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ABSTRACT

When the scene background is known and the intensity of mov-
ing objects contrasts with the intensity of the background, the ob-
jects are easily captured by exploiting occlusion, e.g., background-
subtraction. However, when processing general scenes, the back-
ground is not known and researchers have mostly attempted to seg-
ment moving objects by using motion cues rather than occlusion.
Since motion can only be accurately computed at highly textured re-
gions, current motion segmentation methods either fail to segment
low textured objects, or require expensive regularization techniques.
We present a computationally simple algorithm and test it with seg-
mentation of moving objects in low texture / low contrast videos
that are obtained in low-light scenes. The images in the sequence
are modeled taking into account the rigidity of the moving object
and the occlusion of the background. We formulate the problem as
the minimization of a penalized likelihood cost. Relaxation of the
weight of the penalty term leads to a simple solution to the nonlin-
ear minimization. We describe experiments that illustrate the good
performance of our method.

Index Terms— Occlusion, background subtraction, motion seg-
mentation, low contrast, relaxation, combinatorial optimization.

1. INTRODUCTION

Modern content-based video representations demand efficient meth-
ods to infer the contents of video sequences, like the shape and tex-
ture of objects and their motions [1]. In this paper we address this
problem of segmenting out moving objects from video. Although
methods that require human interaction have lead to good results,
fully automatic methods are still being investigated. In particular, we
seek methods capable of dealing with challenging video sequences,
as those obtained in low-light scenarios. In fact, when the scene is
poorly illuminated, which happens in many situations, e.g., evening
shots, only low contrast images can be obtained1.
Related work Among the approaches to segmentation of moving
objects, so-called background-subtraction methods are very appeal-
ing due to their simplicity. These methods capture the moving ob-
jects by subtracting the input image from a previously stored back-
ground [2, 3]. Although background-subtraction succeeds in rele-
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1Naturally, image contrast can be artificially increased through postpro-
cessing but the signal-to-noise ratio remains the same, i.e., low-light images
are inherently very noisy.

vant situations, e.g., surveillance applications, the background knowl-
edge requirement limits its application to general scenes.

Some approaches in the computer vision literature cope with low
texture by using prior knowledge about the scenes, e.g., statistical
regularization, or by combining motion with other attributes. In gen-
eral, these methods lead to complex and time consuming algorithms.
Another popular trend uses active contours—the contour of the ob-
ject is computed by minimizing a global cost function, thus leading
to robust estimates [4]. The drawback of these approaches is that the
global cost minimization requires calculus of variations, making the
algorithms computationally expensive.

Layered models brought new approaches to the segmentation
of moving objects. For example, the work in [5] uses an offline
approach to infer flexible templates. To cope with the very large
dimensionality of the search space, the authors restrict the motions
to single pixel translations.

Reference [6] uses temporal integration by averaging the images
registered according to the motion of the objects in the scene. After
processing a number of frames, each of these integrated images is
expected to show only one sharp region corresponding to the tracked
object. The object is found by detecting the stationary regions be-
tween the integrated image and the current frame. Unless the back-
ground is textured enough to blur completely the averaged images,
some regions of the background can be missclassified as stationary.
In this situation, the method of [6] overestimates the template of the
moving object. This is particularly likely to happen when the back-
ground has large regions with almost constant color.

In [7], we segmented moving objects using Maximum Likeli-
hood (ML) estimation. ML estimation succeeds even when there
is little contrast between the moving object and the background be-
cause it integrates small differences over time. However, the mini-
mum of the ML cost function is not always sharply defined. In fact,
the likelihood that some region belongs to the background may be
very similar to the likelihood that the same region belongs to the
moving object, when that region has low texture.
Approach Like the appealing and simple background-subtraction al-
gorithms, the approach we present in this paper exploits the fact that
the moving object occludes the background. However, unlike these,
we do not assume that the background is known a priori. Like some
of the elegant and robust computer vision approaches outlined above,
we formulate segmentation in a global way, as a parameter estima-
tion problem. However, unlike these, we do not use complex and
computationally expensive algorithms to compute the object shape.
Since in several situations the shape of the moving object does not
change across a number of frames, e.g., moving cars, we also exploit
the object rigidity. In the paper we show how occlusion+rigidity



enable a computationally simple algorithm to jointly estimate the
unknown background and shape of the moving object, directly from
the image intensity values.

The segmentation algorithm is derived as an approximation to
a penalized likelihood (PL) [8] estimate of the parameters involved
in the video model: the motions, the template of the moving object,
and the intensity levels of the object pixels (object texture) and of
the background pixels (background texture). Our PL cost function
balances two terms. The first term is the ML cost introduced in [7].
It measures the error between the observed data and the model. The
second term measures the size of the moving object, i.e., the area
of its template. By incorporating the penalization term, we make the
segmentation problem well-posed: we look for the smallest template
that describes well the observed data.

