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1ABSTRACT

This paper describes the development and test in simulation of a coast

line following preview controller for the DELFIMx autonomous surface

craft (ASC) that takes into account the reference characteristics ahead

of the vehicle. The presented solution is based on the definition of

an error vector to be driven to zero by the path-following controller.

The proposed methodology for controller design adopts a polytopic

Linear Parameter Varying (LPV) representation with piecewise affine

dependence on the chosen parameters to accurately describe the error

dynamics. The controller synthesis problem is formulated as a discrete-

time H2 control problem for LPV systems and solved using Linear

Matrix Inequalities (LMIs). To increase the path-following performance,

a preview controller design technique is used. The resulting nonlinear

controller is implemented with the D-Methodology under the scope of

gain-scheduling control theory. To build the reference path from laser

range finder measurements, an automatic reference path reconstruction

technique is presented that employs B-splines computed using least

squares coefficient estimation. The final control system is tested in

simulation with a full nonlinear model of the DELFIMx catamaran.

KEY WORDS: Path-following, H2 Control, Preview Control, Marine

Vehicles, B-splines, Ladar, laser range finder

INTRODUCTION

Marine biologists and researchers depend on technology to conduct

their studies on time and space scales that suit the phenomena under

study. Several oceanography missions can be performed automatically

by Autonomous Surface Craft (ASC), like bathymetric operations

and sea floor characterization. ASC vehicles not only serve research

purposes but can also be used for performing automatic inspection

of rubblemound breakwaters, as required by the MEDIRES project,

(Silvestre et al., 2004). In the scope of this project, the autonomous

catamaran DELFIMx, built at IST-ISR, will be used for automatic

marine data acquisition. The vessel is a major redesign of the DELFIM

Catamaran, developed within the scope of the European MAST-III

Asimov project that set forth the goal of achieving coordinated operation

of the INFANTE autonomous underwater vehicle and the DELFIM

ASC and thereby ensuring fast data communications between the two

vehicles.

The DELFIMx craft, depicted in Figure 1, is a small Catamaran 3.5 m

1This work was partially supported by Fundação para a

Ciência e a Tecnologia (ISR/IST pluriannual funding) through the

POS Conhecimento Program that includes FEDER funds and by project

MEDIRES of the AdI.

long and 2.0 m wide, with a mass of 320 Kg. Propulsion is ensured by

two propellers driven by electrical motors. The maximum rated speed

of the vehicle with respect to the water is 5 knots. The vehicle is

equipped with on-board resident systems for navigation, guidance and

control, as well as mission control. Navigation is achieved by integrating

motion sensor data obtained from an attitude reference unit and a DGPS

(Differential Global Positioning System). Transmissions between the

vehicle, its support vessel or the control centre installed on-shore are

achieved via a serial radio link. The vehicle has a wing shaped, central

structure that is lowered during operations at sea. At the bottom of

this structure, a low drag body is installed that can carry acoustic

transducers. For bathymetric operations and sea floor characterization,

the wing is equipped with a mechanically scanned pencil beam sonar

and a sidescan sonar. The paper addresses the design of a laser range

finder based coast line following controller to provide DELFIMx with

the capability of safely performing automatic inspection of rubblemound

breakwaters as is required by the MEDIRES project.

Fig. 1. The DELFIMx autonomous surface craft

For motion control of autonomous vehicles two strategies arise:

trajectory-tracking and path-following. Due to its enhanced perfor-

mance, which translates into smoother convergence to the path and

less demand on the control effort, the path-following approach was

chosen. In this paper, the path-following problem is formulated along

the lines of the work reported in (Paulino et al., 2006) and (Cunha

et al., 2006). The path-following problem can be cast and solved as

a regulation problem through the definition of a suitable error vector

which depends on both the vehicle variables (velocities, position, and

orientation) and the reference (velocities and path). The error vector

contains velocity, orientation, and position errors (the position error is

defined as the distance between the vehicle’s position and its orthogonal

projection on the path).
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In order to model the error dynamics, a polytopic Linear Parame-

ter Varying (LPV) representation with piecewise affine dependence

on the parameters is used. For each region in the vehicle’s flight-

envelope, a discrete-time H2 controller is synthesized using Linear

Matrix Inequalities (LMIs). Since future path references are available, a

preview control algorithm is applied. Based on the results presented in

(Paulino et al., 2006), a feedforward preview gain matrix is computed.

