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Abstract parameters to estimate. This bilinear relation codes a con-
straint on the rank of the observation matrix. The advantage
From the recovery of structure from motion to the sep- of this formulation is that the bulk of the effort needed to
aration of style and content, many problems in computer compute the solution of the large-scale nonlinear estonati
vision have been successfully approached by using bilinearproblem is done by computing the rank constrained matrix
models. The reason for the success of these models is thahat best matches the observation matrix (thus, its optimal
a globally optimal decomposition is easily obtained from bilinear decomposition), which is easily obtained from its
the Singular Value Decomposition (SVD) of the observa- Singular Value Decomposition (SVD).

tion matrix. However, in practice, the observation matsx i In practice, it is often the case that not all the entries of
often incomplete, the SVD can not be used, and only sub+the observation matrix are available. For example, when re-
optimal solutions are available. The majority of these so- covering 3D structure from motion, the observation matrix
lutions are based on iterative local refinements of a given cojlects 2D trajectories of (projections of) feature psiint

cost function, and lack any guarantee of convergence to thethe image plane. Naturally, due to self-occlusion and lim-
global optimum. In this paper, we propose a globally opti- jted field-of-view, feature points are usually not visitiesil

mal solution, for particular patterns of missing entrie® T  jmages available, and the observation matrix is incomplete
achieve this goal, we re-formulate the problem as the mini- This prevents the simple use of the SVD and motivated re-
mization of the SpeCtraI norm of the matrix of rESiduals, i.e searchers to address the prob|em of Computing a rank con-
we seek the completion of the observation matrix such thatstrained matrix from a partial observation of its entries,

the largest singular value of its difference to a low rank ma- the problem of factorization with missing data.

trix is the smallest possible. The class of patterns of mgssi
entries we deal with is known as the Young diagram, which
includes, as particular cases, many relevant situationshs

as the missing of an entire submatrix. We describe experi-
ments that illustrate how our globally optimal solution has
impact in practice.

Current approaches to the factorization of incomplete
matrices are sub-optimal. Earlier examples are procedures
to combine the constrains that arise from the observed sub-
matrices of the original matrixi[g, 13]. More recently, re-
searchers attempted to develop algorithms to minimize the
nonlinear cost function that measures the residual of the
approximation. These algorithms are iterative, localsthu
. sensitive to the initialization,e., there is not guarantee of
1. Introduction convergence to the global optimum. Examples include two-

Various large-scale nonlinear problems in computer vi- Step iterative algorithms, g, alternating between the com-
sion have been addressed by exploiting bilinear models. Ex-Putation of the column and row spaces, [(], non-linear
amples include the recovery of rigid structure from motion damped Newton optimization of the matrix factoi$ fand
[18, 16], inference of non-rigid models]], estimation of ~ Other non-linear optimization strategies, such as optigiz
image motion 2], modeling images obtained with differ- With respect to one of the factors the cost resulting from re-
ent lighting [3], photometric stereo?], object recognition ~ Placing the closed-form estimate of the other facici{In
[19), and the separation of style and content in imagés [ ©OPPOsition to these iterative approaches, some authors pro
Usually, a matrix that collects the observations is express Posed the so-called batch algorithms, that address the min-

as the product of two matrices collecting (functions of) the imization of an approximation of the residual, to simplify
the optimization and avoid local minima4, 17].

Partially supported by FCT, under ISR/IST plurianual furgd{POSC . . .
program, FEDER), and grants MODI-PTDC/EEA-ACR/72201RG0d In this paper, we propose an optimal solution for the
SIPM-PTDC/EEA-ACR/73749/2006. problem of factorizing an incomplete observation matrix,



when the pattern of missing entries has a specific format.any completiorX can be written as the sum of a fixed term
We show that the problem can be seen as the minimizationwith a linear combination of a subset of basis matriees,
of the spectral norm of the matrix of residuals and propose -
a globally optimal approach to this optimization problem. X=WoM+ Z a(i,j)E” ) 3)
Our algorithm, which we call SPOC (from SPectrally Op- i,j:M;;=0
timal Completion), is not iterative; it rather computes the ) .
optimal completion of the observation matrix by filling, ina Where: the matricegE! } are the versors of th&™" coor-
sequential way, its unknown entries. At each step, the opti-dinate systemi,e., eachEY is a matrix with1 at entry(s, j)
mal value for one missing is simply obtained in closed form and zeros at all other entries; and the scafar§, j)} are
as the solution of a quadratic equation. The class of pat-defined bya(i, j) := X;;. In Figurel, we also represent
terns of missing entries we deal with is known as the Young the setS,,, composed by the: x n matrices that have rank
diagram, which includes, as particular cases, many retevanless or equal te, and the solution of), given by the pair
situations, such as the missing of an entire submatrix. of matricesW € S, andX € Sw that are the closest to
each other.

