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Abstract— We demonstrate, using Monte-Carlo simula-
tions, the superior performance of the “Robust Multiple-
Model Adaptive Control (RMMAC)” method for different
time-varying uncertain parameter waveforms, performance
bandwidths and constant disturbance intensities using the
test example designed and studied in Refs. [1] and [2].
We further show that the RMMAC RMS performance is
just about 10-16% worse than that obtained from a system
that has perfect model identification (which is unrealizable),
while remaining vastly superior to the performance associ-
ated with the best robust non-adaptive design.

Index Terms— Robust adaptive control, multiple-model
adaptive control, time-varying parameters

I. I NTRODUCTION

The “Robust Multiple-Model Adaptive Control (RM-
MAC)” architecture, shown in Fig. 1, has been previously
introduced and evaluated in Refs. [1-4]. We assume that
the reader is familiar with the RMMAC methodology and,
in particular, with the mass-spring-dashpot (MSD) test
example presented in [1] and [2]. In our prior studies
we stressed that the performance of any adaptive system
must be evaluated not only for constant but unknown
parameters but, also, for time-varying parameters which
undergo slow or rapid time-variations. In this paper we
use the same MSD example to evaluate the RMMAC per-
formance for such time-variations for different intensities
of unmeasurable plant disturbance.

In our previous studies, [1-5], the “goodness” of the
RMMAC identification subsystem in the presence of time-
varying parameters - which consists of the bank of the
N Kalman filters (KFs) and of the “Posterior Probability
Evaluator (PPE)” - was analysed by examination of the
time-evolution of the posterior probabilities,Pk(t), in Fig.
1. Often, there is a significant “transient identification
time-interval” associated with the correct model identi-
fication by the associated posterior probability. It was not
clear how such “model identification transients” impacted
the RMMAC performance; in this paper, we quantify this
issue by comparing the RMMAC performance to that
associated with “Perfect Model Identification (PM.ID.)”
using four different designs for the same MSD system.
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The details of this comparison are best explained by the
examples considered.
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Fig. 1. The RMMAC architecture with N models

Two different cases are studied in this paper, both for
the mass-spring-dashpot (MSD) system with uncertain
spring constant and time-delay, shown in Fig. 2. First,
a low frequency control bandwidth case is analyzed
(previously designed in [1]), followed by a much harder
control problem when the control bandwidth is higher
(previously designed in [2]).
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Fig. 2. MSD system with uncertain spring constant,k1, and distur-
bances denoted byd(t). u(t) is the control input andz(t) is the system
output.τ is an uncertain time-delay bounded by0 < τ < 0.05s, as in
[1-2].

In order to evaluate the performance of the RMMAC
methodology, two other types of controllers are consid-
ered, serving as benchmarks: thebestglobal non-adaptive
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robust controller (denoted by GNARC) and several local
non-adaptive robust controllers (denoted by LNARCs)
associated with the “perfect model identification scheme
(PM.ID)”. The GNARC determines the lower bound on
robust performance in the absence of adaptive control.
The LNARCs yield the best result one would expect
since they correspond to perfect model identification. The
performance of the RMMAC is within these two bounds.

Each dynamic model has associated one Kalman
Filter, designed for a particular covariance matrix,
cov [ξ(t); ξ(τ)] = E{ξ(t)ξ′(τ)} = Ξδ(t − τ), of the
continuous-time zero-mean plant white noiseξ(t), where
Ξ is the plant-noise intensity matrix.

The disturbance forced(t) shown in Fig. 2 is a sta-
tionary first-order (colored) stochastic process generated
by driving a low-pass filter, with transfer functionWd(s),
with continuous-time white noiseξ(t), with zero mean
and intensityΞ, according to eq. (1).

d(s) =
α

s + α
ξ(s) = Wd(s)ξ(s) (1)

II. L OW-FREQUENCYDESIGN (LFD) SIMULATIONS

Several simulations will now be presented for the LFD
design, which usesα=0.1 rad/s. The RMMAC design for
this LFD case is fully documented in [1] and [3] and all
design choices and performance requirements remain the
same. All the results were obtained with 5 Monte Carlo
simulations, usingτ = 0.01 s.