This sort of algorithms are widely used to increase the overall close

loop performance, which in this case corresponds to achieving better

path-following performance with smoother actuation. Pioneer work on

preview control can be found in (Tomizuka, 1976) and references

therein. The resulting nonlinear controller is implemented within the

framework of gain-scheduling control theory, using the D-Methodology,

see (Kaminer et al., 1995). The overall closed-loop system is tested

in the MATLAB/SIMULINK simulation environment, using a full

nonlinear model of the DELFIMx catamaran with a laser sensor on

board.

A fundamental issue underlying the implementation of sensor based

coastline following preview controllers is the generation of a smooth

reference path from laser measurements. In this paper, the technique

adopted exploits the sensor geometry to efficiently build the coast line

profile ahead of the vehicle using B-splines. B-spline curves are a

good solution since they do not interpolate exactly all the data points

but approximate their shape. Details on B-splines can, for example,

be found in (Farin, 1997; de Boor, 2001). In addition to being a

good representation for the data sets, B-splines have the advantages of

being invariant to affine transformation, smoothing noise, and naturally

decoupling the x and y coordinates.

The paper is organized as follows. The second section introduces

a nonlinear model for the dynamics of the DELFIMx ASC in the

horizontal plane. In the third section the problem of coast line following

is formulated and a brief introduction of path-dependent error space

used to describe the vehicle dynamics is made. The fourth section

states the preview control problem. The fifth section describes the

methodology adopted for H2 linear controller design where an LMI

synthesis technique is applied to affine parameter-dependent systems.

The sixth section presents the reconstruction technique used to build

the reference path from laser measurements. The seventh section

focuses on the implementation of the nonlinear coast line following

controller for the DELFIMx ASC. Finally, simulation results obtained

with the full nonlinear dynamic model are presented in the last section.

VEHICLE DYNAMICS

This section briefly presents the model adopted to describe the dynamics

of the DELFIMx catamaran in the horizontal plane. The vehicle has

two hulls, two propellers driven by electrical motors, and a torpedo-

shaped sensor container, attached to the catamaran by a central wing-

shaped link. For a comprehensive description of this model, the reader

is referred to (Prado, 2002).

Using standard notation in the field, let {U} denote the inertial

coordinate frame, {B} the body fixed coordinate frame attached to the

vehicle’s center of mass and consider the following vehicle variables:

UpB = [x y]T - position of the origin of {B} with respect to

{U};

v = [u v]T - linear velocity of {B} relative to {U}, expressed in

{B};

ψ - heading angle that describes the orientation of frame {B} with

respect to {U};

r - angular velocity of {B} relative to {U}, expressed in {B}.

The vehicle’s kinematics can be written as
{

ψ̇ = r
U ṗB = U

BRv

where U

BR denotes the rotation matrix from {B} to {U}.

Consider also the generalized variables for the horizontal motion mode

given by

ν =
[

u v r
]

T

τ =
[

X Y N
]

T

where τ denotes the generalized force vector comprising the external

forces [X,Y ] and moment N . Then, the equations of motion for the

dynamics can be written in compact form as

M ν̇ + C ν = τ , (1)

where M is the 2-D rigid body inertia matrix and C the matrix

of Coriolis and centripetal terms. The generalized force τ can be

decomposed as

τ = τ add(ν̇,ν) + τ body(ν) + τ prop(ν,u), (2)

where τ add denotes added mass terms, τ body the hydrodynamic forces

and moments acting on the body, and τ prop the forces and moments

generated by the propellers as a function of the velocities ν and of the

actuation vector u = [nc nd]T . The symbols nc and nd stand for the

common and differential modes of the propellers’ speed of rotation.