2. Minimizing the error spectral norm

. . . Rm)(n
Motivated by the applications referred above, we address 4

the problem of computing a rank deficient matrix, say a
mxn matrix of rank at most < min (m,n), from (noisy)
observations of a subset of its entries.
The most common formulation for the problem of find-
ing the rank deficient matri¥V that best matches an incom- X
plete observation matri¥V is (seeg.g, [9, 5])

W:argNmin H(W—W) oM
WeS,.

; 1)

where:M is am xn binary matrix that codes which entries
of W were observed,e,, it is a mask defined bi¥;; := 1
if W;; was observed, aniI;; := 0, if otherwise;® de-
notes the Schur-Hadamard (or elementwise) product; and
S, is the set of matrices with rank less or equattdJsu-
ally, ||-|| stands for the Frobenius norm, such that, if all the
entries of W are observed,e., if M = 1,,,,, the solution
of (1) is easily obtained from the SVD dWV. However, Sr
whenW is incomplete, there is not known solution fd) (
and only suboptimal methods have been proposed.

We start by noting that the optimization if)(is equiv-
alent to the following one, where we also make explicit the Figure 1. The space ofxm matrices, withS,, the set of matrices

optimal completion of the observation matrix: of rank at most- , andSw, the set of possible completions of the
(incomplete) observation matrWv. We seek the closest paie.,,
(‘/7‘77 }A() —arg _ min HX - WH . ) the matricesW € S, andX € Sy that solve ).

WeS, , XeSw
) . . As it is clearly illustrated by Figurd, finding the best
Here, Sy is the set of all matrices that have the entries completion matrix inSy, corresponds to minimizing its dis-
corresponding to the ones that were observeWinequal  ance to the set of rank constrained matricgs,In fact, X

to the observation valuese., X € Sy, if and only if, in (2) is equivalently written as
Vij: M, =1, Xij = Wyj; thus,Sy collects all possible com- N
pletions of the incomplete observation mat#. The ma- X =arg min ds, (X), 4)
S . . . . XeSw
trix X resulting from @) is the best completion oW, in
terms of minimizing its difference to a ramkmatrix. where .
Figure 1 represents the scenario in the spacenok n ds, (X) = min HX - WH (5)
matrices, seen aR"*". The setSy is represented as an Wes,

(hyper-) plane, because the matricésthat are possible  denotes the distance from an arbitrary maiXixo the set
completions ofW live in an affine space. In fact, note that S,.. The advantage of writing the problem as we did4h (



is that the minimizer of the distancB)(s easily obtained in
closed formj.e., without any search, for several choices of
the underlying norm. In fact, from the SVD of a mati
N
X =UsV" =) woiv] (6)
1=1
where N = min {m,n} and the singular values are non-
increasingly ordered, the rankmatrix W* € S, that is

closer toX (with respect to several norms) is simply given
by, seee.g, [g],

T
W* = Z uioiv;-f s (7)
=1
and the approximation error matrix is:
N N
X -W*= Z w;o;v; (8)
i=r+1

We propose to use ir2) (thus, in §)) the spectral norm.

The spectral norm of a matrix is given by its largest singular

value:

A = max o (A)=o01(A) . 9)

3. Optimal solution for one missing entry

We start by studying the case of only one missing entry
in them x n observation matridV, which we write as:

? al
vl o

(14)
where the(n—1) x 1 vectora, the(m—1) x 1 vectorb, and
the (m—1) x (n—1) matrix C, are known — they contain
the observed entries aiV. Although, for simplicity, we
have assumed irLf) that the unknown entry is located in
the top left position, this entails no loss of generalityics
the generic case can be brought to this canonical format,
through left and right multiplication oW by adequate per-
mutation matrices, without changing its singular values.
According to our derivations in the previous section, see
expression13), the single missing entry case leads to the
study of the following optimization problem:

* . x aT
e o ().

rzeR

(15)

The spectral norm is popular because it is the induced ma-Wherez € R denotes a candidate value for the unknown
trix norm, when the matrix is seen as an operator between€ntry of W, thus the matrix inside brackets represents a

