
Petri Net Models of Roboti TasksDejan Milutinovi, Pedro LimaInstituto de Sistemas e Rob�otia, Instituto Superior T�enio | Torre NorteAv. Roviso Pais, 1; 1049-001 Lisboa; PORTUGALE-mail: fdejan,palg�isr.ist.utl.ptAbstrat| This paper introdues a Roboti Task Model(RTM) based on Petri nets, that establishes a frameworkfor task evaluation from qualitative and quantitative view-points, as well as a methodology for the implementation ofroboti task oordination. A testbed for the evaluation ofthe RTM and the details of its implementation over a net-work of distributed task exeutors is desribed.Keywords|Disrete Event Systems, Petri nets, IntelligentRobots, Distributed Control, Mahine Learning.I. IntrodutionAmong the existing models of Disrete Event Systems[1℄, Petri nets have been widely used to model dynamisystems [2℄, notably automated manufaturing systems [3℄.Petri net properties also make them good andidates forqualitative performane evaluation (using untimed mod-els) and quantitative performane evaluation (using timedand/or stohasti models) of roboti tasks. Simultaneously,they provide the means for task design and interation be-tween an operator and the task under exeution.This paper introdues a new framework under whihPetri nets are used for qualitative and quantitative per-formane evaluation, as well as a tool to design and exe-ute roboti tasks. This framework is motivated by previ-ous work by Wang and Saridis [4℄, where Petri nets were�rst proposed as models of roboti tasks. Later, Limaand Saridis [5℄ introdued a methodology for roboti tasksperformane evaluation and learning-based improvementthrough feedbak, whih is mapped here to Petri nets, asa development of preliminary onepts introdued in [6℄.Related work is sare and typially refers to logial andtemporal spei�ation, veri�ation and ode generation [7℄,[8℄. In this work we fous mainly on quantitative evaluationof task reliability and ost, with the goal of hoosing theoptimal task to ahieve a given goal. The paper also de-sribes the implementation of a testbed for the evaluationof roboti task Petri net models, where a Petri net Exeutoran be designed and implemented to ontrol a distributedroboti system omposed of di�erent devies (e.g., mobilerobots, manipulators, vision systems).The paper is organised as follows: Setion II introduesa roboti task model, the di�erent Petri net types used tomodel di�erent views of that model, and a mapping be-tween the model and those views. Setion III overs taskquantitative performane evaluation onerning ost andreliability-based measures, as well as their mapping to PetriThe work of the �rst author was supported by grantSFRH/BD/2960/2000 from the Portuguese Funda�~ao para a Ciêniae a Tenologia

nets and the use of reinforement learning to optimize theperformane evaluation funtion. The testbed implemen-tation is desribed in Setion IV. The paper ends withonlusions and referenes to future work (Setion V).II. Petri Net Views of a Roboti Task ModelA roboti task is de�ned in [5℄ as a string of primitivetasks, representing the sequene of ations the roboti sys-tem must arry out to aomplish the task goal. Eahprimitive task may be atually implemented by more thanone primitive ation (e.g., a loate objet primitive task anbe implemented by a set of di�erent image proessing algo-rithms, de�ned here as primitive ations). Primitive tasksand their translating primitive ations must be establishedat design time, assoiated to spei� goals (e.g., to loatean objet, to follow a trajetory). When, during the exe-ution of a primitive task, its spei� goal or an error state(e.g., due to a timeout) is reahed, an event ours andmust be deteted. To reah its goal, a task must �rst reahthe spei� goals of eah of its omposing primitive tasks.Primitive ations, primitive tasks, and events onstitutea roboti task model (RTM). One an look from di�erentviewpoints at suh a model. Di�erent Petri net types [2℄are used depending on the viewpoint taken. The followingsubsetions illustrate this onept, starting by some de�ni-tions whih map Petri nets and the roboti task model.A. Roboti Task Model and Petri NetsA marked Petri net is de�ned by the �ve-tuple P =(P; T;A;w; x0), where P = fp1; p2; : : : ; pnpg and T =ft1; t2; : : : ; tntg are �nite sets of plaes and transitions, re-spetively, A is a set of ars, subset of (P � T) [(T � P),w a weight funtion, w : A ! f1; 2; 3; : : :g, and x0 isthe initial marking. The marking x of a Petri net is afuntion x : P ! f0; 1; 2; : : :g, whih de�nes a vetorx = [x(p1); x(p2); : : : ; x(pnp)℄, interpretable as the state ofthe Petri net. Eah vetor entry denotes the number of to-kens in the orresponding plae for a given state. The ov-erability tree [1℄ of a given Petri net is a tree whose nodesare Petri net states and ars represent Petri net transitions.It will be used in this work as a Petri net representationhelpful for qualitative and quantitative analysis purposes.An RTM is de�ned by the 3-tuple T = (R;E;A),where R = fr1; r2; : : : ; rnrg is the set of resoures,E = fe1; e2; : : : ; eneg is the set of events and A =fa1; a2; : : : ; anag is the set of primitive ations.A robot, an objet in the environment or a primitivetask are resoures. It is also onvenient to de�ne � =1