The major difficulty faced when modeling a catamaran lies in obtaining

an analytical expression for τ . In the current horizontal plane model,

the gravitational effect is neglected and the fluid is assumed to be at

rest, whereas the dynamic and hydrodynamic effects of the different

catamaran components are accounted for in the final expression for τ ,

see (Prado, 2002) for further details.

ERROR SPACE

In order to address the path-following problem and convert it into

a regulation problem, the vehicle’s dynamics are expressed in a

conveniently defined error space that naturally describes the dynamic

characteristics of the ASC for a suitable flight envelope.

Tangent and Desired Body Frames

The error space definition requires the introduction of a coordinate

frame that relates the vehicle position with the path. This frame, whose

x and y axes are constrained to be tangent and normal to the path,

respectively, is called the tangent frame {T} (see Fig. 3). There is

an almost exact correspondence between {T} and the well-known

Serret-Frenet frame, which, as illustrated in Fig. 2, can only differ on

the direction of the normal axis. This is an alternative definition of

great practical significance, since it widens the set of paths for which

continuity in {T} can be guaranteed. In addition to being aligned with

Fig. 2. Tangent and Serret-Frenet frames
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the tangent to the path, the frame {T} is constrained to move along the

path as a function of the vehicle’s motion, so that its origin corresponds

to the orthogonal projection of the vehicle’s position on the path (see

Fig. 3).

Given these constraints, it is easy to show that the linear velocity vT =
T

UR
U ṗT is given by

vT = VT

[

1 0
]

T

,

where VT is the speed with which {T} is moving along the curve, and

that the distance d = UpB −UpT has no component along the tangent

axis, that is,
T

URd =
[

0 dt

]

T

.

As for the angular velocity rT , it is easy to show that it verifies

{C}
{T}

{U}

{B}

p

U
p

B

d

U
p

T

Fig. 3. Coordinate frames and distance to the path

rT = VTκ,

where κ is the signed curvature, defined for each point on the curve,

see (Cunha et al., 2006) for details.

In order to define the error vector, it is necessary to introduce an

additional frame: the desired body frame {C}, which coincides with

the tangent frame apart from a z-aligned rotation. The angular distance

between {T} and {C} determines the sideslip angle with which the

vehicle is supposed to follow a particular curve. Thus, the orientation

of frame {C} with respect to frame {U} can be expressed as

ψC = ψT + ψT C ,

where ψT C is the side-slip angle generally defined as

β = arctan(vC/uC). Notice that ψT C is highly dependent on

the dynamics of the vehicle. However, as will be seen later, the

adopted methodology will eliminate the need to explicitly compute the

sideslip angle.

Error Vector Definition and Error Dynamics

Given the foregoing definitions and introducing the reference velocities

vR = VR [1 0]T and rR = VRκ, the following error vector can be

considered

xe =















ve = v − B

TRvR

re = r − rR

dt = Πy
T

UR (UpB − UpT )
ψe = ψ − ψC

, (3)

where Πy = [0 1]. It is straightforward to show that the vehicle follows

the path with tangent velocity vr and orientation ψC if and only if

xe = 0.

Assuming that the references satisfy V̇R = 0 and ψ̇T C = 0, the error

dynamics can be written as

v̇e =

[

u̇+ sin(ψe + ψT C) ψ̇e VR

v̇ + cos(ψe + ψT C) ψ̇e VR

]

ṙe = ṙ − ṙR

ḋt = sin(ψe + ψT C)u+ cos(ψe + ψT C) v

ψ̇e = r − κ
cos(ψe + ψT C)u− sin(ψe + ψT C) v

1 − κdt
(4)

For tracking purposes, the output vector

ye = ve + B

TR

[

0
dt

]

is appended to the system. Note that ye results from the combination

of velocity and position errors both expressed in body coordinates.