Euclidean vector spaceS§][ It has been used in several
fields,e.g, control theory §]. Using this norm in ) makes

generic element of the set of possible completiSps
The theorem of interlacing inequalities for singular val-

sense: we will be seeking the rank deficient matrix that min- Ues, see.g, [11], provides the two following lower bounds,

imizes the largest singular value of its difference to a matr

that collects the observed entries. Furthermore, we wéll se
that, unlike the Frobenius norm, the use of the spectral norm

enables us to find the globally optimal solution &j,(for
particular (although relevant) patterns of missing estrie

Using the spectral norm irb), the distance of a matrix
X to the space of matrices of rank at mest.e., the norm
of the approximation error matrix ir8), is simply given by
the (r+41)"" largest singular value aX:

ds, (X) = HX—W* (10)
. (X—W*) (11)
= o41(X), (12)

where: equality 10) uses the optimality oW* in ();
equality (L) is just the definition of spectral norm i®)
and (L2) results from the SVD of the error matrix iB)(

Replacingds, (X) in (4) by the result {2), we end up
with the optimization problem

~

X = arg XIIEI}SI‘I/‘/ or+1(X) (13)

valid for any choice ofr € R:

UT“([E aCT}>20r+1([b Cl),

oo 2])2e(8])

These bounds are transmitted to the infimpinin (15) as

p*Zmax{arH([b c}),arﬂ([?’g])}. (18)

It can be shown that the lower bound ihg] is tight,
i.e, that (L8) holds as an equality. Moreover, in general,
the optimization problemi() is solvable,i.e., there is a
valuex* for the missing entry that realizes the infimyrn

z*  al "
Or+41 b C =p.

More precisely, the set of values af b, and C, that
make problem 15) solvable is dense iR™™ x R™! x
Rm-Dx("-1) 'in the sense that the closure of that set yields

(16)

(17)

(19)

which we address in the following sections. In words, the the whole space, se&][for detalils.

solution we seek inl(3) is the completion oW that has the
smallest(r+1) singular value. We will derive the globally
optimal solution for relevant cases.

In this general case, not only the optimization problem
(15) is solvable, as it is straightforward to obtain the solu-
tion for z* in (19). In fact, equality {9) implies that the



square of the singular valy# is an eigenvalue (thg+1)™ the 15 row. For example, for the matrix ir2Q), the order
largest one) of the matrix by which the missing entries are filled in is indicated below

aS\/l, \/2, ...,\/11:
z* al] [z bT]|  [(z*)?+aTa z*b? +a?’CT
b C||la CT| ™ | 2b+Ca bb’ + CCT Vit Vi Yo Vs oais aie
Ve Ve V5 G a5 G

Since(p*)? is a root of the characteristic polynomial of this Vi V3 a3z azq azs ase| - (21)
matrix, the following equation is satisfied by the unknown Vo V1 043 Gaa G435 Qgp
entryz*: Gs1 G52 (53 Q54 Q55 Q56

Computingv’; corresponds to solvingd.p) for the largest
=0, submatrix of W that has the entry corresponding«q in
its top left position. Note that, due to the filling order just
described, all the other entries of this submatrix are avail
able: they correspond either to observed entrie&obr to
v, g =12,...,i—1, which were computed before. For
example, computing’s in (21) means solving

(x*)Q 4 aTa _ (p*)Q x*bT 4 aTCT
2*b + Ca bb” + CCT — (p*)21,,_,

wherel,,,_; stands for thé¢m—1)x (m—1) identity matrix
and|Z| represents the determinant of the mafZix Since
the determinant is a multilinear operatoe(, linear in each
column separately), the equality above is simply a quadrati

gq_uation in the unknown™*, which is easily solved (in1_|], T V5 as ass G

it is further shown thaF, u_nder the general assumptions of ] V3 ass ass ass ase 22)
soI_vab|I|ty of the optimization probleni), the solution is mlr;R Irtl | | /) aus g aas asg| |
unique). re ase @53 Gsa G55 Gsp

wherev's, v'3 andv'; denote entries that have already been
computed at this stage.