f�1; �2; : : : ; �n�g � R, the subset of primitive tasks in R.A is partitioned in n� subsets, beause eah primitivetask has an assoiated non-empty set of primitive ations,representing alternative implementations (i.e., algorithms)of the primitive task.An event ours when a primitive ation ends its exeu-tion, either beause its spei� goal has been reahed oran error ondition has been deteted. Events an be de-teted by speialized sensor monitoring algorithms runningin parallel with the primitive ation. However, even thoughan event an be deteted, the primitive ation must enableit, so that the event ourrene triggers the appropriateresponse.Under our framework Petri net plaes represent resouresand transitions are assoiated to logial onditions de�nedover the event set E. Whenever a token is inside a plae,the orresponding resoure is available. When the resoureis a primitive task the token means that the primitive a-tion hosen to translate the primitive task is running. Uponits ompletion, every primitive ation generates an event.Any logial ondition assoiated to a transition is madetrue or false by the ourrene of the event.Interpreting � as the set of terminal symbols of a gram-mar G, one an determine the language L generated bya Petri net assoiated to an RTM T . First, without lossof generality, the Petri nets used are onstrained to thelass of Petri nets whose transitions have only one outputplae. More general Petri nets an be redued to those inthis lass, by using maro-plaes to represent task branhesrunning onurrently. The set of terminal symbols of Gis then extended to inlude the symbols k; (;) to de�ne�G = � [fk; (;)g, used to onatenate symbols represent-ing primitive tasks running in parallel (e.g., �2 k (�4�1)).

t15

p2

p3

p4

p5
p8

p1

p6

p7

t1

t2

t3

t5

t4

e

not_e

a)

p1

p9

p10

t43

t45

p8

b)

e

not_e

t13

Fig. 1. Petri net representation of an RTM.Eah string of the language L generated by a Petri netP assoiated to an RTM T is obtained by following a pathin the overability tree of P , from the root node to a ter-minal node and generating one or more symbols from �G

for eah node visited. The path may inlude several vis-its to any dupliate node(s) [1℄. More than one symbol isgenerated when a node representing a state assoiated to amaro-plae of the restrited lass of Petri nets onsideredis visited. Suh a situation denotes the onurrent exeu-tion of primitive tasks, hene a onatenation of symbolsfrom � separated by k symbols and assoiated by (and)symbols will be generated.Petri net onits, ourring when a plae has more thanone output transition, determine the number of stringsomposing the language, as they reate alternative pathsin the overability tree. Task exeution annot be non-deterministi. Hene, whenever onits our, eah tran-sition in the onit set must be assoiated to a logialondition de�ned over a subset of the event set, suh thatno more than one logial ondition from the onit setwill be true at a time.A Petri net illustrating some of those onepts is depitedin Figure 1 a). Figure 1 b) is an equivalent Petri net in therestrited lass onsidered, where the onurrent branhesbetween t1 and t4 have been redued to maro-plaes p9 be-tween t13 and t43 and p10 between t15 and t45, dependingon whether the logial ondition e or not e, e 2 E is satis-�ed, respetively. Assuming a relation p1 ! �i8pi2P;�i2�,when visited along a path in the overability tree, the sym-bol �9 is replaed by (�2�4) k (�3(�5 k �6)), while �10 isreplaed by (�2�4) k (�3�7).B. Task Design and ExeutionThe atual task implementation (i.e., its design and exe-ution) requires the sheduling of the primitive tasks om-posing the task, as well as the synhronization with theevents. Events are ruial to oordinate task exeution, asthey signal when a primitive task an be alled for exeu-tion, by �ring the input transition of the plae assoiatedto the primitive task. An interative man-mahine inter-fae is also important, so that the appropriate shedule ofprimitive tasks an be designed and task exeution an befollowed and/or modi�ed by an operator.Interpreted Petri nets [2℄ are used to model task imple-mentation. At design time, plaes and transitions (i.e.,resoures, primitive tasks and logial onditions over E)must be linked together by the task designer suh that theroboti system goes through the desired sequene of spei�goals that must be reahed before the task goal is aom-plished. The designer must also identify all the resouresother than primitive tasks required at eah task step, andrepresent them by plaes. He/she must also provide, foreah plae assoiated to a primitive task, two output tran-sitions: one orresponding to a suessful ompletion of theprimitive task, another to an exit upon an error situation.In the latter ase, an appropriate error reovery proeduremust be spei�ed. To avoid a umbersome task represen-tation, the error reovery branhes may be hidden in thegraphial display of the Petri net assoiated to the task.During task exeution, a transition is enabled if eah ofits input plaes has a suÆient number of tokens available.This happens when all the assoiated resoures are avail-2