Four models (N=4) are required for the LFD RMMAC,
so the performance of the RMMAC is not below 70%
of the fixed nonadaptive robust controller (FNARC), as
described in [1], [3] and [5]. The boundaries for the spring
constant for each model are shown in Table I.

TABLE I

LFD RMMAC M ODEL DEFINITIONS

Model Spring Constant Interval

#1 Ω1 = [1.02 1.75]

#2 Ω2 = [0.64 1.02]

#3 Ω3 = [0.4 0.64]

#4 Ω4 = [0.25 0.4]

Case 1 (LFD):Ξ = 1, k1 changing slowly
We start by analysing the behaviour of the RMMAC

controller under the spring constant variation shown in
Fig. 3. The spring constant is steady for 100 s. Then, it
changes linearly until it is within the next model, keeping
steady for another 100 s, and repeating the procedure.
These changes take 50 s each, so the slope is in general
not always the same. This is shown in Fig. 3, which also
shows (using the dashed lines) the model boundaries as
defined by Table I.

It is clear from Fig. 4 that during thek1 slopes transi-
tions, there is a transient associated with the identification
process, taking about 50 s to enter a steady state for
the associated posterior probabilities to correctly identify
the model. Although the posterior probabilities in Fig.
4 follow roughly the transitions in waveform A, it is

not clear how to judge the performance of the RMMAC
system. For this reason we define the “Perfect Model
Identification (PM.ID)” controller which simply generates
the plant controlu(t) in Fig. 1 by switching in the correct
LNARC at the instant that the waveform A in Fig. 3
crosses the model boundaries.

Figure 5 shows the results of 5 Monte Carlo sim-
ulations of the outputz(t) for the GNARC, RMMAC
and PM.ID systems. It is evident from Fig. 5 that the
RMMAC and PM.ID transients are very close; also the
RMMAC performance is much better than that of the best
non-adaptive design denoted by GNARC (as expected).
These results imply that the “identification transients” of
the posterior probabilities in Fig. 4 do not degrade the
RMMAC performance significantly.

To further quantify these performance comparisons, we
have computed the numerical values of the mean and
RMS of the outputz(t) associated with Fig. 5. These are
shown in Table II, for the PM.ID, RMMAC and GNARC
designs, respectively. The last two columns of Table II
show the following percentage comparisons

%E = RMMACvalue−PM.ID.value

PM.ID.value

%F = GNARCvalue−RMMACvalue

RMMACvalue

(2)

Thus, %E measures the performance degradation of the
RMMAC compared to that of the (unrealizable) instanta-
neous correct identification of the PM.ID. Similarly, %F
measures the performance degradation of the non-adaptive
GNARC design as compared to that of the RMMAC.
From Table II we can see that the “imperfect RMMAC
identification” results in only 10% RMS performance
degradation.

TABLE II

CASE 1 (LFD) RMSAND MEAN VALUES OF z(t) FORΞ = 1 AND

WAVEFORM A

PM.ID RMMAC GNARC %E %F

Mean 1.73e-5 1.53e-5 1.16e-4 -11.7% 658.5%

RMS 3.20e-5 3.52e-5 2.61e-4 10.0% 642.7%

0 200 400 600 800 1000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

k1
 (

N
/m

)

Ω
1

Ω
2

Ω
3

Ω
4

Fig. 3. Waveform A: Slowly time-varying spring constant,k1
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Fig. 4. Probability transients,Pk(t), for Ξ = 1 and waveform A
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Fig. 5. Mass position,z(t), for Ξ = 1 and waveform A

Case 2 (LFD):Ξ = 1, k1 with step changes
Next, a slightly different scenario is analyzed. The

spring constant time variation is the staircase function
shown in Fig. 6, which means that it stays constant for
100 s and then jumps to another constant value.