We now build on the result of the previous section to A simple example provides insight over why the SPOC
derive the optimal solution ofl@), for a more general pat- procedure just described yields the optimal completion.
tern of missing entries, yielding the SPOC algorithm. More Consider the problem of computing the optimal completion
precisely, we will consider that the missing entries follow of an observation matriv with two missing entries, lo-

a format known as the Young diagram. This format cor- cated at the first and second elements of the first row:

4. Optimal solution for Young diagrams

responds to the having the missing entries arranged in the . x y al
first n, entries of thelst row, the firstn, entries of the Pt = min Orgl qbl by CD (23)
2nd row, ..., the firstn, entries of thek™ row, such that (z,y) € R?
ny > ng > --- > ng. As an example, consider ttiex 6 ’
observation matrix According to the procedure described above, we first
solve for the unknown entry, i.e., we computey* such
[ 7 a1 ae that, according to the derivations of the previous section,
? ? 7 azq ass  as R
W= |7 7 a3 azs azs ase|, (20) Yy =
7?7 g3 au ass age o <[b2 CD @4
5 5 5 T
as1 G52 (53 G54 Q55 (56 i {0r+1 (b2 C|).orn ({%]) } .

wherek =4andn; =4 >ny=3>n3=2>ny = 2.
The symbol represents a missing entry and the known en- Then, we plug in the solutiop™ and solve for the entry,
tries are denoted by;;. The Young diagram pattern of un-  i-€., we computer™ such that
known entries is thus able to represent relevant cases, such <[ ok TD

= (25)

L. . . x a
as, for example, the missing of an entire submatrix. Or+1 by ly)Q C

The interesting fact about this class of incomplete ma- .
trif:e_s _is_ that the optiLna] completiong., the completipn max {0r+1 ([br by CJ),0m1 ([i %D} )
minimizing the (r+1)™ singular value, can be found in a 1
seque_ntial vyayi.e., by solving, for each missing entry, a Replacing 24) into (25) yields
one-dimensional problem such as the one addressed in the .
previous section and expressed Ib); Our SPOC proce- Ty ([I* y* a D _ (26)
dure is the following: we start at thg" row and complete by by C
from right to left, then we move to thé —1)™ row and al
complete from right to left, ..., and so on, until we complete ™&% { 9r+1 ([b1 b2 C]) 004 ([b2 C]) s 0va C :



Since any singular value of a matrix is greater or equal thanthe (r + 1) singular value: alternate between the closed-
the corresponding one of any of its submatrices, we haveform solutions for each of the Young diagrams. This means
ors1 ([b2 C]) < op41 ([b1 b2 CJ), and equality 26) iterating the two following minimizations:

reduces to

. . T r? 7K M .
oy a ? . ? ..
. — 27 7 ! M X s
0“([‘01 b, CD @0 ? 7O O H .
al ? 2 O ... K bt
max a'rJrl([bl bo C]),0T+1<[ })} ) : i i
{ C min oy Z oY s \/i e \/i 7
Now, remark that, in a similar way of that of the previous ' 8 o
section, the theorem of interlacing inequalities for siagu : : : : : :
values [L1] provides the following bound for the optimat VS T TV N Ve
of the overall problemZ3): B VAV IV v
T
p* zmax{arﬂ ([b1 b2 C]) 0041 ({%])} (28) V2 VA . N TR R O
S Lo st O o K
This bound, together with equalit? 1), proves that the pair VAR VA S CHN S T ZE &
(z*,y*), computed according to our sequential procedure, SO e o s 7 9
is the optimal completion. Naturally, this simple example min o, VAE TS L7 ?
can be extended to show, in a similar way, that the global s K 92 21 |7
optimality of SPOC holds in general, se for detalils. i
5. Young-wise optimal iterative algorithms \/: S . E‘ ? ?

The SPOC algorithm proposed in the previous section
yields the optimal completion when the pattern of missing wherev* andv " represent generic values for the entries
entries is a Young diagram. However, it also enables thethat were computed at the previous iteration. The pattern
development of (sub-optimal) iterative schemes to dedll wit of missing entries to be completed in the first minimization
fully general patterns of missing entries, by optimizingin  is precisely the Young diagram studied in the previous sec-
block-wise way. tion; the pattern of the second one is easily brought to this

Consider as an example observation matrices with miss-same format by performing adequate column and row per-
ing entries grouped in two separate Young diagrams, suchmutations.
as the pattern illustrated by Due to the global optimality of each of the steps above,

this iterative algorithm yields a non-increasing sequesfce
values foro,;1(X;), whereX; € Sy is the completion
of W at iterationi. However, as with any other greedy al-
gorithm, there is no guarantee of convergence to the global
minimum, and initialization is a crucial issue. Naturally,
, for other patterns of missing entries, different blockavis
optimal iterative minimization schemes can be used,
Lo : : : oo alternating among the completion of more than two Young
2 O O ... 2?7 .9 diagrams.
oA T A A N A

