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Abstract— Our framework for mosaicing the interior of a tubu-
lar shape involves acquiring images, finding and reconstructing
corresponding feature points, fitting a simple 3D model to the
reconstructed points, estimating the camera path and dewarping
to one single mosaic image. This paper focus on fitting a simple 3D
model to the reconstructed points. We propose a 3D model that
is based on cylindrical sections, and is useful both for generating
simulated data and implementing the fitting procedure.

I. INTRODUCTION

Mosaicing the interior of tubular shapes consists in combin-
ing multiple images into a single one (mosaic) representing all
the interior. Mosaicing finds applications in e.g. simplifying
inspection works on pipelines: mosaics are fast reports of the
structures as compared to (eventually long) videos.

In the case of tubular shapes perfectly cylindrical (no
curves), watched by cameras perfectly positioned and aligned
with the cylinder axis, mosaicing the interior would be just
a polar to cartesian dewarping followed by the registration of
corresponding image features. Registration would than be just
computing an homography [1] between each pair of images.

In our case, we want to consider tubular shapes including
straight and curved sections, and to allow free movement
of the camera. Hence we start from the traditional idea of
reconstructing points of the scene and then focus on fitting a
simple 3D model, to the various tube sections, which makes
again simple the dewarping step.

In paper is organized as follows: first we do a small review
of related work, in section III we propose a geometric model
for a tubular shape and detail how to simulate a sequence of
pictures taken inside that tube, in section IV we show how
to fit the tubular model to real 3D points data, in section V
we show some model fitting results and finally we draw some
conclusions.

II. RELATED WORK

Scene reconstruction is a well known area in computer
vision. Reconstructing a scene traditionally starts by selecting
in a video-sequence some features that can be corresponded
in a robust manner, e.g. the SIFT features [3]. The motion of
the camera between consecutive images is than determined for
instance by estimating and factorizing the essential matrix [1],
assuming that the camera is calibrated.

Currently, scene reconstruction is further improved with
SLAM (Simultaneous localization and Mapping) or vSLAM
(Visual SLAM) processes by assuming a smooth camera mo-
tion model. In essence, the SLAM and vSLAM algorithms

use an autonomous vehicle that starts at an unknown location
and then incrementally build a map of the environment while
simultaneously uses this map to compute absolute vehicle
location (see [2]).

In this paper we assume the scene has be reconstructed,
e.g. by one of the previous methods, and we want to fit a
simple 3D model to the tubular shape. The 3D model has to
be established in a manner that simplifies the dewarping of
the images into a mosaic.

III. TUBE MODEL AND VIRTUAL WORLD

We define the tube model as a set of circular sections. Each
circular section is defined by its center point, mi, its radius, ri,
and the normal vector to the circle plane, vi (see figure 1-top).
This model allows representing tubular shapes with straight
and curved segments, and variable section-diameters.

Fig. 1. (Top) Tube Model. (Bottom) Example of a tubular shape.

The tube model can be used both for creating a virtual
world to obtain simulated navigation images and for fitting
(representing) real data. Simulating navigation images involves
specifying the camera intrinsic parameters and motion. Fitting
real data is described in the next section.

IV. 3D MODEL FITTING

Given 3D points representing a tubular shape, we fit to that
data the simple model defined in the previous section. This
fitting process comprises three steps: (i) searching the best
fitting cylinders to each of the 3D clouds-of-points (recon-
structed between each pair of pair of consecutive images) (ii)
removing the overlapping between consecutive cylinders (iii)
defining a continuous path along the cylinder sections, i.e.
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Fig. 2. Fitting cylinders: (a) fit one cylinder to a cloud of points (b) remove
the overlapping between cylinders (c) refit cylinders to make the central path
continuous (d) final fitting of two cylinders.

matching the ending-face of each cylinder section with the
starting-face of the next cylinder section. See figure 2.

Figure 2a represents how a cylindrical shape is fitted to a
cloud of points. This fitting corresponds to finding the cylinder
yielding the smallest average distance to the observed 3D
points. Letting {Mi} be the 3D reconstructed points, (m, v, r)
the center point of the basis, the axis direction and the radius
of the cylinder, then the optimization problem is:

θ̂ = argθ min
∑

i

(‖(Mi −m)− projv (Mi −m)‖ − r)2

(1)
where θ contains just only a minimal set of degrees of freedom
of (m, v, r), namely θ = [mx my vx vy r], and projv(x) =
xT vv/ ‖v‖2.

Removing the overlapping between consecutive cylinders
is just a truncation of the length of each cylinder such
that it ends at the plane defined by basis-face of the next
cylinder. The set of non-overlapping cylinders usually does
not have a continuous path linking their axis. We enforce
this by combining the circles ending and begining consecutive
cylinder surfaces into single joining circles. Note that as we
allow these circles to have free orientations and radius, we
allow for more general shapes (as e.g. sections of cones)
instead of just cylinders. See figures 2b, 2c and 2d.

V. RESULTS

A simulated camera was placed traveling inside the tube
shown in figure 1-bottom. It travels on the axis of the tube
and is always facing the positive Oz direction. Therefore the
extrinsic parameters only have a translation component. For
this reason, in some images there is no complete view of
the tubular section (see figure 3a-right). The camera has 44
degrees field of view and a fixed 640x480 pixel resolution.

The figure 3b represents refitting the tube sections after
truncating the cylinders to be non-overlapping. This optimiza-
tion process adjusts the circles defining the tube sections. By
maintaining fixed the first and the fourth circle, the two in the
middle are readjusted to keep a continuous/smooth tube. The
next iteration maintains the second and the fifth, and the third
circle is again readjusted.
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Fig. 3. Tubular shape reconstruction. (a) Three images of the simulated
camera inside the tube. (b) Optimizing the connections between sections. Blue
is the reconstructed tube/circles, Magenta is original 3D image points, Light
Blue is the distance between the original 3D points and the tubular surface.
(c) Reconstructed shape.

The figure 3c represents the reconstructed tubular shape.
The structure is close to the original despite the local removal
of sections overlapping and refitting procedures.

VI. CONCLUSION

The proposed 3D model based on circles defining tubular
sections, is a convenient representation as it allows optimizing
locally the fitting process. It is also a useful representation
for dewarping as it allows defining a ground line as the
intersection of the circles with a vertical plane. The line will
than be the center line of the mosaic image and the circles are
broken at the top and rollover to a 2D plane that will be the
2D image mosaic.

As future work, we plan to implement all the steps of
the mosaicing, from the image processing, passing by recon-
struction, model fitting (as proposed here), till dewarping the
tubular shape and mapping the image data in the mosaic.
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