To minimize the PL cost function, we describe a computation-
ally simple algorithm that performs alternatively two estimation steps
for which we derive closed form solutions. The penalization term
has a second very relevant feature—it improves the convergence of
the two-step iterative algorithm. As for any iterative minimization
algorithm, the initial guess is a very relevant issue to the good con-
vergence of the process. By using a relaxation strategy for the weight
of the penalization term, we avoid using computationally expensive
ad-hoc methods to compute initial estimates. Our experience shows
that this strategy makes the behavior of the algorithm quite insensi-
tive to the initial guess, so much so that it suffices to initialize the
process by the trivial guess of having no moving object, i.e., every
pixel belonging to the background.

2. PROBLEM FORMULATION

We consider 2-D parallel motions. We represent the motions by
specifying position vectors that code rotation-translation pairs. The
image obtained by applying the rigid motion coded by the vector p
to the image I is denoted by M(p)I (registration). The registra-
tion of M(p)I according to the vector q is denoted by M(qp)I.
We denote the inverse of p by p#, thus the registration of M(p)I
according to p# obtains the original image I, i.e., M(p#p)I = I.
Observation model Consider a scene with a moving object in front
of a moving camera. Each pixel of each image belongs either to the
background or to the moving object. Thus, the frame If is

If =
{
M(p

#
f )B

[
1−M(q

#
f )T

]
+M(q

#
f )OM(q

#
f )T + Wf

}
H,

(1)

where T is the object template (a binary image defining the region
occupied by the moving object), B and O represent the patterns of
intensity levels, i.e., the textures, of the background and of the mov-
ing object, pf and qf are the camera pose and the object position,
Wf stands for the observation noise, assumed Gaussian, zero mean,
and white, H is a binary window that defines the rectangular field of
view of each image, and 1 is constant with value 1.
Penalized likelihood estimation Given F frames {If}, we want
to estimate the background B, the object O, the template T, the
camera poses {pf}, and the object positions {qf}. The problem
as just stated may be ill-posed. As an example, consider that the
object moves in front of a constant intensity background, i.e., the
background has no texture. This image sequence is indistinguish-
able from an image sequence where the object template is arbitrarily
enlarged with pixels whose intensity equals the intensity of the back-
ground. Without additional knowledge, it is not possible to decide
wether a pixel with intensity equal to the background intensity be-
longs to the background or to the moving object, i.e., no algorithm
can segment unambiguously the moving object. Although extreme,

this example illustrates the difficulties of segmenting objects from
backgrounds that have large patches with low texture.

To address this issue, we assume that the object is small. This
is in agreement with what the human visual system usually implic-
itly assumes. We incorporate this constraint into the segmentation
problem by minimizing a cost function given by

CPL = CML + α Area(T), (2)

where CML is the ML cost function studied in [7], α is a non-
negative weight, and Area(T) is the area of the template. Minimiz-
ing the cost CPL balances the agreement between the observations
and the model (term CML) with minimizing the area of the tem-
plate. The term α Area(T) can be interpreted as a Bayesian prior
and the cost function (2) as the negative log posterior probability
whose minimization leads to the Maximum a Posteriori estimate, as
usual in Bayesian inference approaches. It can also be motivated
through information-theoretic criterions like Akaike’s AIC or the
Minimum Description Length principle. Different basic principles
lead to different choices for the parameter α but the structure of the
cost function is still as in (2). Statisticians usually call the generic
form (2) a penalized likelihood (PL) cost function [8]. Our choice
for the weight α is discussed below.

The minimization of the functional CPL in (2) with respect to
(wrt) {B,O,T, {pf ,qf}} is a highly complex task. To obtain a
computationally feasible algorithm, we decouple the estimation of
the motions {pf ,qf} from the determination of B,O,T. This is
reasonable from a practical point of view and is well supported by
our experimental results with real videos. The rationale behind the
simplification is that the motions can be usually inferred without
knowing precisely the object template. To make this point clearer,
consider an image sequence with no prior knowledge available, ex-
cept that an object moves wrt an unknown background. Even with
no spatial cues, e.g., if the background and object textures are white
noise random fields, the human visual system can easily infer the
motion of the background and the motion of the object from only
two consecutive frames. However, this is not the case wrt the tem-
plate of the moving object: to infer an accurate template we need
a much higher number of frames that enables us to easily capture
the rigidity of the object across time. This observation motivated
our approach of decoupling the estimation of the motions from the
estimation of the remaining parameters. We compute the motions,
frame by frame, using a simple sequential method. We first com-
pute the dominant motion, which corresponds to the motion of the
background. Then, after compensating for the background motion,
we compute the object motion. We estimate the parameters describ-
ing both motions by using standard LS techniques. After estimating
the motions, we introduce the motion estimates into the PL cost (2)
and minimize wrt the remaining parameters. Clearly, this solution is
sub-optimal, in the sense that it is an approximation to the PL esti-
mate of the entire set of parameters, and it can be thought of as an
initial guess for the minimizer of CPL. This initial estimate can then
be refined by using a greedy approach. We emphasize that the key
problem here is finding the initial guess in an expedite way, not the
final refinement.