Figure 7 shows the posterior probabilities evolution.
The identification process is now faster, taking only about
20 s to correctly identify the model at the most cases.

One might expect worse results when the spring
changes in a staircase manner. In fact, the results remain
almost unchanged for the RMMAC controller, as one can
see from Table III. This result is more significant since
GNARC performance is worse than that of the previous
case.

TABLE III

CASE 2 (LFD) RMSAND MEAN VALUES OF z(t) FORΞ = 1 AND

WAVEFORM B

PM.ID RMMAC GNARC %E %F

Mean -9.16e-6 -1.06e-5 7.14e-5 15.6% -774.4%

RMS 3.29e-5 3.67e-5 2.968e-004 11.5% 707.6%

Case 3 (LFD):Ξ = 100, k1 changing slowly
In this experiment we increase the intensity matrix of

the plant white noise, see eq. (1), to the valueΞ = 100.
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Fig. 6. Waveform B: Fast time-varying spring constant,k1
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Fig. 7. Probability transients,Pk(t), for Ξ = 1 and waveform B

This causes the (unmeasurable) plant disturbances to be
much larger; hence, one may expect that this may lead to
a much more difficult identification and more significant
degradation of the RMMAC performance. The KFs in the
RMMAC architecture must be redesigned for this new
intensity matrix; this was done in [1] and for this reason
no further details are provided.

In this set of simulations we use the slow time-varying
spring constant shown on Fig. 3, waveform A. It turns out
that the evolution of the RMMAC posterior probabilities
is almost identical to those shown in Fig. 4 and, hence,
not shown here. There is an identification transient of
about 50 s before the correct model is identified. The
performance comparisons are illustrated in Fig. 8. Ob-
viously, the RMS value of the mass position,z(t), has
increased (Table IV), since the disturbances power is also
greater. Nonetheless, it is remarkable that the increase on
the RMS is just about 3% more than in the previous case,
summarized in Table II.
Case 4 (LFD):Ξ = 100, k1 step changes

The results of usingΞ = 100 and changing the spring
constant according to Fig. 6 are presented in Fig. 9 and
in Table V. We do not show the evolution of the posterior
probabilities; they are essentially the same as those shown
in Fig. 7. The performance comparisons remain almost the
same.
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TABLE IV

CASE 3 (LFD) RMSAND MEAN VALUES OF z(t) FORΞ = 100 AND

WAVEFORM A

PM.ID RMMAC GNARC %E % F

Mean 9.98e-5 5.99e-5 1.18e-3 -39.9% 1875.8%

RMS 2.87e-3 3.26e-3 2.55e-2 13.3% 682.1%
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Fig. 8. Mass position,z(t), for Ξ = 100 and waveform A

TABLE V

CASE 4 (LFD) RMSAND MEAN VALUES OF z(t) FORΞ = 100 AND

WAVEFORM B

PM.ID RMMAC GNARC %E %F

Mean -4.15e-5 -5.71e-5 9.02e-4 37.3% -1681.7%

RMS 2.96e-3 3.34e-3 2.87e-2 12.7% 759.4%
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Fig. 9. Mass position,z(t), for Ξ = 100 and waveform B

III. H IGH-FREQUENCY DESIGN SIMULATIONS

In this section we present similar performance compar-
isons to those in Section II using a different RMMAC
design for the same MSD plant shown in Fig. 2. We
refer to this set of results as the “High Frequency Design
(HFD)” which is fully described in Refs [2] and [5]. The
basic difference with the LFD design discussed above
is that we useα = 3 rad/s in eq. (1). This means that
the disturbance forced(t) acting upon the MSD system
has significant power over a much wider frequency range

which strongly excites all the resonant modes of the MSD
system. As described in full detail in [2] this requires a
higher bandwidth design and corresponds to a much more
challenging adaptive control problem.

