kind of local descriptor is: (i) original
HMAX, (ii) HMAX computed at DoG, (iii) SIFT non-rotation-invariant (NRI),
(iv) original SIFT, (v) SIFT-Gabor, and (vi) SIFT-Gabor NRI.

Results and discussion In Table 1, we show the mean results of detection
for 10 repetitions at equilibrium point (i.e. when the false positive rate = miss
rate), along with confidence interval (at 95%). We only show results for 10 and
500 features. In Fig. 2 we see performance evolution as a function of the number
of features, in the case of rigid (airplanes) and articulated (leopards) objects.

The local descriptors can be classified in three groups using the average per-
formance: HMAX-based descriptors, SIFT-NRI descriptors, and SIFT descrip-
tors. HMAX-based descriptors have the best performance, followed by SIFT-NRI
descriptors and SIFT descriptors. The separation between the groups depends
on the learning algorithm, in the case of SVM the distance between groups is
large. In the case of AdaBoost groups are closer to each other, and for some cat-
egories (motorbikes, airplanes and leopards) all descriptors have practically the
same performance. We see that in average, results provided by SVM are better
than the AdaBoost ones.

Although in [3] is concluded that SIFT-Gabor descriptor improves SIFT dis-
tinctiveness on average for image region matching, we cannot apply this conclu-
sion to object category recognition. In the case of AdaBoost learning algorithm
SIFT and SIFT-Gabor have practically the same performance, while in the case
of SVM SIFT performs slightly better than SIFT-Gabor.

3 set of intensity values that represents visually the object
4 Datasets are available at: http://www.robots.ox.ac.uk/˜vgg/data3.html
5 Implementation provided by libsvm[10]



Table 1. Results for all the categories. (TF: type of feature. NF: number of features).
On average over all the categories and using SVM, HMAX-Rand gets 84.2%, versus
the 73.9% of regular SIFT. For each experiment, the best result is in bold face.

Support Vector Machines

Airplane Camel Car-side Car-rear
TF/NF 10 500 10 500 10 500 10 500

H-Rand 87.3, 2.2 95.9, 1.0 70.4, 3.1 84.3, 2.2 87.9, 4.0 98.1, 1.5 93.0, 1.1 97.7, 0.8
H-DoG 80.3, 2.6 94.9, 0.8 70.2, 3.9 83.9, 1.4 88.9, 3.8 99.5, 0.9 86.6, 1.8 97.0, 0.7

Sift 74.6, 1.8 89.1, 1.0 63.9, 2.4 76.1, 1.7 72.9, 3.4 87.9, 3.7 73.7, 2.7 88.4, 2.1
G-Sift 69.7, 2.9 88.6, 1.5 57.3, 1.8 77.2, 2.2 69.1, 5.6 87.0, 2.0 67.2, 2.1 85.8, 1.7

SiftNRI 78.0, 3.2 92.4, 1.3 63.1, 3.8 77.8, 1.9 79.2, 3.4 90.8, 2.2 86.9, 1.8 93.1, 1.2
G-SiftNRI 74.8, 2.6 92.8, 1.5 62.1, 3.4 75.9, 1.9 72.5, 4.9 87.4, 2.2 80.2, 1.9 90.7, 1.2

Faces Guitar Leaves Leopard Motorbike
10 500 10 500 10 500 10 500 10 500

79.8, 3.4 96.6, 0.7 87.1, 4.0 96.7, 1.1 88.6, 3.1 98.3, 0.6 81.4, 3.4 95.7, 0.9 81.9, 3.4 93.7, 0.9
82.7, 1.8 96.0, 0.6 82.9, 4.0 95.9, 0.8 84.6, 2.0 98.3, 0.9 70.9, 3.9 94.2, 1.3 81.6, 2.3 94.7, 0.7
74.8, 3.3 88.4, 1.8 66.4, 3.0 81.1, 1.5 81.5, 3.5 92.6, 1.1 81.7, 2.5 87.8, 1.1 75.2, 2.3 87.9, 1.4
73.6, 2.9 85.2, 1.9 70.1, 1.9 82.3, 1.1 81.0, 3.3 92.4, 1.0 78.0, 3.0 89.6, 1.3 69.0, 2.6 86.9, 1.4
84.4, 3.4 92.8, 1.2 65.2, 3.3 85.4, 1.0 79.1, 2.8 92.6, 0.9 81.6, 1.7 92.4, 1.2 75.4, 2.4 90.9, 1.7
84.6, 3.3 91.8, 1.2 69.0, 3.8 86.1, 1.6 79.1, 3.3 91.7, 1.3 76.9, 3.2 91.8, 1.4 72.0, 2.9 89.6, 0.7

AdaBoost

Airplane Camel Car-side Car-rear
TF/NF 10 500 10 500 10 500 10 500

H-Rand 81.0, 0.7 94.3, 1.1 67.7, 3.3 83.1, 1.0 84.1, 2.8 94.2, 2.0 90.1, 5.1 98.3, 0.7
H-DoG 77.8, 3.6 93.2, 1.3 63.9, 4.5 79.1, 1.8 85.5, 5.5 96.6, 1.3 74.1, 15.7 96.4, 1.3