able, suh as the required hardware, a path to be followedor an image to be proessed stored in the shared memory.Resoure availability inludes making sure that the primi-tive tasks assoiated to the transition input plaes are run-ning. However, the transition will only be �red when itsassoiated logial ondition de�ned over E is true. Thetokens are then deposited in the output plaes of the tran-sition, enabling the exeution of their assoiated primitivetasks, requesting and relinquishing other resoures. Anoperator may follow task exeution by following the tokenow through the Petri net representing the task.C. Quantitative Performane EvaluationOne an Interpreted Petri Net has been designed to rep-resent the atual task implementation, one may evaluatequantitative properties of the task performane by modi-fying its assoiated Petri net, turning it into a generalizedstohasti Petri net [3℄.Generalized stohasti Petri nets an be used to modeltime-related properties (suh as the probability that thetask exeution time will be less than a given spei�ation)and/or task reliability, de�ned as the probability that thetask will meet its spei�ations, i.e., that it will ahieve itsgoal [5℄.Primitive task exeution time an atually be determinedby assoiating time to plaes (P-timed model). The timeassigned to eah plae will determine the performane mea-sure obtained afterwards. For instane, if the CPU timetaken by the primitive tasks assoiated to eah plae isused, the total CPU time spent by the task will be om-puted. One may use the atual time taken by eah primi-tive task instead. In this ase, the atual time taken by thetask will be omputed. Of ourse, this will be a stohastivariable, but random times an be assoiated to the plaesunder the P-timed Petri net model. When those times aredistributed aording to an exponential law, the markingof this stohasti Petri net is an homogeneous Markovianproess [3℄, whose well known properties help to determinethe time properties of task exeution.Primitive task reliability an be modeled by randomswithes [3℄. Random swithes are ars linking eah plaep 2 P representing a primitive task � 2 � to output tran-sitions. In this model, only two output transitions are on-sidered: one representing a failure and the other a suessmeeting the spei�ations for �. When enabled, one of thetransitions will be �red aording to the suess and failureprobabilities. The suess probability is atually the relia-bility of a primitive task. The failure probability inludessituations where the spei�ations were not met but taskexeution proeeds along the normal exeution branh, aswell as situations where error reovery is atually required.Using this model, tools appropriate for analysis of gener-alized stohasti Petri nets an be applied to the perfor-mane analysis of the whole task or any of its sub-tasks.An alternative method based on the overability tree willbe desribed in Setion III.

