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Abstract— This paper deals with the problem of con-
structing high quality mosaics of the sea bed. It focuses
on the use of long image sequences with time-distant su-
perpositions, such as the ones arising from loop trajectories
or zig-zag scanning patterns. An algorithm is presented for
the simultaneous creation of mosaics and the estimation of
the camera trajectory.
The method comprises three major stages. The first

stage consists of the sequential estimation of the image
motion, using a reduced image motion model. The set
of resulting consecutive homographies is cascaded, in or-
der to infer the approximate topology of the camera move-
ment. The topology information is then used to predict
the areas where there is image overlap resulting from non-
consecutive images.
Secondly, a motion refinement is performed, by itera-

tively executing the following two main steps. (1) Point
correspondences are established between non-adjacent
pairs of images that present enough overlap. (2) The topol-
ogy is refined, by searching for the set of homographies that
minimizes the overall sum of distances in the point matches.
The final stage of the algorithm consists of estimating the

set of homographies and a world plane description that best
fit the observation data. As the main concern is attaining
high registration accuracy, a general parameterization of
the homographies with 6 DOF for the pose is used, which
is capable of modelling the effects of wave–induced general
rotation and translation.
The overall method is fully automatic in the sense it does

not require human intervention at any of the stages, apart
from the beforehand specification of the most adequate mo-
tion model for the first stage.
We present results obtained from shallow water image

sequences acquired by a ROV. The images present some
of the common difficulties of underwater mosaicing, such
as non planar sea-bottom, moving objects and severe illu-
mination changes. This sequence also serves to illustrate
the robustness and good performance of the presented al-
gorithm.

I. Introduction

Over the last decade, the topic of video mosaicing has
recieved considerable attention from the underwater vi-
sion community, mainly due to its large application in site
exploration and autonomous navigation. A contributing
factor has been the generalized availability of video cam-
eras onboard modern underwater vehicles.

The work described here forms part of the research done
by the European Project NARVAL[1]. The main scientific
goal of this project is the design and implementation of
reliable navigation systems for mobile robots in unstruc-
tured environments. Also, strong emphasis is put on the
ability to navigate without resorting to global positioning
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methods. The approach followed in this paper, of con-
structing large accurate mosaics for posterior navigation
reference, constitutes an important step towards that goal.

The method comprises three major stages. Firstly, the
image motion is computed in a sequential manner, using
a simple image motion model, in order to create a set of
consecutive homographies. These homographies are cas-
caded in order to infer the approximate topology of the
camera movement. The topology information is then used
to predict the areas where there is image overlap result-
ing from non-consecutive images. This overlap is valuable
in the sense it can be used to further refine the motion
estimation and the final mosaic.

Secondly, a motion refinement is performed, by itera-
tively executing the following two main steps. (1) Point
correspondences are established between non-adjacent
pairs of images that present enough overlap. This is a
time consuming operation but is alleviated by the fact
that a prior information exists on the location of the im-
age correspondences, computed at the first stage. (2) The
topology is refined, by searching for the set of homogra-
phies that minimize the overall sum of distances in the
point matches.

Finally, a global minimization is carried out, using the
most general 6-degree of freedom motion model and a cost
function based on the errors of the point matches between
all the images. The minimization process searches for the
best set of pose parameters (describing the 3D positions
and orientations of the camera) and for the best fitting
description of the world plane.

The basic assumptions behind this method are that the
sea bottom is essentially flat, is static and exhibits no
illumination change. This is seldom the case in under-
water mapping applications, especially in shallow waters.
However, the use of robust estimation over point feature
matching greatly alleviates these assumptions and allows
for the correct recovery of image motion. As an illustrative
example, Figure 1 contains two consecutive frames of an
image sequence used in this work, which were successfully
matched.

This paper builds upon previous work on mosaic and
pose estimation [8], [9]. The main contribution lies in
the fact that, by incorporating the single world plane de-
scription on the overall estimation problem, the trajectory
reconstruction becomes possible without the need to ex-
plicitly define a world referential associated with the mo-
saic. Another contribution is on the formulation of the
mosaic creation as an estimation problem where all the
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Fig. 1. Two sequential frames, illustrating the difficulty of the
matching process for images of very shallow waters, where the
lighting conditions change rapidly.

degrees of freedom arising from the mosaic geometry are
taken into account. These are conveniently parametrized
as geometrically meaningful entities: pose parameters and
world plane description.