Error Linearization and Discretization

When the reference path is constrained to verify a trimming condition

(which must be feasible for the vehicle in question), the error dynamics

becomes an autonomous system with an equilibrium point at xe = 0
(Cunha et al., 2006). It is well-known that, in 2-D, such a condition is

satisfied if the desired path is either a straight line or a circle followed at

constant speed (V̇R = ṙR = 0) and with constant sideslip (ψ̇T C = 0).

Given that the catamaran is underactuated, it can be shown that the

constant parameter vector ξ = [VR rR]T completely characterizes a

trimming condition and that, imposing this condition on the reference,

the error dynamics can be written in compact form as

P(ξ) =

{

ẋe = fe(xe, ξ,u)
ye = ge(xe, ξ).

Defining uC as the input vector that satisfies (1) with ν =
[(C

TRvR)T rR]T (ν̇ = 0), the linearization of the error dynamics about

(xe = 0,u = uC) results in the time-invariant system given by

Pl(ξ) =

{

δẋe = Ae(ξ) δxe +Be(ξ) δu
δye = Ce(ξ) δxe,

(5)

where Ae(ξ) = ∂fe
∂xe

(0, ξ,uC), Be(ξ) = ∂fe
∂u

(0, ξ,uC), and Ce(ξ) =
∂ge

∂xe
(0, ξ).

For the purposes of control system design, the discrete time equivalent

of the linear continuous time model (5) is obtained using a zero-

order hold on the inputs. Let T be the sampling time and define,

with obvious abuse of notation, the augmented discrete time state

xd(k) = [xe(k)
T , xi(k)

T ]T , where xi(k) corresponds to the discrete

time integral of ye. Then, the discrete error dynamics can be written

as

xd(k + 1) = A(ξ)xd(k) +B(ξ)u(k), (6)

where A(ξ) =

[

eAe(ξ)T 0
Ce(ξ) I

]

and B(ξ) =
[

∫ T

0
eAe(ξ)τdτBe(ξ)

0

]

, for ξ constant.

PREVIEW PROBLEM FORMULATION

Better path-following performance with limited bandwidth compen-

sators can be achieved by taking into account, in the control law,

the characteristics of the reference path ahead of the vehicle. The

technique used in this paper to develop a tracking controller amounts to

introducing a dynamic feedforward block, which is fed by future path

disturbances.

With the objective of including this preview component in the discrete

time error space dynamics (6), assume that the catamaran moves with
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constant speed along a given reference path that results from the

concatenation of straight lines and arcs of circumference. A detailed

analysis of the error dynamics (4) suggests the introduction of a

perturbation term that results from the discontinuity in the angular

velocity rR. Assuming that each path segment concatenation occurs

at time ti, the derivative of rR can be written as

ṙR(t) =
∑

i

δ(t− ti)(rR(t+i ) − rR(t−i )),

where δ(t) is the Dirac delta function. From (5), the resulting linear

error dynamics can be written as

δẋe = Ae(ξ)δxe +Be(ξ)δu +Wδw, (7)

with injection matrix W =
[

0 0 −1 0 0
]

T

. The corresponding

discretization is given by

xd(k + 1) = A(ξ)xd(k) +B(ξ)u(k) +B1(ξ)s(k), (8)

where B1(ξ) = [(eAe(ξ)TW )T , 0]T is obtained from the impulse

invariant discrete equivalent of the injection matrix W . It is assumed

that the sampling period is sufficiently small to consider the reference

path changes synchronized with the sampling time and therefore the

perturbation s(k) can be written as

s(k) = rR(t+k ) − rR(t−k ).

Assuming a preview length of p samples, let xs(k) = [s(k), s(k +
1), ..., s(k+ p)]T ∈ R

(p+1)×1 be the vector containing all the preview

inputs at instant k. Then, the discrete time dynamics of vector xs(k)
can be modeled as a FIFO queue given by

xs(k + 1) = Dxs(k) +Bss(k + p+ 1), (9)

where

D =

















0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 0
. . . 1

0 0 0 · · · 0

















, Bs =















0
0
...