D. Qualitative Performane EvaluationOrdinary Petri net models (or some of their abbrevia-tions [2℄) an be used to evaluate qualitative properties [3℄of a task, suh as boundedness (whih an be viewed as ameasure of stability), properness (related to the possibilityof error reovery and/or restarting the system) and liveness(assoiated to state reahability, i.e., whether a state or aset of states will ever be reahed or not). One again, ifa qualitative performane evaluation is required, the orig-inal interpreted Petri net modeling task exeution an bemodi�ed into an ordinary Petri net (e.g., no event synhro-nization) to determine suh properties.III. Quantitative Performane EvaluationCurrent work has been onentrated on task reliabilityas a performane measure. This will be desribed by �rstintroduing a ost funtion for the RTM whih is thenmapped to the overability tree of the assoiated Petri net.Finally, a brief look at the use of reinforement learning toimprove performane over time is inluded.A. Cost FuntionA ost funtion to determine task performane from theperformane measure of eah of its omposing primitivetasks and ations has been introdued in [5℄. Suh a ostfuntion is general enough to be applied to the diversity ofprimitive tasks whih may ompose a roboti task model.It is based on a onjuntive de�nition of ost and reliability(see [5℄ for details), summarized by the following equations:R(�; f) = Prf� meeting spei�ations of f < �g (1)f� = argminf2FfR(�; f) : R(�; f) � Rdg (2)C(�) = ost(�; f�) (3)R(�) = R(�; f�) (4)where R is the reliability, C the ost, � a primitive ation,f a problem element in F , a data set representative of thetask at hand (e.g., a olletion of images for a loate ob-jet primitive task), and � > 0. The total ost, denoted bythe funtion ost(:), is determined by adding the ost ofgetting information from f 2 F and the ost of proessingthat information. The ost and relibility of the primitiveation � are obtained for the problem f whih leads to thelowest reliability among those with values lower-boundedby some target reliability Rd. In general, ost inreaseswith reliability. For instane, to improve the reliability ofloating a point within a noisy image with a given au-ray, one has to average several pitures of the image. Ifthe ost is de�ned as the number of required pitures, itwill depend on the target reliability. However, if the num-ber of pitures is established at design time, the reliabilitywill depend on the number of images (i.e., the ost) usedto ompute the average. Therefore, a minimum of the fol-lowing ost funtion exists, orresponding to the optimalprimitive ation J = 1�R+ �C (5)3

where � a weight fator suh that �C 2 [0; 1℄. In general �will be suh that the ost does not overwhelm the reliabilitywhen direting the searh for the optimal ation. A typial� is given by � = 1maxa2A C(a) , whereA is the set of primitiveations. The ost is omputed a priori, but in general itan assume any value and may have any units, dependingon the primitive task. Hene, � is used to normalize boththe ost value to the interval [0; 1℄ and the ost units arossprimitive tasks.The de�nition of ost and reliability refers to primitiveations. However, their values, and onsequently those ofthe ost funtion, an be propagated to the primitive tasksand to the task using appropriate expressions [5℄, extendingthe quantitative performane evaluation to the ompleteroboti task model. In partiular, propagation of relia-bility and ost from primitive tasks to the whole task isdetermined by omposition of the following expressions:� given two primitive tasks �1 and �2 running onurrently(e.g., assoiated to plaes p1 and p2 in the output set of agiven transition):R(�1 k �2) = R(�1)R(�2)C(�1 k �2) = maxfC(�1); C(�2)g (6)� given n primitive tasks �1; : : : ; �n running sequentially(e.g., plae p1 is in the input set of transition t and plaep2 is in the output set of transition t):R(�1 : : : �n) = nYi=1R(�i)C(�1 : : : �n) = 1n nXi=1 C(�i) (7)Reliability is omputed for onurrent or sequentialprimitive tasks using the same expression, sine all tasksmust be suessful to ahieve a reliable task. Cost of se-quential primitive tasks adds up (normalized to the [0; 1℄interval), while ost of onurrent tasks is determined forthe worst ase (maximum ost between the two tasks).B. Task Cost Funtion and Coverability TreeThe overability tree of a bounded Petri net P an againbe used to determine the quantitative performane of astring in the language L generated by P and its assoiatedRTM T . Prior to that, all onurrent branhes of the Petrinet must be replaed by an equivalent maro-plae, suhas in the Petri net of Figure 1. Then, a overability treeis built for the redued equivalent Petri net, following thealgorithm in [1℄. Strings an be obtained by traversingthe overability tree as desribed in Setion II, and theirorresponding performane is determined by applying (7)to the sequene of overability tree nodes, whose ost andreliability are previously determined by the following rules:� ost and reliability of states with only one plae assoi-ated to a primitive task are determined from the ost andreliability of the alternative primitive ations for the prim-itive task, using appropriate expressions [5℄;