Sift 75.3, 3.3 90.6, 1.5 65.1, 1.9 73.8, 1.6 74.9, 4.0 88.9, 2.1 76.3, 2.6 89.8, 1.6
G-Sift 73.0, 4.1 90.2, 1.2 60.6, 2.4 77.3, 2.0 70.5, 4.7 87.0, 3.5 69.7, 1.5 87.2, 2.0

SiftNRI 79.8, 3.2 93.1, 1.1 65.0, 3.4 78.1, 1.5 81.6, 4.9 90.8, 2.2 89.6, 0.7 94.9, 1.2
G-SiftNRI 77.9, 2.4 94.2, 1.2 62.2, 2.9 74.8, 2.3 78.3, 3.8 89.9, 2.0 83.8, 1.3 92.3, 0.9

Faces Guitar Leaves Leopard Motorbike
10 500 10 500 10 500 10 500 10 500

77.1, 4.7 94.9, 1.1 83.7, 7.1 96.6, 1.0 83.1, 6.2 97.7, 0.7 76.8, 2.8 85.6, 1.1 74.7, 4.8 92.0, 1.7
74.4, 6.1 95.7, 1.2 78.0, 6.9 92.7, 1.5 76.0, 4.6 97.0, 0.9 70.2, 5.5 83.1, 2.0 75.2, 3.7 93.4, 0.9
78.3, 3.1 90.8, 1.2 66.0, 3.4 79.9, 1.1 84.2, 3.2 92.6, 1.1 83.6, 2.2 87.0, 1.2 77.9, 1.7 90.7, 1.4
75.3, 3.3 87.4, 1.7 71.6, 2.6 83.4, 2.6 81.1, 4.3 92.9, 1.3 81.2, 1.8 89.7, 2.2 70.8, 2.9 88.9, 1.2
87.6, 2.7 94.3, 0.8 67.2, 2.8 86.4, 1.4 81.0, 3.6 92.9, 1.5 84.4, 1.5 92.8, 1.2 80.4, 2.6 93.7, 1.1
86.1, 2.8 92.6, 1.3 69.9, 4.3 87.4, 1.0 81.7, 3.8 92.2, 1.9 78.1, 1.9 91.7, 1.0 75.4, 2.3 92.3, 1.2

HMAX is able to discriminate categories, attaining rates over 80% in most of
the cases with a small number of features, e.g. 10. It shows that a discriminative
descriptor can detect objects in categories with very high visual difficult images,
like leopards and camels, using an appearance model. Other remarkable data is
that HMAX-DoG works better with car-side and motorbikes, since DoG operator
is able to locate the most representative parts, e.g. the wheels.

5 Face detection and localization experiment

The aim of this experiment is to detect and locate faces in images using appear-
ance models (SIFT and HMAX) and shape model (pictorial structure). We use
a subset of the Caltech faces (100 images), background (100 images) database
images, and the software provided at the “ICCV’05 Short Course” [12]. Here it is
important to remark that background images do not model a negative class, but
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Fig. 2. Comparison of performance depending on the type and number of features
representing the images. The used classifier is SVM.

Fig. 3. Face detection samples: 3 hits and 1 miss (right).

they are utilized only to test the object model in images without faces. We select
10% of the face images to learn the local descriptor model (µup

, Σup
), and the

pictorial structure model (µxp−x1
, σ2

xp−x1
, µyp−y1

, σ2
yp−y1

), with P = 5 parts. We
recognize faces in the remaining 90% of face image set and background images.

Results and discussion Evaluation criterion comprises object detection and
location. In the case of object detection we compute the Receiver Operator
Characteristic (ROC) curve, varying the threshold in L∗ from Eq. (6). In the
case of object location we compute precision vs. recall curve (RPC), varying the
ratio between the intersection and union of ground truth and detected bounding
boxes. From ROC we compute area (A-ROC) and equal error rate point (EEP),
and, from RPC we compute equal error rate (RPC-eq) presented in Table 2. The
results show that HMAX’s C1-level based descriptors are suitable to represent
object parts, achieving better results than SIFT descriptors. Figure 3 shows
three correct detections and one wrong detection, when using five parts for the
model and HMAX as part descriptor.

Feature Nparts A-ROC EEP RPC-eq

HMAX 5 94.8 89.0 84.9
SIFT 5 93.4 86.3 80.3
SIFT-Gabor 5 94.9 85.3 81.7

Table 2. Results for face detection and localization using the structural model.



6 Summary and conclusions

We carry out a comparative study of SIFT and HMAX (C1 level) as local de-
scriptors for object recognition. We aim to perform a fair comparison, using the
same set-up elements: (i) training and test sets, (ii) object models, and (iii) in-
terest point selection. We evaluate performance of both descriptors in two object
models: (i) appearance only, and (ii) shape and appearance. After performing
the experiments with different datasets, we see that, on average, disregarding
interest point detection, learning algorithm, and object model, HMAX performs
better than SIFT in all the different experiments. As future work, in order to
evaluate the impact of interest point selection in recognition performance, we
intend to evaluate other interest point detectors in this framework.
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