0
1















,

and the augmented system with state x(k) =
[

xd(k)T xs(k)
]

can be

written as

x(k + 1) = Āx(k) + B̄ss(k) + B̄u(k), (10)

where

Ā =

[

A H
0 D

]

, B̄s =

[

0
Bs

]

, B̄ =

[

B
0

]

,

and H = [B1, 0, 0, · · · , 0] represents the injection matrix of the

preview signals into the error dynamics. Notice that the D matrix

is stable and therefore the augmented system (10) preserves the

stabilizability and detectability properties of the original plant.

DISCRETE TIME CONTROLLER DESIGN

This section briefly describes the LMI-based methodology that was

adopted to solve the problem of discrete time state feedback H2 preview

control for polytopic LPV systems (Ghaoui and Niculescu, 1999; Tak-

aba, 2000). In what follows, the standard set-up and nomenclature used

in (Zhou et al., 1995) is adopted, leading to the state-space feedback

system represented in Fig. 4. Consider the generalized LPV system

G(ξ), defined as a function of the slowly varying parameter vector ξ.

It is assumed that ξ is in a compact set Θ ⊂ R
q . Suppose that the

parameter set Θ can be partitioned into a family of regions that are

compact closed subsets Θi, i = 1, . . . , N and cover the desired ASC

K

-

G(ξ)

�

--
w z

xu

Fig. 4. Feedback interconnection

flight envelope. In the ith parameter region Θi, the dynamic behavior

of the closed-loop system admits the realization
{

x(k + 1) = A(ξ)x(k) +Bw(ξ)w(k) +B(ξ)u(k)

z(k) = Cz(ξ)x(k) + E(ξ)u(k), u(k) = Kx(k),
(11)

where x(k) is the state vector. The symbol w(k) denotes the input

vector of exogenous signals (including commands, disturbances and

preview signals), z(k) is the output vector of errors to be reduced

during the controller design process, and u(k) is the vector of actuation

signals. Matrices A(ξ), Bw(ξ), B(ξ), Cz(ξ), and E(ξ) are affine

functions of the parameter vector ξ = [ξ1, . . . , ξq]
T ∈ Θi, e.g.

A(ξ) = A(0)+ξ1A
(1)+ . . .+ ξqA

(q). The generalized affine parameter-

dependent system G(ξ) consists of the plant to be controlled, together

with appended weights that shape the exogenous and internal signals

and the preview dynamics presented in Section IV.

Given G(ξ), an LMI approach for the synthesis of state feedback H2

controllers for polytopic systems is used to compute K = [Kd, Ks],
where Kd and Ks represent the state feedback and feedforward gain

matrices respectively, see (Ghaoui and Niculescu, 1999; Paulino et al.,

2006) for further details.

For augmented discrete time dynamic systems that include large

preview intervals p > 50, the controller synthesis technique proposed

in (Ghaoui and Niculescu, 1999) leads to LMI optimization problems

involving a large number of variables, which cannot easily be solved

using the tools available today. To overcome this limitation, an

alternative algorithm for the computation of the feedforward gain

matrix is adopted that exploits the particular structure of the augmented

preview system, see (Paulino et al., 2006).

REFERENCE PATH GENERATION

To generate the reference path, a laser range finder was attached to

the vehicle for coastline data acquisition. This single beam laser range

finder, installed in a fixed position on the vehicle, measures the distance

between the vehicle and the coastline at a frequency of 100Hz. As

the vehicle moves, new coastline points are acquired (see Fig. 5) and

stored in a buffer. A coastline profile can then be computed based on

the laser data buffer. This curve is dynamic in the sense that it changes

as new samples enter the buffer. These new samples can be located

after or before the last sample acquired, because the coastline data

acquisition process depends on the vehicle’s attitude and linear position.

For example see Fig. 5, where the vehicle’s motion causes a point

located at the beginning of a coastline profile to be acquire afterwards.

The dependence of the coastline data acquisition process on the

vehicle’s motion, makes the coastline following problem harder to solve.