� ost and reliability of states with only one plae assoi-ated to a resoure other than a primitive task are 0 and 1,respetively;� ost and reliability of states assoiated to maro-plaesare determined from the string assoiated to the maro-plae by applying (6) and (7) and giving preedene tothe braketed sub-strings (e.g., in the example of Figure 1,C(�9) = C((�2�4) k (�3(�5 k �6))) = maxf 12 [C(�2) +C(�4)℄; 12 [C(�3 +maxfC(�5); C(�6)g)℄g.C. Learning the Optimal TranslationsThe RTM de�ned in Setion II inludes a set A of primi-tive ations, partitioned in n� non-empty subsets, with thesubset i representing alternative primitive ations for theprimitive task �i. Eah time a primitive task is ready tobe exeuted, the �rst step onsists of seleting whih of itstranslating primitive ations will atually run. Di�erentalternatives will have di�erent performanes, measured bythe ost funtion (5). Therefore, it is important to reate amehanism to: i) update, at eah step, the primitive ationost funtion estimates; ii) learn over time the optimal se-letion, i.e., the primitive ation whih minimizes the ostfuntion.This framework distinguishes between three primitive a-tion status, returned by the primitive ation upon omple-tion: suess, when the spei�ations were fully met, failure,when the spei�ations were not fully met, but task exeu-tion may proeed along the normal exeution branh, anderror, when the spei�ations were not met and error reov-ery is required (e.g., the primitive task exited on timeout).The suess and failure signals are used to update thereliability and the ost funtion estimates iteratively, af-ter the exeution of eah primitive ation, based on Fu'sreinforement learning sheme [9℄:R̂(ni+1) = R̂i(ni) + 1ni + 1[yi(ni + 1)� R̂i(ni)℄ (8)pi(n+ 1) = pi(n) + 1n+ 1(�i(n)� pi(n+ 1)) (9)where yi 2 f0; 1g is the instantaneous performane of prim-itive ation i (0 being a penalty, i.e., i failed to meet theprimitive task spei�ations, and 1 a reward), ni the num-ber of times i was applied so far, n = Pi ni and pi theurrent probability of hoosing i. The estimated ost fun-tion ĵ at eah iteration, obtained by replaing in (5) theurrent reliability estimate from (8), is used to determine�i as �i(n) = � 1 if Ĵi(n) = mink Ĵk(n)0 if Ĵi(n) 6= mink Ĵk(n) (10)The sheme onverges, with probability one, to the se-letion with probability 1 of the optimal primitive ationfor a given primitive task [5℄.IV. The Petri Net Based Distributed RobotiTestbedIn order to test experimentally the onepts developedin the previous setions, a distributed roboti testbed has4

been implemented over the years to support the design andimplementation of roboti tasks modeled by Petri nets. Inthis setion the Petri net based distributed roboti systemis presented.Under this system, a roboti task an be designedthrough a graphial interfae, by drawing the orrespond-ing Petri net and assoiating primitive tasks to plaes and(when appropriate) events to transitions. Task exeutionan be followed in real time through the same graphialinterfae, by following the token ow in the Petri net. Theoperator an hange the task exeution path and/or tim-ing by token removal/insertion in speial plaes, used fortask ow ontrol only (e.g., step-by-step exeution is possi-ble). The software arhiteture of the distributed system isbased on a lient-server philosophy. Eah omputer in thenetwork behaves either as a server or as a lient, depend-ing on the irumstanes. When ating like a server, theomputer provides servies, whih are appliations residentin that server. Servies may be divided in primitive a-tions and general-purpose appliations. The latter inludefuntions to ommuniate between omputers using sok-ets (TCP/IP protool), funtions whih aess the globalmemory of the system, libraries of math funtions, boarddrivers and others. Some of the servies are only avail-able loally, i.e., an only be requested by loal proesses,while others exist spei�ally to serve requests from othernetwork nodes | whih will then behave as lients. Fromthe designer standpoint, the distribution of primitive a-tion servies by proessors in the network is transparent,i.e., he/she must initially de�ne in a �le the loation of thedi�erent primitive ations and then the software will knowwhere to diret a request for suh a servie, eah time it isinvoked. Data/primitive ation requests between networkproessors are handled by soket-based ommuniation ser-vies, always running in every PC of the network. Never-theless, a wise proedure onsists of distributing primitiveations aording to the hardware resoures alloated toeah proessor (e.g., a primitive ation that proesses animage is better loated in the omputerThe main omponents of the distributed roboti systemare the Petri Net Exeutor (PN Exeutor) and the PetriNet Task Server (PN Task Server). The struture of thePetri net based distributed roboti system is depited inFigure 2.