The details of the HFD RMMAC design are fully
described in [2] and are not repeated here. Based upon
the posed adaptive performance specifications, [2], the
RMMAC architecture of Fig. 1 requires N=7 models
which are summarized in Table VI. As explained in Ref.
[2], in this HFD case, the performance improvements
of the RMMAC over the GNARC are much smaller
than those possible in the LFD case. However, it is still
important to quantify the RMMAC performance degrada-
tion as compared to that obtained by the “perfect model
identification (PM.ID)”.

TABLE VI

HFD RMMAC MODEL DEFINITIONS

Model Spring Constant Interval

#1 Ω1 = [1.4 1.75]

#2 Ω2 = [1.11 1.4]

#3 Ω3 = [0.85 1.11]

#4 Ω4 = [0.65 0.85]

#5 Ω5 = [0.49 0.65]

#6 Ω6 = [0.35 0.49]

#7 Ω7 = [0.25 0.35]

Case 5 (HFD):Ξ = 1, k1 changing slowly
The spring constant time-evolution is depicted in Fig.

10. As seen from Table VII, the RMS value of the
error is only about 12.5% above the one obtained wih
a perfect identification process. It should be noted in
Fig. 11 that the identification process is worse than the
LFD case (see Fig 4). This means that in this case the
identification of the system is harder. As discussed in
[2], the larger the number of models the more difficult
it is to resolve between adjacent models; however, the
control probabilistic weighting inherent in the RMMAC
architecture, generates good controls because the LNARC
compensators for adjacent models are quite similar. This
explains the modest performance deterioration noted in
Table VII. The output transients are shown in Fig. 12. In
summary, the RMS value of the error is similar to the LFD
case, where the identification worked better. So, despite
what might be expected, the poorer identification of the
system did not result on significantly worse performance.

TABLE VII

CASE 5 (HFD) RMSAND MEAN VALUES OF z(t) FORΞ = 1 AND k1

FOR WAVEFORMC

PM.ID RMMAC GNARC %E %F

Mean 7.10e-3 8.35e-3 2.81e-2 17.6% 236.5%

RMS 9.84e-3 1.11e-2 6.13e-2 12.5% 453.5%

Case 6 (HFD):Ξ = 1, k1 step changes
Similarly to what was done for the LFD case, we

now consider the spring constant changing in a staircase
manner, as depicted in Fig. 13. Table VIII shows the
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Fig. 10. Waveform C: Slowly time-varying spring constant,k1
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Fig. 11. Waveform C probability transients,Pk(t), for Ξ = 1
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Fig. 12. Mass position,z(t), for Ξ = 1 and waveform C used in HFD
designs

results for this case, where one can see that the RMS value
of z(t) remains almost unchanged when compared to
the previous example. This means that, for this problem,
the absolute value of the uncertainty derivative does not
significantly affect the results, as shown in Fig. 14. Once
again, somewhat “confused” identification problems are
observed (see Fig. 15), but the performance remains

almost as good as in the previous case.

TABLE VIII

CASE 6 (HFD) RMSAND MEAN VALUES OF z(t) FORΞ = 1 AND

WAVEFORM D

PM.ID RMMAC GNARC %E %F

Mean 1.96e-3 1.90e-3 1.58e-2 -3.1% 728.3%

RMS 1.04e-2 1.19e-2 5.97e-2 14.7% 401.9%
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Fig. 13. Waveform D: Fast time-varying spring constant,k1 (HFD)
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Fig. 14. Mass position,z(t), for Ξ = 1 and waveform D

Case 7 (HFD):Ξ = 100, k1 changing slowly
Here we use the time-varyingk1 given by Fig. 10.