Notice that the reference path generation can be simplified by using a

ladar, which is able to measure the entire coastline profile several times

per second, instead of a laser range finder mounted in a fixed position

on the vehicle. Note that in the later case the coastline curve built from

sensor measurements can change dramatically with time as new data

enters the buffer.
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Fig. 5. Coast laser data acquisition

The proposed methodology requires the determination of a reference

path parallel to that synthesized from the laser data buffer. Both curves

are dynamically updated as new coastline measurements are added to

the data buffer, while the vehicle moves along the path.

In order to obtain less demanding engine actuation and still achieve

good coastline following performance, the reference path fed into the

controller should be smooth and present a shape similar to that of the

coastline profile in the presence of noise in the data acquisition process

and irregular coastline profiles.

To obtain a coastline profile estimate from laser data sets, B-spline

curves are a good solution since they do not interpolate exactly all

the data points but approximate their shape. Details on B-splines can,

for example, be found in (Farin, 1997). In addition to being a good

representation for the data sets, B-splines have the advantages of being

invariant to affine transformations, smoothing noise, and naturally

decoupling the x and y coordinates. Usually, B-splines of an order

of three or four provide a sufficiently accurate approximation. Higher

order curves allow higher spatial frequency shapes to be modeled, but

also require more computations. In our case order four was found to

be a good compromise between the computational requirements and

the approximation accuracy of the resulting B-spline.

Smooth Curves: B-splines

A B-spline curve is a function defined by polynomials obtained from the

linear combination of basis functions. Consider the following B-spline

definition

x(l) =
N

∑

k=0

cx,k Bk,D(l)

y(l) =

N
∑

k=0

cy,k Bk,D(l)

where l is the domain parameter, cx,k and cy,k are the k th control

points (or basis coefficients) for the x and y splines, respectively,

Bk,D(l) represents the k th basis function (or blending function) of

order D (and degree D − 1), and N + 1 is the number of control

points. This curve is built for a given domain partition defined by

the knot vector [l0, l1, . . . , lN ] (there is a control point associated to

each knot). In the present case we considered non-uniform B-splines,

parameterized by the arc length l, with basis functions defined by the

so-called Carl de Boor formulas (de Boor, 2001)

Bk,1(l) =

{

1 lk ≤ l < lk+1

0 otherwise

Bk,d(l) =
l − lk

lk+d−1 − lk
Bk,d−1(l) +

+
lk+d − l

lk+d − lk+1
Bk+1,d−1(l).

where d = 2, . . . , D. The shape of the curve can be easily adjusted by

proper choice of the coefficients and the knots vector. In the following

x′(l) denotes ∂
∂l
x(l).

4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x[m]

y
[m

]

 

 

α=0

α=1

α=5

Fig. 6. Impact of α in the curve profile

When adjusting a curve to noisy or high irregular data sets, one must

prevent overfitting which can cause near interpolation of the data leading

to high spatial frequency references. Methods for obtaining a smooth

spline estimate can be found in the literature, (Flickner et al., 1994). In

the following we propose a technique to determine the curve coefficients

through minimization of a simple least squares cost functional. Let

(x̃j , ỹj) denote the jth sample point and lj the respective arc length

parameterization. Then, the cost functional for x coordinate can be

written as

J =
1

2

∑

j

[

(x(lj) − x̃j)
2 + αx′(lj)

2] .

A similar procedure is applied to the y coordinate. The proposed

technique introduces in the cost functional an extra smoothing parameter

α, that weights the derivative of the curve with respect to the parameter

l. The impact of α on the shape of resulting curve is illustrated in Fig.

6. The spline coefficients cx = [cx,0...cx,N ]T are then obtained from

the least squares solution

cx = R−1
r (12)

where the matrix R and vector r are given by

R =
∑

j









B0(lj)
2 + αB′

0(lj)
2 . . . B0(lj)BN (lj) + αB′

0(lj)B
′

N (lj)
.
.
.

.

.

.