PN Task

Server 1

PN Task

Server 2

PN Task

Server n

Robot

Mobile Robot

Vision System

P
N

 E
x
ec

u
to

r

Fig. 2. Blok diagram of the Petri net based distributed robotisystem.

USP KSP

R
S

I

The Puma Linux Driver

Shared

Memory

Application

Application

Fig. 3. The Puma Linux Driver USP-User Spae Part, KSP-KernelSpae Part, RSI- Robot Software Interfae.The system may inlude several primitive task exeutors.These are appliations running on omputers at the nodesof an Ethernet network, whih interfae the hardware of amanipulator, a mobile robot, a pereption system (e.g., avision system) or any other roboti devie. Eah primitivetask exeutor has an assigned PN Task Server. The PNTask Servers ommuniate with the PN Exeutor throughthe network. Eah PN Task Server provides low-level on-trol of a primitive task exeutor and reeives task exeutionrequests over the network onnetion. The message-passingommuniation protool used to exhange information be-tween the PN Exeutor and a PN Task Server is desribedin [6℄. The PN Task Server's ID and primitive task thatshould be exeuted are enapsulated in the protool mes-sages. These values uniquely de�ne eah primitive taskin the overall system. After the primitive ation hosenby the primitive task exeutor triggers an enabled event,the event detetion detetion makes the PN Task Serverreturn a message to the PN Exeutor signaling the eventdetetion. Simultaneously the suess or failure status ofthe primitive ation is evaluated and used to update itsreliability estimate, as part of the reinforement learningalgorithm. An error status means that an error reoveryis required, by following the appropriate pre-de�ned Petrinet path. Signaling event detetion is made for synhro-nization purposes. Synhronization of all primitive taskexeutors is de�ned at the PN Exeutor, whih is responsi-ble for task oordination. The PN Exeutor is the robotitask supervisor, based on an interpreted Petri net model.It ontinuously heks the ourrene of events whih areused to deide the diretion of task exeution ow. ThePN Exeutor sends requests for primitive task exeutionto the appropriate PN Task Server. The omponents ofthe distributed roboti system for the partiular ase ofa Puma560 robot endowed with a PC-based open ontrolarhiteture are desribed in the following two subsetions.A. The Puma Linux DriverThe Puma Linux Driver is a ontrol software appli-ation developed for the Puma560 robot, running underLinux operating system. Originally, the Puma UNIMATEMARK III Controller handled the manipulator 6-joint on-trol, as well as the interation with the user through5

Client MA

WE

WE

TP

Connection

level

Execution

level

Task

 level

wait

create

connection

Unix

command

Fig. 4. The Petri Net Task Server for the Puma: MA-MessageAnalyzer, WE-Wait Exeution, TP-Task Proess.the VAL-II operating system. To provide greater sys-tem exibility, the six joint ontrol boards were replaedby Trident Robotis ards whih interfae the joint en-oders and motors with an external PC where the jointontrollers and the user-interation software now run (seehttp://li.isr.ist.utl.pt/projets/puma/puma open.html), un-der Linux.The Puma Linux Driver is divided in two parts: theKernel Spae Part (KSP) and the User Spae Part (USP).Funtions that diretly interfae the hardware are imple-mented in the KSP. After the driver is installed they ap-pear as the part of the Linux kernel. The USP implementsjoint digital ontrollers, one per joint. It is a high prioritytask that exeutes periodially with a pre-spei�ed sam-pling time. At eah exeution step, the USP reads jointreferenes and omputes ontrol ation based on the a-tual measurements. The interfae funtions library RobotSoftware Interfae (RSI) provides the ommuniation be-tween the USP and the KSP. A blok diagram of the PumaLinux Driver is depited in Figure 3.The �gure shows that user appliations ommuniatewith USP through RSI and shared memory. The sharedmemory is a bu�er between the appliations and the jointontroller, implemented as a ring bu�er data struture. Fortrajetory traking, the trajetory parameters are input pa-rameters of a funtion at the RSI level. The trajetory isalulated by the RSI and the ring bu�er is �lled with thetrajetory sampled points. The USD reads, at the sam-pling rate, these points from the ring bu�er, using them asreferenes for the joint ontrollers.B. The Petri Net Task ServerThe PN Task Server for the Puma open arhiteture wasdeveloped under Linux OS. Every primitive task exeutionrequest translates to a native Unix operating system om-mand. Therefore, eah primitive task an be written asan independent software appliation without aring aboutwhih server will use it. The PN Task Server is a TCPserver apable to aept multiple onnetions. Its blok di-agram is shown in Figure 4 and is omposed of three levels:� the onnetion level is responsible for the analysis ofmessages from lients arriving over the onnetion port.The proess Message Analyser (MA) parses messages and