3. MINIMIZATION PROCEDURE

We now address the minimization of CPL in (2). Re-write CPL as

CPL = CML + α

∫∫
T(x, y) dx dy. (3)

To carry out the minimization, first note that the second term in (3)
does not depend on O, neither on B, so, for fixed T, we get ÔPL =



ÔML and B̂PL = B̂ML. In [7], we address ML estimation, i.e., the
minimization of CML. There we concluded that ÔML averages the
observations If registered according to the motion qf of the object
in the region corresponding to the template T,

ÔPL = ÔML = T
1

F

F∑

f=1

M(qf )If , (4)

and B̂ML is the average of the observations If , registered according
to the background motion pi, in the regions {(x, y)} not occluded
by the moving object, i.e., when M(pfq

#
f )T(x, y) = 0,

B̂PL = B̂ML =

∑F
f=1

[
1−M(pfq

#
f )T

]
M(pf )If

∑F
i=f

[
1−M(pfq

#
f )T

]
M(pf )H

. (5)

Two-step iterative algorithm If we replace the estimates ÔPL, B̂PL

given by (4,5) in (3), we get an expression for CPL(T) in which the
minimization wrt each different spatial location T(x, y) is not inde-
pendent from the other locations. Solving this binary minimization
problem by a conventional method is extremely time consuming. In
contrast, if we replace only ÔPL, the minimization of CPL(B,T)
over T for fixed B, results in a local binary test. We exploit this fact
to derive a computationally simple two-step iterative minimization
algorithm: (i) solve for the background B while the template T is
kept fixed; and (ii) solve for T while B is kept fixed. The solution
for step (i) is given by (5).

To find the solution for step (ii), we replace ÔPL (4) in (3). By
manipulating CPL as we did in [7] for CML, we obtain

CPL =

∫ ∫
T(x, y) [Q(x, y) + α] dx dy + Constant, (6)

where Q, which we call the segmentation matrix [7], is given by

Q=
1

F

∑

f,g

[
M(qf )If −M(qg)Ig

]2 −
∑

f

[
M(qf )If −M(qfp

#
f )B

]2
.

We estimate the template by minimizing CPL in (6) over T, given
the background B. It is clear from (6), that the minimization of CPL

wrt each spatial location of T is independent from the minimization
over the other locations. The template T̂PL that minimizes CPL is
given by the following test evaluated at each pixel:

Q(x, y)

T̂PL(x, y) = 0
>
<

T̂PL(x, y) = 1

− α . (7)

Note that by describing the shape of the moving object by the
binary template T, we were able to express the cost function (6) in
terms of an integral whose region of integration is independent of
the unknown shape. This is what enabled developing a computa-
tionally simple algorithm to estimate the shape of the object. The
same type of idea has been used in the context of the single-image
intensity-based segmentation problem, for example, Ambrosio and
Tortorelli [9] adapted Mumford and Shah’s theory [10] by using a
binary field instead of an edge process. Reference [11] presents a
detailed description of the two-step iterative algorithm.

Choosing α = 0 leads to ML estimation (CPL = CML). In
this case, as anticipated above, it may happen that, after processing
the F available frames, the test (7) with α = 0 remains inconclusive
at a given pixel (x, y), i.e., Q(x, y) ' 0. In other words, it is not
possible to decide if this pixel belongs to the moving object or to
the background. This ambiguity comes from the fact that the avail-
able observations are in agreement with both hypothesis. We make

the decision unambiguous by looking for the smallest template that
describes well the observations, through PL estimation.
Relaxation The initial guess in iterative algorithms is very relevant
to their convergence—a bad initial guess may lead to a local opti-
mum. Instead of using computationally complex methods to com-
pute an initial guess, we use a continuation method—we relax the
cost function. We start from a cost for which we know we can find
the global minimum, and then we gradually change the cost, keep-
ing track of the minimum, to end at the desired cost function. Due
to the structure of the PL cost (2), the continuation method is easily
implemented by relaxing the weight α, as in annealing schedules.
We start with a high value for α such that the minimum of (2) occurs
at T(x, y) = 0, ∀x,y . Then, we gradually decrease α and minimize
the corresponding intermediate costs, till we reach the desired cost
and the correct segmentation.