BN (lj)B0(lj) + αB′

N (lj)B
′

0(lj) . . . BN (lj)
2 + αB′

N (lj)
2









r =
∑

j

[

B0(lj)x̃j B1(lj)x̃j ... BN (lj) x̃j

]

T

and the index D in Bk,D was omitted for the sake of simplicity.
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Path Generation Methodology

The first step for the reference path generation, consists of computing

the coastline profile. Assuming that the laser data samples (x̃j , ỹj) are

sorted in the buffer according to a proximity criterion, the B-spline for

the coastline profile can be computed using (12). The second step is to

compute the so called offset curve from the coastline profile. This curve,

that corresponds to the reference path that the vehicle should follow,

is displaced from the coastline profile by a constant offset, the safety

distance sD, in the direction of the curve’s normal. Different techniques

to compute the offset curve can be found in the literature, see (Lee et

al., 1996) for an in depth survey of the area. In the following, we

present a simple technique to approximate the offset curve that solves

the problem at hand.

The main idea consists of using a simple B-spline interpolation method

to approximate the offset curve. A finite set of sample points are

generated on the exact offset curve and then interpolated resorting to a

fourth order B-spline to generate the reference path.

Given the coastline profile C(l) = (x(l), y(l)), its exact offset curve

CΓ(l) = (xΓ(l), yΓ(l)) can be written as

CΓ(l) = C(l)+sDn(l), n(l) =
1

√

x′(l)2 + y′(l)2

[

x′(l), −y′(l)
]

T

(13)

where n(l) represents the unit vector normal to C(l). For B-splines,

the curve derivatives x′(l) and y′(l) are analytical expressions of the

basis functions derivatives and curve coefficients.

For convex sections of the coastline profile, within which the local

radius of curvature is no greater than the safety distance, the sample

offset points lead to an undesired shape generated by offset vectors

o(li) = sDn(li) that intersect each other. The simplest solution

to overcome this problem consists of ignoring those vectors in the

generation of the reference path. Fig. 7 shows a typical case of a
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Fig. 7. Coastline convex section

coastline convex section where the local radius of curvature is less

than the safety distance. In the figure, the curve identified by the green

marks contains an undesired section that results from the intersection

of the offset vectors.

The algorithm developed to build the reference path from laser data can

be summarized as follows:

- Store each new laser data sample in the buffer and sort it according

to a proximity criterion.

- Compute the coastline profile from laser data and append a straight

line segment at the end of the curve. This line segment, that is

connected to the coastline profile, is aligned with the last 15 control

points of the latter.

- Sample the coastline profile and the appended line segment uni-

formly in l and compute the corresponding offset vectors o(li).

- Remove the offset vectors that intersect each other.

- Compute the B-spline reference path using the control points

defined by the remaining offset vectors.

Fig. 8 displays two different phases of the reference path building

procedure. The figure on the left contains the results of a first stage

of the algorithm where few data points are available. In the figure the

appended straight line segment can be easily identified. The righthand

side figure shows a posterior phase of the process and attests the quality

of the proposed algorithm. Notice also how the proposed technique is

able to handle laser occlusions.
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Fig. 8. Reference path generation

Finally the reference to feed the controller is obtained from the reference

path B-spline, assuming an external total speed command VR, using the

following procedure:

- compute the vehicle closest point on the path (xR, yR), and

the respective arc length parameter lR such that (xR, yR) =
(x(lR), y(lR));

- obtain the reference angular velocity from rR = κ(lR)VR, where

κ(lR) is the local curvature at the closest point defined by

κ(lR) =
x′′(lR) y′(lR) − y′′(lR)x′(lR)

(x′(lR)2 + y′(lR)2)3/2
;

- compute the angle of the tangent frame at the closest point

ψT (lR) = atan2(x′(lR), y′(lR)), where atan2(., .) denotes the

four quadrant arctangent function.

IMPLEMENTATION

The design and performance evaluation of the overall closed loop

system were carried out using the model described in Section II.

