
POSITION TRACKING FOR UNDERACTUATEDRIGID BODIES ON SE(3)Paulo Tabuada � Pedro Lima �� Instituto de Sistemas e Rob�otiaInstituto Superior T�enioAv. Roviso Pais, 11049-001 Lisboa - PORTUGALPhone: (351) 21 841 8270 Fax: (351) 21 841 8291ftabuada,palg�isr.ist.utl.ptAbstrat: The problem of traking a desired trajetory is of fundamental importanein real appliations where some system is required to follow a pre-planned or pre-spei�ed trajetory. For underatuated systems this problem is not always solvablesine the desired trajetory may not belong to the set of feasible trajetories for thegiven system. However real life appliations often only require traking of some ofthe variables, the most ommon example being a uniyle type robot following apreassigned 2D path. In this paper we study the problem of position traking forunderatuated rigid bodies on SE(3).Keywords: Trajetory Traking, Nonlinear Control, Nonholonomi Systems,Underatuated Systems, Di�erential Geometry.1. INTRODUCTIONTraking a desired trajetory is a frequent prob-lem is ontrol and robotis, where a pre-plannedpath representing the aomplishment of ertaingoals must be enfored. This pre-spei�ed pathmay represent an optimal solution for the prob-lem, a required maneuver to be exeuted suhas doking of a vehile, or the outome of somehigher-level ontroller.For fully atuated systems this problem is nowwell understood and solutions are proposed instandard textbooks on nonlinear ontrol (Isidori,1996) and (Nijmeijer and van der Shaft, 1990).On the other hand traking for underatuatedsystems is a hallenging problem from the theo-retial point of view sine not all trajetories arefeasible by the system, and the results developed1 The �rst author was supported by Funda�~aopara a Ciênia e Tenologia under grant PRAXISXXI/BD/18149/98.

for fully atuated systems fail to apply. From thepratial point of view this problem is also ofgreat importane sine the development of sys-tems with less atuators allows for redutions inthe ost of the overall system and in full atuatedsystems represents a valuable safeguard regardingmalfuntioning of some of the available atuators.In this artile we will address a speial ase ofthis problem where the system in only required totrak some of the state variables, more spei�allywe will onsider underatuated rigid bodies on thespeial eulidean group SE(3) where it is onlyrequired that the system traks a referene posi-tion in three dimensional spae. The importaneof this problem omes from the fat that oftena mission is only spei�ed in terms of a desiredposition trajetory and no orientation informationis available.Traditional approahes to this problem involvelinearization about the referene trajetory andmethods from linear ontrol theory resulting in



a global gain-sheduled ontrol law (Kaminer etal., 1998) or linear time-varying ontrol (Walshet al., 1994). Other approahes inlude adaptiveand feedbak linearization shemes (Fossen, 1994)or using onstant forward speed, thereby re-duing the problem to ontrol the attitude ofthe rigid body towards the referene trajetory(Enarna�~ao et al., 2000). This approah wasoriginally introdued in (Samson, 1992; Miaelliand Samson, 1993) and sine then more advanedtehniques have also been applied to planar robotssuh as partial feedbak linearization and dy-nami feedbak linearization, (d'Abdrea Nolvel etal., 1995) (Thuillot et al., 1996). A survey of thevarious methods of ontrol and trajetory trakingfor mobile robots is given in (de Wit et al., 1997)and for oean vehiles in (Fossen, 1994).Contrary to the desribed approahes, in this pa-per we will address the problem from a oordinate-free perspetive, therefore allowing a simpler andmore general understanding and presentation ofthe results often obsured by a partiular hoieof oordinates. This approah makes use of sev-eral tehniques from di�erential geometry andhas been strongly inuened by work on trakingwith similar approahes suh as (Bullo and Mur-ray, 1999). A good introdution to nonholonomisystems in the ontext of Riemannian manifoldsis given in (Bloh and Crouh, 1995).2. MATHEMATICAL PRELIMINARIESWe shall assume that the reader is familiar withseveral di�erential geometri onepts at the levelof (Boothby, 1975).2.1 SE(3), left invariant metris and kinemationnetions.In this paper we will onsider the left-invariantkinemati model of an underatuated rigid bodyin SE(3) given by:ddtg = g:(X1u1 +X2u2 +X3u3 +X4u4) (1)where g 2 SE(3) and X1, X2, X3 and X4 are thebasis vetors of the lie algebra se(3) representingthe diretion of motion along roll, pith, yaw andforward translational veloity, respetively. Notethat the system is underatuated sine motionalong the remaining basis vetors of se(3) is notpossible. Instead of writing elements of se(3) inmatrix form we will adopt the following simplerrepresentation:f(!1; !2; !3); (v1; v2; v3)g $ 2664 0 �!3 !2 v1!3 0 �!1 v2�!2 !1 0 v30 0 0 0 3775(2)