Some of the topics presented here relate to the work of
a large group of authors. One of the early references to
the idea of using mosaics as visual maps is the work of
Zheng[21], where panoramic representations were applied
to route recognition and outdoor navigation. Recently,
Kelly[13] has addressed the feasibility and implementation
issues of using large mosaics for robot guidance, predicting
a large impact of these techniques on industrial environ-
ments. In the context of underwater robotics, the use of
mosaicing techniques for navigation is a topic of increas-
ing research interest [15], [5], [6]. Xu[20] investigated the
use of seafloor mosaics, constructed using temporal image
gradients, in the context of concurrent mapping and lo-
calization and for real-time applications. Comparative re-
sults on vehicle positioning and mosaicing for long image
sequences are reported by Negahdaripour in [14], where
calibrated testing of the algorithm presented in this paper
is included.

Considering the topic of global registration, several ap-
proaches have been proposed using topology inference of
neighboring frames [17], [12], and restricted parameteriza-
tions for the projection matrices [2]. The main differences
of our approach are twofold: (1) the parameterization of
the homographies with complete and meaningful 3D pose
parameters and, (2) the inclusion of the unknown single
world plane condition.

This paper is organized as follows. Section II gives a
brief presentation of some of the geometric concepts used
throughout the text. The initial estimation of the homo-
graphies is described in Section III.  Next, in Section IV,
the iterative scheme of matching / optimization is pre-
sented, where point correspondences between new pairs of
images are searched for, along with optimization to refine
the overall topology. The following section describes the
final trajectory estimation, using the most general motion
model, which allows for the precise registration of images
over a common world plane. Some selected results are
presented in Section VI, in the form of final mosaics and
VRML renderings of the camera path, which testify to
the good performance of the overall algorithm. Finally
Section VII presents some discussion and conclusions.

II. Geometrical Background

In this section we will assume the reader to be familiar
with the basic concepts and properties of projective geom-
etry[3]. The camera model used in this paper is the stan-
dard pin-hole model, which performs a linear projective
mapping of the 3D world into the image frame. We also
assume that the camera calibration has been performed
beforehand, and that the 3 × 3 matrix K containing the
intrinsic parameters has been estimated[19], [11].

A collineation in the projective space of dimension 2 is
commonly referred to as a planar transformation or ho-
mography, and is represented by a 3×3 matrix defined up
to scale. It establishes a one-to-one relation between cor-
responding points over two images of the same 3-D plane.
The computation of a planar transformation requires at
least four pairs of corresponding points. In the case of
more than four correspondences, a straight-forward least-
squares linear estimation can be accomplished[7].

The final stage of our algorithm, described in Section
V., deals with the estimation of the camera path using all
of the available degrees of freedom. In this stage, the min-
imization algorithm requires an initialization with a rough
estimate of the 3-D camera path. In order to provide this,
we have made use of the decomposition described in [4],
which relates the homography matrix H with the camera
rotation, translation and the world plane which induces
the homography. The decomposition is the following

H21 = K

(
R21 + n1

tT

d1

)
K−1 (1)

where R21 and t are, respectively, the 3×3 rotation matrix
and the 3×1 translation vector relating the two 3-D cam-
era frames. The world plane is accounted for through the
unitary vector n1, containing the outward plane normal
expressed in the camera 1 coordinates, and the distance
d1 of the plane to the first camera center, measured along
the optical axis.

The problem of recovering the motion parameters from
an homography for an intrinsically calibrated camera is
discussed in-depth by Faugeras[4]. In the most general
case there are eight different sets of solutions. However,
only two are feasible if one considers the world plane
to be non-transparent. These two solutions can conve-
niently found by means of the SVD decomposition of
M21 = K−1H21K, as presented by Triggs[18].

III. Initial Motion Estimation

The first part of the algorithm consists on the sequential
estimation of inter-frame homographies.

For each image Ik, a set of point features, corresponding
to textured areas, is extracted using the Harris corner de-
tector[10]. The features are then matched directly on the
following image Ik+1, using correlation-based procedure,
from which two lists of corresponding points are obtained.

Due to the error prone nature of the matching process,
it is likely that a number of points will be mismatched.
Therefore, a robust estimation technique is required to
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filter out matching outliers, and estimate the homography
Hk,k+1 that relates the coordinate frames of Ik and Ik+1.
In this paper, a variant of LMedS with random sampling[7]
was used for minimizing the median of sum of the square
distances,

med
i

(d2((k)xi, Tk,k+1 ·(k+1) xi)

+d2((k+1)xi, T
−1
k,k+1 · (k)xi))

(2)

where d (·, ·) stands for the point-to-point Euclidean dis-
tance, and (k)xi is the location of the ith feature ex-
tracted from image Ik and matched with (k+1)xi on Ik+1.
The minimizing algorithm works by randomly sampling
sets of points with the minimum number of matches re-
quired for the linear computation of H. The set that
minimizes the cost function is selected and the homog-
raphy is re-estimated using simple least-squares with all
matches whose distance are below a specified error limit.
The image matching is considered successful if the num-
ber of matches used in the final least-squares estimation
is sufficiently high.