?
?
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. 6. Experiments
where the observed entries are represented«tgnd the

missing ones by. This type of pattern arises when recover- Since our method to complete rank constrained matrices,
ing structure from motion, seeg, [18, 16, 13,9, 10,5, 19, with patterns of missing entries in a Young diagram, runs in
because, in this case, the observation matrix collecsdraj a finite number of steps and computes the optimal comple-
tories of feature point projections, that in general entet a  tion, our experiments focused in illustrating its usefgke
leave the visible field, during the image sequence to processin practice, rather than in emphasizing its optimality. In
Using the result of the previous section, we propose ansubsectiorf.1, we illustrate the use of our SPOC algorithm
iterative scheme to compute the missing entries of observadin a structure from motion application. Subsect®f ad-
tion matrices like the one above, in such a way to minimize dresses robustness to noise. Finally, in subseéidnwe



report the behavior of the suboptimal iterative scheme pro-
posed in Sectiob.

6.1. Application — structure from motion

We have generated synthetic trajectories of 2D projec-
tions of a set of 3D points, according to an affine camera
model. To simulate occlusion.e., points that disappear

varied from20% to 80%; several sets of 3D point locations,
within a sphere that spanned the simulated field of view;
and several values for camera parameters. The impact of
the noise level is discussed in the following subsection.

In all the experiments, we obtained complete trajectories
very similar to the ground truth. Figugillustrates this ev-
idence for the data in Figui® which corresponds to a sce-

along the image sequence, several trajectories were endeBario with 30 images 15 points, and~ 60% missing data.

at different points, well before the end of the synthetic se-
guence, thus made incomplete on purpose. Figules-
trates the scenario.

Incomplete trajectories
500 T T T

400

-100

-200

-300

-400
—-400

,31‘)0 ,2(‘30 ,1(‘)0 1(‘)0 2(;0 3(‘)0 400
Figure 2. Incomplete trajectories of (projections of) teatpoints,
observed when recovering 3D structure from motion. These 2D
coordinates of the feature point projections are colleategh in-

complete observation matrix.

Due to the rigidity of the set of 3D points, the observa-
tion matrix, which collects the 2D projections, is rahi a
noiseless situation, seeg, [18], for details. When the tra-
jectories are incomplete, the observation matrix misses se
eral entries and the challenge in robustly recovering rigid
structure from motion is computing its optimal completion,
according to the rank constraint, seeg, [13, 10, 14, 17].

We thus used our approach to complete this kind of rank
constrained observation matrices. Note that the pattdrns o
missing entries that model occlusidre., patterns leading

to incomplete trajectories such as the ones illustratedgin F
ure?2, are easily arranged in a Young-diagram format, such
as the one illustrated in expressidatd), by performing ad-
equate row and/or column permutations.

As discussed in the paper, our SPOC algorithm computes

the values of the missing entries that globally minimize the
spectral norm of the matrix of residuals, or, in this case,
the completion that has ti#" singular valuegs, as small

The top image shows the complete trajectories that were re-
covered by our algorithm. They are visually indistinguish-
able from the ground truth trajectoriés., the trajectories
that would be observed if there was no occlusion, which are
shown in the bottom image of FiguBe Naturally, by pro-
cessing complete trajectories it is possible to recoveremor
accurate 3D models than the ones that would be obtained by
using suboptimal strategies to deal with incomplete ones.

Recovered trajectories
500 T T T

400
300

200

I I I I
-300 -200 -100 200 400

Ground truth trajectories
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>

-100
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—400 L L L I
-400 -300 -200 -100 0 300

u

Figure 3. Top image: estimate of the complete trajectohatdre
partially observed in Figur@. These were recovered by using

200 400

as possible. We have tested SPOC with several scenarios2ur SPOC algorithm to compute the optimal completion of the

number of feature points and number of images from 10 to
100; different patters of missing entries, whose percegtag

corresponding observation matrix. Bottom image: Grounthtr



6.2. Robustness to noise 18 ‘ :

—stdv error
— — —stdv error (refined) -

Our algorithm computes the matrix completion that e
globally minimizes the spectral norm of the matrix of resid- I . i
uals. However, the reader may wonder if this completion is i
close to the one minimizing the Frobenius norm, which is '
the cost function that arises when the problem is formulated
as a maximum likelihood estimation, under white gaussian
noise. To make this comparison, since there is not a globally
optimal algorithm to minimize the Frobenius norm, we per-
formed several experiments that consisted in running eur al P
gorithm with white gaussian noisy data and then providing o4 ’
its output as an initialization to an iterative (locally)topal ol i
refinement of the Frobenius noreg.[9, 10].