During the controller design phase the ASC’s operation envelope was

parameterized by ξ = [VR, rR]T and partitioned into 25 regions

resulting from the parameter intervals presented in Table I. For each

operating region, the elements of the discrete time state space matrices

were obtained from the linearization of the error dynamics over a dense
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Table I. Parameter intervals

Parameters Intervals

VR [m.s−1] [0.4;0.5] [0.45;1] [0.8;1.5] [1.3;2] [1.8;2]

rR [rad.s−1] [-0.01;0.01] [0.008;0.02] [0.018;0.022]

[-0.02;-0.008] [-0.022;-0.018]

grid of operating points and then approximated by affine functions of

ξ using a Least Squares Fitting.

To implement the controller within the scope of gain scheduling control

theory, a state feedback gain matrix Ki = [Kdi, Ksi], i = 1, . . . , 25
was computed for each of the operating regions using the technique

presented in Section V. During the controller design phase the regions

were defined so as to overlap thus avoiding fast switching between

controllers. In the synthesis model (11) the disturbance input matrix

Bw was set to B̄s and the state and control weight matrices Cz and

E, respectively, were set to yield the following performance vector

z(k) = [z1(k)
T z2(k)

T ]T , where

z1 = [0.01ue, 0.1ve, re, 0.1dt, ψe, 0.03xi1, 0.15xi2]
T

z2 = [0.15nc, 0.1nd]T ,
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Fig. 9. Implementation setup using gain scheduling and the D-

methodology

The final implementation scheme, presented in Fig. 9, was achieved

using the D-methodology described in (Kaminer et al., 1995). Besides

preserving the stability characteristics of the closed loop system, this

methodology has the important property of eliminating the need to

feedforward trimming values for the actuation signals and state variables

that are not required to track reference inputs.

The width of the preview interval suitable for a given vehicle is a

compromise between the time-constants associated to the vehicle’s

dynamics and the computational power available onboard. Fig. 10

presents the entries of the preview feedforward control matrix Ks as a

function of the preview time, obtained for zone 2. In this case, a preview

interval of 25 s, sampled at T = 0.5 s, is considered. It is clear that

the weight of the preview signal decreases as the corresponding instant

of time gets further ahead in the future, with negligible contributions

above 25 s of preview time.

The computation of the reference path was obtained with α = 5, and

0.5 m step for both spline generation and coefficient estimation points

and an equally spaced knot vector with 1 m step. In the simulation the

nominal laser range finder measurements were assumed corrupted by

additive white noise with variance 0.5 m2.
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Fig. 10. Evolution of the preview gains as a function of preview time

SIMULATION RESULTS

In this section, we illustrate the performance that can be achieved with

the proposed coast following controller. In the simulation the catamaran

DELFIMx should follow the coastline at a constant reference speed

of VR = 1.5 m/s. As shown in Figs. 11, 12, and 13, the inclusion

of preview feedforward control action yields better path-following

performance, since it results in a smoother path trajectory with

reduced convergency time. Notice that there is a starting path, which

corresponds to a straight line, for laser points accumulation in the

data buffer. The effect of the use of preview becomes clear from Figs.

14 and 15, as the changes in the trajectory described by the vehicle

impact on the coastline following capabilities.
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Fig. 11. Time evolution of the error vector

CONCLUSIONS

The paper presented the design and performance evaluation of a coast

following controller for an Autonomous Surface Craft (ASC). Resorting

to an H2 controller design methodology for affine parameter-dependent

systems, the technique presented exploited an error vector that naturally

describes the dynamic characteristics of the ASC for a suitable flight

envelope. For a given set of operating regions, a nonlinear preview

controller was synthesized and implemented under the scope of gain-
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scheduling control theory.

The effectiveness of the new control laws was assessed in simulation,

using a nonlinear model of the DELFIMx catamaran with a laser range

finder installed on board. A new technique was proposed to generate

a smooth reference path from laser data. The quality of the results

obtained in simulation clearly indicate that the methodology proposed

yields a high-performance coast following preview controller that has

great potential to be used in practical applications.
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