In order to speed up the initial matching process, the
computed homography for the current pair of images is
used to restrict the correlation search over the next pair.
If, after the random sampling LMedS, the image matching
is not successful then the process is repeated with larger
correlation areas.

In underwater vision applications it is very common for
the image acquisition rate to be high when compared to
the camera motion. This results in very high overlap-
ping between consecutive frames that convey redundant
information. In the work presented, a selection criteria
was used to selected a subset of frames, thus reducing the
memory and processing requirements for the next stages.
The frames are selected such that their superposition is
the smallest above a given minimum acceptable overlap
percentage. This threshold insures the ability of the se-
lected images to be correctly matched, and is chosen based
on the results of preliminary matching trials.

IV. Iterative Motion Refinement

After the initial motion estimation step, every image
in the reduced sequence can be spatially related with
any other image, by appropriately cascading the homo-
graphies. Possible overlap between non-consecutive im-
ages can be predicted, and used for searching new image
matches.

In this stage, the topology is refined by performing it-
erative steps of image matching and global optimization.
The image matching part is conducted over overlapping
frames, and is similar to what was described above. If
new matches are found, then the topology is re-estimated
by means of a global optimization procedure. This proce-
dure uses a reduced representation for the camera motion,
based on 3 parameters per image (2D translation and ro-
tation), that implicitly assumes the camera is facing the
ground and keeps a constant distance. The reason be-
hind the choice of a simpler motion model for the first

two stages of the algorithm, has to do with the effective-
ness of the topology inference. Alternatively, one could
have resorted to the use of the most general 8-parameter
homographies, as this is the only model that can cope
with general perspective distortion and allow for fast lin-
ear estimation. However, it has more degrees of freedom
than required. Consequently, small errors in the initial
inter-frame motion estimation tend to quickly accumulate,
and make it impossible to infer the neighboring relations
among non-consecutive frames.

The cost function to be minimized is the sum of dis-
tances between each correctly matched point and its corre-
sponding point after being projected onto the same image
frame, i.e.,

F (X, Θ) =
∑
i,j

Ni,j∑
n=1

[d2
(
xi

n,H(Θi, Θj) · xj
n

)

+d2
(
xj

n,H−1(Θi, Θj) · xi
n

)
]

where Ni,j is the number of correct matches between frame
i and j, and H(Θi, Θj) is the homography constructed us-
ing the motion parameter vectors Θi and Θj . The min-
imization is carried out using a non-linear least squares
algorithm[16]. The cycle of matching and topology refine-
ment is executed until no new image pairs can be matched.

In order to speed-up the optimization procedure (and,
thus, the motion refinement cycle time), a sub-mosaic ag-
gregation scheme was implemented and tested. Under
this scheme the complete sequence is initially divided into
sets of consecutive images to form small rigid sub-mosaics.
Inside each sub-mosaic the homographies are considered
static and only the inter-mosaic homographies are taken
into account in the optimization algorithm. This reduced
parameter scheme significantly improves the speed of eval-
uating the cost function and does not affect the capability
of inferring the appropriate trajectory topology.

V. Trajectory Estimation

The main objective of the final stage of the algorithm
is attaining a highly accurate registration. A more gen-
eral parameterization for the homographies is therefore
required, capable of modelling the warping effects caused
by wave-induced general camera rotation and changes on
the distances to the sea floor. Bearing this in mind, a pa-
rameterization was chosen in which all the camera pose 6
degrees of freedom are explicitly taken into account. This
has also the additional advantage of allowing the camera
path to be recovered during the process.

Furthermore, the estimation of the homographies for
this model does not impose, per se, the condition of a sin-
gle world plane from which the homographies are induced.
This condition can be imposed by augmenting the over-
all estimation problem with additional parameters that
describe the position and orientation of the world plane.
The world plane description must then be included on the
parameterization of the homographies.
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The adopted parameter scheme is the following. One
of the camera frames is chosen (usually the first) as the
origin for the 3-D referential, where the optical axis is
coincident with the referential Z-axis. The world plane
is parameterized with respect to this frame by 2 angular
values that define its normal. As the trajectory and plane
reconstruction can only be attained up to an overall scale
factor, this ambiguity is removed by setting the plane dis-
tance to 1 metric unit1, measured along the Z-axis. The
homography relating frames i and j is

H(Θp, Θi, Θj) = K · (R (Θi) + n (Θp) · tT (Θi)
) ·

· (R (Θj) + n (Θp) · tT (Θj)
)−1 · K−1

where Θi and Θj are pose vectors containing 3 rotation an-
gles and 3 translation values with respect to the reference
frame, R (Θi) and R (Θj) are rotation matrices, tT (Θi)
and tT (Θj) are the translation components, and n (Θp)
is the 3-vector with the outward plane normal. The pose
vector for the reference camera is the null 6-vector.