whih allows us to represent a left invariant metrion SE(3) in the following form:� = ��I3�3 03�303�3 �I3�3� (3)with � and � positive salars. For a disussionon the possible metris on SE(3) and its relationwith the kinemati onnetion we defer the readerto (Zefran et al., 1999) and the referenes therein.We shall also need the kinematis onnetion om-patible with the previously given left-invariantmetri and whose non zero Christofell symbols wereprodue here for ompleteness:�312 = �231 = �123 = 12�321 = �213 = �132 = �12�615 = �426 = �534 = 1�624 = �435 = �516 = �1 (4)2.2 Error funtionsWe shall de�ne error funtions on Rn for the sakeof generality, although we are only interested intraking trajetories in R3 . For a de�nition oferror funtions on abstrat manifolds the readeris deferred to (Bullo and Murray, 1999). An errorfuntion is a map � : Rn � Rn ! R, suh that�(x; r) � 0 and �(x; r) = 0 i� x = r. We shallalso impose that d2�(x; r) = �d1�(x; r) whered1 is the exterior derivative with respet to xand d2 the exterior derivative with respet to r.This will allow the time derivative of �(x; r) beingexpressed by the familiar expression:ddt�(x; r) = d1�(x; r): _x + d2�(x; r): _r= d1�(x; r)( _x � _r) (5)We shall say that the error funtion is (uniformly)quadrati lower bounded if there is a salar b � 0suh that: �(x; r) � bkd1�(x; r)k2 (6)Note than in abstrat manifolds this onditionmay only hold loally aording to the topologyof the manifold.3. TRACKING FOR NONHOLONOMICSYSTEMS3.1 Problem formulationThe goal of this paper is to desribe an algorithmto trak a desired position referene r(t) disre-garding the rigid body orientation. A ontrol lawu(g) solves the position traking problem if:



� The traking error �(t) = �(x(t); r(t)) andthe ontrols ui are bounded for all time.� The traking error asymptotially deays tozero, limt!1 �(t) = 0It is usual to inlude another requirement whenonly feasible trajetories are being traked, namelythat �(0) = 0 ) �(t) = 0. However this re-quirement may not be satis�ed if one wishes totrak trajetories not feasible by all the statesof the system. Suppose that �(0) = 0 and thatddtr(t) =2 SpanfX1; X2; X3; X4g under this se-nario one an never guarantee that the error fun-tion will remain zero.3.2 Regularity and boundedness assumptionsWe shall assume the following regularity andboundedness properties:� �(x; r) 2 C2.� r(t) is twie di�erentiable.� supt2R kr(t)k < 1, supt2R k _r(t)k < 1 andsupt2R k�r(t)k <1.We assume that the referene trajetory is twiedi�erentiable whih is not a restritive assumptionsine it is desirable for the referene to be assmooth as possible. Boundedness assumptions onthe referene trajetory are also standard assump-tions.3.3 Intuitive motivationTo ahieve exponential traking of the rigid bodyposition it would desirable that the vetor �eldX desribing the motion of the rigid body ouldbe hosen to be X = _r � �(d1�(x; r))T . We usethe metri (gij = �I3�3) on R3 to transform theovetor d1�(x; r) in the vetor gij(d1�(x; r))j =1� (d1�(x; r))i = 1� (d1�(x; r))T = �(d1�(x; r))T .Therefore, by using V1 = �(x; r) as a andidateLyapunov funtion one immediately sees that:ddtV1 =d1�(x; r):( _x � _r)= d1�(x; r):� _r � �(d1�(x; r))T � _r�=��d1�(x; r):(d1�(x; r))T (7)whih is negative semi-de�nite, negative de�nite-ness is a onsequene of the quadrati nature of�. In fat, using the inequality in (6):ddtV1 =��d1�(x; r):(d1�(x; r))T=��kd1�(x; r)k2 � ��b �(x; r) (8)It is not always possible to freely assign the vetor�eld _x due to the kinemati restritions of the