To emphasize the advantage of relaxation, consider using ML
as in [7] initialized by estimating the background as the average of
the co-registered input images, i.e., the initial estimate of the back-
ground is contaminated by the moving object intensity values. It may
happen that the next estimate of the template, obtained from (7) with
α = 0, is, erroneously, so large that, in the next step, the estimate of
the background can not be computed at all pixels and the algorithm
freezes and can not proceed. Consider now using the same initial-
ization but with a relaxation scheme for α. Using (7) with a large
value α, the next estimate of the template will be very small (α can
even be set to a value such that the template estimate will contain a
single pixel). Using this template estimate, the next estimate of the
background will be less contaminated by the moving object intensity
values and thus closer to the true background. The next estimate of
the template, obtained from (7) with a slightly smaller α, will then
be slightly larger and closer to the true template of the moving ob-
ject. This relaxation proceeds until α reaches either zero, leading to
the ML estimate, or a value previously chosen, leading to the PL es-
timate minimizing (3).
Stopping criteria To stop the relaxation process we could adopt as
strategy to stop as soon as the estimate of the template stabilizes, i.e.,
as soon as no more pixels are added to it. However, to resolve the
problems with low contrast background that motivated the use of pe-
nalized likelihood estimation, we stop the relaxation when α reaches
a pre-specified minimum value αMIN. This αMIN can be chosen
by experimentation, but we can actually predict from the model (1)
what are good choices for it. If the minimum value αMIN is cho-
sen very high, we risk that some pixel (x, y) of the moving object,
i.e., with T(x, y) = 1, is erroneously classified as belonging to the
background, since from (7), Q(x, y) > −αMIN ⇒ T̂PL(x, y) = 0.
We show elsewhere that the expected value of the entry Q(x, y) for
a pixel (x, y) of the moving object, i.e., with T(x, y) = 1, can be
approximated as

E {Q(x, y)} ' −
F∑

f=1

[
O(x, y)−M(qfp

#
f )B(x, y)

]2

. (8)

Then, as we process more frames, E {Q(x, y)} becomes more neg-
ative, reducing the probability of Q(x, y) > −αMIN, and so of mis-
classifying the pixel (x, y) as belonging to the background. Good
choices for αMIN are then in the interval ] 0,−E {Q} [ . Since in
practice we can not compute E {Q} because we do not know before
hand what are the intensity levels of the object and the background,
we assume a value S2 for their average square difference and chose
αMIN in the middle of the interval, ] 0, FS2 [ , where F is a con-
stant. With gray-level intensities in [0, 255], we used αMIN = 20,
obtained by setting S = 2 and F = 10. Our experience has shown



that any other value αMIN not to close to the extremes of the above
interval would lead to equivalent estimates.

4. EXPERIMENTS

Challenging synthetic sequence By rotating and translating the ob-
ject shown in the left image of Fig.1, we synthesized 20 frames, two
of which are shown in the middle and right images of Fig. 1. As
these images clearly show, the noise and the similarity between the
textures of the background and the object makes it very challenging
to obtain an accurate segmentation. Fig.2 describes the evolution of
the template estimate. The final estimate, shown in the bottom-right
image, shows that our algorithm was able to recover the true shape
of the moving object (left image of Fig.1).

Fig. 1. Left: moving object. Middle and right: noisy video frames.

Fig. 2. Relaxation. The final estimate of the template (bottom-right)
coincides with the true shape of the moving object in Fig.1.

Low-light video Fig. 3 shows an illustrative frame of a real-life traf-
fic video sequence taped in the evening, i.e., in a low-light situation.
Note that the contrast between the moving car and the road is so
small that it is hardly perceived from a single image, even by the hu-
man visual system. In Fig. 4, we represent, from left to right, three
stages of the evolution of the relaxation algorithm when segmenting
this video sequence. The final estimate of the template of the moving
car (on the rightmost image of Fig. 4) is visually correct.

5. CONCLUSION

We describe an algorithm for segmenting moving objects from video.
Our method models the rigidity of the moving object and the occlu-
sion of the background. We use relaxation to approximate a penal-
ized likelihood estimate. Experiments show that our algorithm suc-
ceeds in recovering complex templates in low-light scenes, i.e., from
low contrast videos.
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