The first evidence we got is that the refinement algo- % 0z oa 06 o8 1 1z 14 15 15 2
rithms, when initialized by our spectrally optimal comple-
tion, converged to the global minimum of the Frobenius
norm, in few iterations, at every run (although we do not
know this minimuma priori , WE May guess I was cor- indistinguishable from the one that (locally) minimizeg tmean
rectly <_:omputed by comparing the final value of different square error (dashed line).
runs with the same data and making sure the error was small
enough when compared to the noise level). Naturally, this
did not happen when the refinement was initialized in a dif- illustrated in Sectiorb. We then performed the alternate
ferent wayge.g, with a random guess, which lead frequently completion that, at each step, minimizegwith respect to
to local minima of the Frobenius norm. one of the Young-diagram blocks of missing entries. The

Furthermore, we noticed that the completion provided plots in Figure5 represent the evolution of the coisg,, the
by our SPOC algorithm consisted in a very good approxi- spectral norm of the residualsg., o5, across the iterations,
mation to the one minimizing the Frobenius norm. Figsre  for two typical situations.
obtained by performing000 runs with noisy observations The plots in Figureés show that, as expected, the spec-
of a40 x 30 rank4 matrix with 50% missing entries, plots  tral norm of the residuals, measureddyy decreases along
the approximation errors (mean square error of the entriesthe iterations. However, one of two very distinct situasion
of the estimated rank constrained matrix), as functions of may happen: while, in the top plot, the spectral norm of
the noise standard deviation. We used signal-to-noisesrati the residuals stabilizes at a high value, in the bottom one,
typical of what can be expected in structure from motion it converges to a very small error (note that, in both plots,
(the values of the matrix entries are[in100, 100] and the  the ordinate at which the small circle is placed corresponds
noise standard deviation ranges froro 2). to the true value of th™ singular value of the (complete,

We conclude that, although our completion was derived noiseless) matrix).
as being optimal according to the minimization of the spec-  Naturally, this behavior is due to the only block-wise op-
tral norm of the residuals.e., the minimization obs in the timality of the alternate completion. In fact, although leac
case of the experiments of Figudeit is simultaneously a  step computes the optimal completion for the corresponding
very good approximation to the maximum likelihood esti- block, the overall algorithm may be lead to a local minimum
mate, in a white gaussian noise observation model. In fact,of the spectral norm, as it happens in the top plot of Figure
the entry-wise mean square error of our completion (solid Depending on the initialization, the overall algorithm may
line in the plot of Figuref) is almost indistinguishable from  also converge to the global optimum, as in the bottom plot.
the one obtained by refining the estimate trough the locally In all our experiments, we randomly initialized the progess
optimal refinement of the Frobenius norm (dashed line).  i.e., we just filled the unknown entries in one of the Young

diagrams with random guesses.

o I
© = )
T T T

N
)
N
L L I

Approximation error
5
:
N
\
N
|

1
Noise stdv
Figure 4. Mean square error of the estimated rank deficient ma

trix, from incomplete noisy observations. The (global) ctpaly
optimal solution provided by our algorithm (solid line) iBrebst

6.3. Young-wise iterative optimization

: _ 7. Conclusion
We now illustrate the behavior that can be expected of

iterative algorithms based on the block-wise decompasitio We have presented an efficient approach to the computa-
suggested in Sectidh Inspired by the structure from mo- tion of the optimal factorization of an incomplete observa-
tion application, we used matrices with patterns of missing tion matrix. The only restriction is that the pattern of miss
entries composed by two Young diagrams, such as the oneng entries must be described by a so-called Young diagram.



Singular value o,

Singular value o

350

300 .

250 : : )

200 ol

100 ol

501 R B 4

0 I I I I
10 15 20

Iteration #

25 30 35

250+

200

100

50

25 30

0 I I L
0 5 10 15 20

Iteration #

35

Figure 5. Typical behaviors of block-wise iterative opthation.
The plots show the non-increasing evolution of the cost, the
singular valuess of the incomplete matrix) along the iterations.
While the top plot illustrates the convergence to a localimimm,
the bottom one shows a successful experiment (the circl&smar
the singular values of the noiseless (complete) matrix).

Our

sense of minimizing the spectral norm of the residuals, by

SPOC algorithm finds the optimal completion, in the

filling in the unknown entries in a sequential way.
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