searhes for the primitive task that should be exeuted.The searh is based on the information that the serverontains in its task desription �le. Before the primitivetask is run, the Wait Exeution (WE) proess, that mon-itors primitive task exeution to detet the ourrene ofevents, is launhed.� the exeution level is where the WE proess runs. WEwill wait until an enabled event is deteted and, at thatpoint, ollets the primitive task exeution status data. Af-terwards the end of primitive task exeution is signaled tothe lient through the network onnetion.� the task level is omposed of the operating system allthat invokes the primitive task as an Unix ommand.V. ConlusionsA roboti task Petri net model was introdued in thispaper that allows qualitative and quantitative analysis ofroboti tasks, as well as its real-time exeution (inludingan interfae with the user), through a suitable hoie of theappropriate Petri net types for eah of the above objetives.A Petri net based testbed to evaluate the model was de-veloped and its software arhiteture, as well as relevantproperties, was also desribed.Future work inludes the implementation, analysis andtest of roboti tasks enompassing several distributedroboti devies using the testbed. An interesting researhtopi is also the availability of alternative tasks for a givengoal, represented by random swithes at deision points inthe Petri net model, whose probabilities an be learned us-ing delayed-reward reinforement learning tehniques, suhas Q-learning [10℄, upon the availability of task suess andfailure signals, urrently inluded in the model for primitiveations only. Referenes[1℄ C. Cassandras and S. Lafortune, Introdution to Disrete EventSystems, Kluwer Aademi Publ., 1999.[2℄ R. David and H. Alla, \Petri Nets for modeling of dynamisystems," Automatia, vol. 30, no. 2, pp. 175{202, 1994.[3℄ N. Vishwanadham and Y. Narahari, Performane Modelling ofAutomated Manufaturing Systems, Prentie Hally, 1992.[4℄ Fei-Yue Wang and G. N. Saridis, \Task translation and integra-tion spei�ation in Intelligent Mahines," IEEE Transationson Robotis and Automation, vol. RA{9, no. 3, pp. 257{271,1993.[5℄ P. U. Lima and G. N. Saridis, Design of Intelligent Control Sys-tems Based on Hierarhial Stohasti Automata, World Sien-ti� Publ., 1996.[6℄ P. Lima, Hugo Gr�aio, Vaso Veiga, and Anders Karlsson, \PetriNets for modeling and oordination of roboti tasks," in Pro-eedings of IEEE 1998 International Conferene on Systems,Man and Cybernetis, 1998.[7℄ B. Espiau, K. Kapellos, M. Jourdan, and D. Simon, \On the vali-dation of robotis ontrol systems, Part I: High level spei�ationand formal veri�ation," Teh. Rep. 2719, INRIA, Rhône-Alpes,1995.[8℄ L. Montano, F. Gar��a, and J. Villarroel, \Using the time PetriNet formalism for spei�ation, validation, and ode generationin robot-ontrol appliations," The International Journal ofRobotis Researh, vol. 19, no. 1, January 2000.[9℄ K. S. Fu and J. M. Mendel, Adaptive, Learning and PatternReognition Systems: Theory and Appliations, Aademi Press,1970.[10℄ R. Sutton and A. Barto, Reinforement Learning, MIT Press,Cambridge, MA, 1998.6