system. However the above observation suggeststhe following approah to solve the problem:� Use roll, pith and yaw inputs to align thevetor �eld Xr = �03�3 X01�3 0 � with X4.� Projet Xr on X4, to determine the forwardveloity ontrol input.This approah will now be desribed in moredetail.3.4 Orientation ontrolTo ensure that Xr belongs to SpanfX1; :::; X4gone must derive a ontrol law that stabilizes thesystem in the following set 	 = fg 2 SE(3) : <Xr; X5(g) >g= 0; < Xr; X6(g) >g= 0g. We anbuild a andidate Lyapunov funtion measuringthe \distane" to the set 	. Let  i : R � R !R i = 1; 2 be two error funtions and onsiderthe following Lyapunov andidate funtion:V2 =  1(< Xr; X5 >; 0) +  2(< Xr; X6 >; 0)(9)After some tedious algebra (Tabuada and Lima,2000), it an be shown that its time derivative isgiven by:ddtV2 = d 1�< f0; �r � � ddt (d1�(x; r)jxfixed)T g; X5 >��u4 < �2�(x; r)�xixj X4; X5 >+u1 < Xr; X6 > �u3 < Xr; X4 >�+ d 2�< f0; �r � � ddt (d1�(x; r)jxfixed)T g; X6 >��u4 < �2�(x; r)�xixj X4; X6 >+u2 < Xr; X4 > �u1 < Xr; X5 >� (10)This means that if we hoose �(x; r) in suha way that < �2�(x;r)�xixj X4; X5 >= 0 and <�2�(x;r)�xixj X4; X6 >= 0 and as long as < Xr; X4 >6=0 we an use u2 and u3 to exponentially steer therigid body towards the set 	. Before stating thisresult we will give a more useful haraterizationof the allowed error funtions:Proposition 3.1. The requirement< �2�(x;r)�xixj X4; X5 >= 0 =< �2�(x;r)�xixj X4; X6 > is sat-is�ed i� �(x; r) = 12k(r)(x�r)T (x�r), where k(r)is a smooth funtion of r.Now we are ready to state the following result.Proposition 3.2. (Exponential stabilization in 	).For all initial onditions in the open and denseset � = fg 2 SE(3) : < Xr; X4(g) >g 6=



0g and all the error funtions of the form�(x; r) = 12k(r)(x � r)T (x� r) the ontrol law:u1 =0 (11)u2 =� �2d 2< Xr; X4 >� < f0; �r � � ddt (d1�(x; r)jxfixed)T g; X6 >< Xr; X4 >u3 = �3d 1< Xr; X4 >+ < f0; �r � � ddt (d1�(x; r)jxfixed)T g; X5 >< Xr; X4 >for �2, �3 > 0 exponentially stabilizes the sys-tem (1) in the set 	.Proof: Consider the Lyapunov andidate fun-tion (9) and its time derivative, given by (10).Substituting the ontrol law (11) and taking intoaount the speial form of the error funtion, onegets: ddtV2 = ��3(d 1)2 � �2(d 2)2 (12)whih is negative semide�nite. Negative de�nite-ness is proved with an argument similar to theproof of (7), let b 1 , b 2 be the quadrati lowerbounding onstants for the funtions  1,  2 asde�ned in (6), respetively. It follows that:ddtV2 � � �3b 1  1 � �2b 2  2 (13)To show that trajetories never leave the set � itis enough to onsider that _V2 � 0, therefore theprojetion of Xr overX4 never dereases and thusan never be zero.Remarks: The speial form of the error funtionis not neessary to stabilize the system in the set	, however it is very useful sine it deouples theorientation ontrol from the position ontrol. Itwill allow us to hose a ontrol law for u4 in thenext setion without disturbing the orientationkinematis. However it redues the set of possibleerror funtions, forbidding the use of di�erentweights for the error along di�erent diretions(one is fored to use k(r) in all diretions). Thisan also be seen as a diret onsequene of theredued set of metris ompatible with the kine-matis onnetion.In ontrol law (11) u1 was hosen to be zero,implying that it is not neessary that the rigidbody possesses roll ontrol to stabilize it in 	.In fat, similar ontrol laws ould be developedby hoosing u2 or u3 to be zero. Roll ontrolis still important if pith or yaw ontrol fails,onstituting a useful redundany. What is moreuseful in ertain situations is to be able to hosewhih atuators to use for optimizing fuel on-sumption or other optimality riteria during the