The cost function is similar to the one previously used
in the iterative motion refinement, where the distances be-
tween matched points are measure in their respective im-
age frames, and summed over all pair of correctly matched
images, i.e.,

F (X, Θ) =
∑
i,j

Ni,j∑
n=1

[d2
(
xi

n,H(Θp, Θi, Θj) · xj
n

)

+d2
(
xj

n,H−1(Θp, Θi, Θj) · xi
n

)
]

For a set of M images, the total number of parameters to
be estimated is (M − 1) × 6 + 2.

The initialization values for the complete parameter set
are computed using Equation (1). As there are two valid
solutions for the decomposition of the homographies relat-
ing each frame with the reference frame, the solutions are
chosen such that the variance of the world plane normals
is minimized. The considered world plane normal is the
average of the selected set.

As before, the cost function is minimized using non-
linear least squares.

VI. Results

Extensive testing was conducted in order to evaluate
the performance of the algorithms. The image sequences
for the results shown in this paper were acquired by a
Phantom ROV during a NARVAL Project sea trial, in
Villefranche-sur-mer in France. The ROV is equipped
with a Sony pan-and-tilt camera, facing the sea floor. It is
mounted in the center of a spherical glass housing which
induces very little image distortion.

1If additional information is available on the real distance to the
sea floor (for example, from an altimeter), then it can be straight-
forwardly used here.

Fig. 5. Mosaic detail of the same region using two different rendering
methods, the median (left) and the closest operator (right).

The camera calibration was performed under water us-
ing a standard calibration grid and the method described
by Heikkilä in [11].

The first sequence refers to a flat sandy area, fully sur-
rounded by algae. During the acquisition, the vehicle was
manually driven to follow a zig-zag trajectory that covered
most of the area. The sequence comprises 1000 images,
corresponding to 400 seconds of video. After the initial
matching, a set of 129 images was selected using the crite-
rion of minimal overlap above 50%, which resulted in an
average overlap of 54.4%. The mosaic obtained from the
last stage of the algorithm, in shown in Figure 2. It was
created by choosing the contributing points which were
located the closest to the center of their frames. This
rendering method is useful when creating the mosaics for
navigation and mosaic-based localization. For the cases
where the illumination changes are not strong, it compares
favorably with other commonly used rendering methods,
such as the average or the median. This is due to the fact
that it better preserves the textures and minimizes the
effects of barrel distortion, which tends to be larger near
the image borders. A small section of the rendered mo-
saic is displayed in Figure 3 along with one of the original
frames for the same area. The quality of the registration
can be assessed from the fact that the visual features (such
as small algae leafs) are not disrupted along the visible
boundaries of the contributing images.

The second set of images was captured while the vehi-
cle followed a circular trajectory of several turns around a
square shaped rock. It comprises 895 images from which
85 where selected using a 60% minimum overlap. The
resulting mosaic for the complete algorithm is presented
in Figure 4. This sequence was acquired in very shallow
waters, of less than 2 meters in depth, where the effect
of sunshine refracted from the surface is quite noticeable.
Clearly, under these lighting conditions, a rendering op-
erator such as the median is required, which is capable of
removing transient data from the set of intensity contri-
butions for the mosaic. For comparison purposes, Figure
5 illustrates the visual differences in applying the median
and the closest operators.

The recovered 3D camera paths for the two sequences
are illustrated in Figure 6.
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Fig. 2. Final mosaic for the first image sequence. It was created using 129 images selected from the original set of 1000 and rendered with
the closest operator. The seafloor area covered is approximately 42 m2.

Fig. 3. Area detail of the mosaic for the first sequence (left), and one of the original images (right).
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Fig. 4. Final mosaic for the second sequence, created using 85 frames selected from the original set of 895, and the median rendering
operator.

VII. Conclusions

This paper contributes to the area of underwater mo-
saicing by presenting an integrated approach to the prob-
lem of pose estimation and mosaic construction. Also, it
provides the means of finding a geometric description of
sea-bottom plane, and is able to reconstruct the camera
path without the specification of a world referential.

The importance of this work is emphasized by fact
that it can be used to extend the navigation autonomy
of camera-equipped AUVs, in two main aspects. (1) By
making use of non-consecutive image overlaps, it provides
a precise position and motion estimation when compared
with other common sensing modalities such as sonar, com-
pass and gyroscopes. (2) It enables the creation of high
accuracy mosaics that can be used as reliable maps for
posterior localization and servoing.
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