We also increase the intensity of the white noise so the
disturbances have higher power. There are no significant
differences between the resulting posterior probabilities
from those shown in Fig. 11 and, hence, not shown.
The increase on the RMS value of the output when
comparing the RMMAC with the controller with perfect
identification is about 14%, as shown on Table IX. From
Fig. 16 it can be seen that the RMMAC behaves like
the LNARC with PM.ID. when the spring constant stays
level.
Case 8 (HFD):Ξ = 100, k1 changing with steps

For these simulations, thek1(t) depicted in Fig. 13
is used. Table X presents the comparison between the
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Fig. 15. Probability transients,Pk(t), for Ξ = 1 and waveform D

TABLE IX

CASE 7 (HFD) RMSAND MEAN VALUES OF z(t) FORΞ = 100 AND

WAVEFORM C

PM.ID RMMAC GNARC %E %F

Mean 7.10e-2 8.32e-2 2.81e-1 17.2% 237.3%

RMS 9.83e-1 1.12 6.12 13.6% 448.1%
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Fig. 16. Mass position,z(t), for Ξ = 100 and waveform C

RMMAC and the benchmark controllers. We do not show
the evolution of the posterior probabilities since they
behave almost in an identical manner as those shown in
Fig. 15. The output transients (not shown) look like those
in Fig. 15, except for a scale change due to the higher
disturbance intensity.

TABLE X

CASE 8 (HFD) RMSAND MEAN VALUES OF z(t) FORΞ = 100 AND

WAVEFORM D

PM.ID RMMAC GNARC %E %F

Mean 1.93e-2 1.92e-2 1.57e-1 -0.3% 717.8%

RMS 1.04 1.208 5.97e 16.7% 393.9%

IV. CONCLUSIONS ANDFUTURE WORK

We have demonstrated, using the specific MSD test
example described in Refs. [1-3], that the RMMAC
system significantly improves the performance of the
best non-adaptive design (the GNARC system) for a
variety of “slow” and “fast” variations of the uncertain
spring constant, disturbance intensities and performance
requirements. In this vein, the results presented herein
further reinforce the conclusions related to the RMMAC
methodology reached in our previous studies.

We have also focused upon the quality of the “model
identification” process as exhibited by the time-evolution
of the RMMAC posterior probabilities. As the uncer-
tain parameter changes with time it induces a dynamic
change of the true model. Ideally the posterior probabil-
ities should instantaneously identify the correct model.
However, a “learning transient” is inevitable. We have
quantified the impact of this learning transient in the
posterior probabilities by comparing the RMMAC perfor-
mance (primarily using RMS errors) with that of a perfect
“model identification (PM.ID.)” system; of course, such
a PM.ID. system cannot be implemented. We have found
that the RMMAC imperfect identification results only in
a 10%-16% RMS performance degradation compared to
the PM.ID. system. This small performance degradation is
due to the fact that (a) the RMMAC controls are generated
by “probabilistic averaging” [1-3], [5] and (b) the LNARC
compensators used in the RMMAC architecture are quite
similar for adjacent models, which account for the major
model-learning transients of the RMMAC identification
subsystem.

In a companion paper, Ref. [6], we evaluate the so-
called RMMAC/XI architecture discussed in [1-3], [5] for
the case that we havesimultaneoustime-variation of the
uncertain parameterand the disturbance intensity.

REFERENCES

[1] S. Fekri, M. Athans, A. Pascoal, “Issues, progress and new results
in robust adaptive control, ”Int. J. of Adaptive Control and Signal
Processing

[2] S. Fekri, M. Athans, A. Pascoal, “Robust multiple model adaptive
control (RMMAC): A case study, ”Int. J. of Adaptive Control and
Signal Processing, 2006, in press

[3] M. Athans, S. Fekri, A. Pascoal, “Issues on robust adaptive feedback
control,” Preprints of 16th IFAC World Congress, pp. 9-39

[4] S. Fekri, M. Athans, A. Pascoal, “A two-input two-outputrobust
multiple model adaptative control (RMMAC) case study,”American
Control Conference, Minneapolis, Minnesota, USA, June 2006.

[5] S. Fekri, “Robust adaptive MIMO control using multiple-model hy-
pothesis testing and mixed-µ synthesis,” Ph.D. dissertation, Instituto
Superior Tecnico, Lisbon, Portugal, December 2005

[6] P. Rosa et al, “Evaluation of the RMMAC/XI Method with Time-
Varying Parameters and Disturbance Statistics, MED07 (submitted)