mission, however this approah will not be furtheraddressed in this paper.Note that ontrol law (11) uses the aelerationof the referene trajetory whih is not usual intrajetory traking. This an be easily explainedif one realizes that the attitude ontrol is trakingveloities in trying to align Xr with X4, thereforesine (11) an be viewed as a generalized PDontroller it needs aeleration information toaomplish this goal.Unfortunately ontrol law 11 does not guaranteesonvergene for all initial onditions, but only foran open and dense set of SE(3). Nevertheless thisis the best that an be ahieved sine SE(3) is nota simply onneted spae.3.5 Position ControlSine the orientation of the rigid body is onverg-ing to the set 	 by the ation of ontrol inputs u2and u3, it remains to ontrol the forward veloitythrough ontrol input u4. The ontrol law foru4 should be proportional to a measure of thealignment between Xr and X4, this an triviallybe ahieved by projeting the referene vetor �eldXr on X4, resulting in:u4 = < Xr; X4 >< X4; X4 > = 1� < Xr; X4 >= � < Xr; X4 > (14)Combining (14) with (11) we an asymptotiallytrak the desired referene. This onstitutes themain ontribution of the paper and is expressedin the following:Theorem 3.3. (Asymptotial position traking). Forall initial onditions in the set � and all error fun-tions of the form �(x; r) = 12k(r)(x � r)T (x� r),ontrol law (11) and (14) makes the system (1)asymptotially trak the desired referene r(t).In order to prove the result we will need thefollowing standard lemma whose proof an befound in (Khalil, 1996) Appendix A.2.Lemma 3.4. Let f(x) : D ! Rn ; D � Rn be aloally Lipshitz vetor �eld on D. If the solutionx(t) is bounded and belongs to D for t � 0, thenits positive limit set L+ is a nonempty, ompat,invariant set. Moreover, x(t)! L+ as t!1.Due to spae limitations we present only a skethof the proof:Proof: This proof sketh will onsist of the fol-lowing steps: boundedness of system trajetories,onvergene of trajetories to the largest invariant



set in 	 and equality between largest invariant setin 	 and desired referene r(t).Boundedness of trajetories. The trajetories ofthe rotation matries (living in SO(3)) are boundedsine SO(3) is a ompat spae. We only needto show that position of the rigid body is alsobounded. By using the fat that the trajetoriesof the system _x0 = X(x0) = _r � d1�(x0; r) arebounded sine ddt� � 0 as shown in (7) it anbe shown that trajetories of (1) with ontrollaw (14) and (11) are also bounded.Convergene to the largest invariant set in 	. Thesystem (1) with ontrol laws (11) and (14) isloally Lipshitz sine the boundedness assump-tions (3.2) on �(x; r) and r(t) easily imply that� _g�g is ontinuous on �. Therefore on any ompatneighborhood the derivative of _g with respet tog is bounded, implying loal Lipshitz ontinuity.By applying Lemma 3.4 we onlude that thepositive limit set is an invariant set. From (9) weknow that trajetories approah 	 asymptotially,therefore by Lemma 9 they approah the largestinvariant set ontained in 	.The largest invariant set in 	. To study thelargest invariant set in 	 we start by noting thatg 2 	 ) X4 = �Xr for a salar � and the positionkinematis is simpli�ed to _x = _r � �(d1�(x; r))T .Therefore the largest invariant set in 	 is thedesired referene r(t) as shown in (7).4. SIMULATION RESULTSIn this setion some simulations results are pre-sented for the SE(3) and the SE(2) ase. For theSE(3) the used error funtions and gains were�(x; r) = 12 (x � r)T (x � r),  1(a; b) =  2(a; b) =12 (a � b)2, �1 = 10 and �2 = 10. The metrisalar � was hosen to be unitary. With thesevalues the desired referene was an helix givenby r(t) = �sin( t10 ); os( t10 ); t10�, t 2 [0; 100℄. Theerrors between the desired trajetory r(t) and thereal trajetory x(t) are represented in Figure 1 foran initial position of x(0) = (�10;�30;�5) andan initial orientation of R = I3�3. Convergene isvery fast and the referene trajetory is trakedwith good preision. This motivates the use ofmore hallenging referenes suh as:r(t) =8<: (t; t) 0 < t � 30(60� t; t) 31 < t � 60(�60 + t; t) 61 < t � 100 (15)for the SE(2) ase. Note that the referene isnot twie di�erentiable violating the onditionsof Theorem 3.3. This implies that the systemwill lose trak of the referene at the points ofnon-di�erentiability as an be seen in Figure 2.Even in this ase the results are very impressivesine the trajetory is retraked very quikly after
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