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Abstract

This paper presents a method for 3D model-based tracking of colored ob-
jects using a sampling methodology. The problem is formulated in a Monte
Carlo filtering approach, whereby the state of an object is represented by
a set of hypotheses. The main originality of this work is an observation
model consisting in the comparison of the color informationin some sam-
pling points around the target’s hypothetical edges. On thecontrary to ex-
isting approaches the method does not need to explicitly compute edges in
the video stream, thus dealing well with optical or motion blur. The method
does not require the projection of the full 3D object on the image, but just of
some selected points around the target’s boundaries. This allows a flexible
and modular architecture illustrated by experiments performed with different
objects (balls and boxes), camera models (perspective, catadioptric, dioptric)
and tracking methodologies (particle and Kalman filtering).

1 Introduction

Many applications require the detection, tracking and poseestimation of known 3D ob-
jects. Particularly in robotics research, objects often have well known shapes and colors,
thus requiring computer vision tools for color-based detection and tracking methods. For
example, research in robot grasping and manipulation oftenassume objects with signif-
icantly saturated colors to simplify the foreground segmentation problem [12]. In this
paper we blend 3D model-based tracking and color-based measurement models in a prac-
tical algorithm for tracking known colored objects.

3D model-based tracking methods have been classically addressed in a non-linear op-
timization framework [10]. A cost function expressing the mismatch between predicted
and observed object points is locally minimized as a function of object’s pose parameters,
usually by linearizing the relation between state and measurements. These approaches
often have limited convergence basins, requiring either small target motions of very pre-
cise prediction models. In this paper we overcome this problem by addressing the pose
estimation and tracking problem in a Monte Carlo sampling framework [4]. The state of
the target is represented by a set of weighted particles, whose weights (or likelihoods) are
computed by projecting their features to the image and matching with the assumed model
of the object. The method, therefore, does not require the linearization between the state
and the measurements, allowing the design of a simple and modular tracking architecture.

Despite the well known advantages of Monte Carlo based methods in maintaining
several alternative explanations of the data, not many works have proposed their use in
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a 3D model-based context. This is probably due to the necessity for rendering the ob-
ject pose in the image plane for each particle in the state space, which constitute a high
computational cost. There are, though, a few examples of applications of particle filters
in 3D model-based tracking. For instance [9] employs a particle filter [7] and an edge
based measurement model for 3D model-based tracking of objects, but requires the ex-
plicit computation of edges in the incoming video frames andfast GPU computation for
real-time image rendering. In [15], a particle filter was also used for the estimation of
camera pose from the measurements of 4 edge junctions on a known planar surface. A
local search for edges around the expected values must be performed at each time step.

Our work distinguishes from the above ones by the following facts: (i) our observation
model does not require the explicit rendering of predicted images for each particle but just
of a set of selected points around the object’s visible surface, (ii) it does not require explicit
edge detection on the incoming stream of images; and (iii) ituses the color model of the
object to enrich and add robustness to the image measurements. The first two facts permit
a faster evaluation of each particle’s likelihood, even if the cameras projection is non-
linear. The last two facts make the method more robust to blureither due to fast motions
of the object or to optical defocus. Altogether, our model facilitates the application to
arbitrary non-linear image projections. We illustrate this fact with fish-eye lens cameras
and catadioptric systems [5], as well as with conventional (perspective) cameras.

The paper is organized as follows. In Section 2 we describe our method’s architecture,
divided in two major components: sensor and tracking modules. Section 2 details in par-
ticular the sensor module, namely how measurements are obtained from the images, how
likelihoods are assigned to different pose hypothesis and how different camera projection
models can be easily incorporated. Section 3 presents the tracking module. It fuses the
information coming from the sensor with the current target’s state using a given motion
model, and proposes the target’s hypotheses for evaluationby the sensor module in the
next time step. In Section 4 we present some experimental results in realistic scenarios
for tracking different types of objects with different camera projection models and track-
ing methods, illustrating the flexibility of the framework.In Section 5 we present the
conclusions of the paper and directions for future work.

2 3D Tracking with Sample-Based Observations

This section presents the proposed architecture, designedto deal with several projection
models and tracking methods, on a sampling based sensor paradigm. The important as-
pects of the framework will be described in the following paragraphs and include the
description of the state representation, the observation model and tracking. A graphical
description of the architecture is illustrated in Fig. 1.

State Representation: The state vector of the target, denoted asXt , contains its 3D
pose and derivatives up to a desired order. It is representedby a set of state hypotheses, or

particles,X(i)
t , i ∈ {1, . . . ,Np}, with Np the number of particles. This set is generated as

an approximation to the statea priori density functionp(Xt |y1:t−1), computed from the
observationy based on color histograms in the previous time step or at initialization time.



Figure 1: The proposed architecture.

Sensor Module: Since Harris proposed the RAPiD tracking system [6], most 3Dmodel
based tracking systems compute image edges as the 2D features to support the pose es-
timation procedure. Instead, we propose a measurement model based on sampling just
some selected points in the images. These points are the projections of 3D points sug-
gested by the pose hypotheses generated in the tracking module. This avoids time con-
suming edge detection processing or rendering the full object model in the image plane.
Also, it facilitates the utilization of non-linear projection models, since only projection of
points is required. The sensor model is composed by a chain offour modules (Fig. 1).

3D Point Generator – From the 3D pose hypotheses provided as input to the sensor
module, we determine points around the object edges. The idea is that the color and lu-
minance difference around the object edges is an indicator of pose hypothesis likelihood.
We consider two different object shapes: spheres and convexpolyhedral objects. Notwith-
standing the model can be easily extended to general polyhedral objects by exploiting the

current knowledge in computer graphics [9]. For each state hypothesisX(i)
t , and given the

particular 3D geometric object model, a set of 3D points is generatedU(i) j
t , wheret is the

time step,i is the particle index, andj indexes the points in the objects contour vicinity.
In the case of polyhedra, we use a 3D model that consists of a collection of faces and

edges. To each couple (face,edge) we associate a set of 3D points that lie on the specific
face, near the edge (Fig. 2.a). To each edge we associate a setof points that lie on the
corresponding edge of an expanded polyhedron (Fig. 2.d). The expanded polyhedron is
built multiplying by a constant the vectors that join the center of volume of the original
polyhedra to its vertices. The 3D points of this model are used to define the areas of the
image where the color is sampled in order to build color histograms. This is done by
roto-translating the model and then projecting the 3D points onto the image.

For spheres, we define two sets of 3D points that when projected onto the image fall
on the internal and external boundary of the sphere’s silhouette. These 3D points lie on
the intersection between the plane orthogonal to the line connecting the projection center
to the center of the sphere and two spherical surfaces, one with a radius smaller than that
of the tracked sphere, the other with a radius greater than that.

Image Projection – This module converts 3D point coordinatesU(i) j
t to corresponding
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Figure 2: Polyhedron 3D model. (a) and (d) show the location of the 3D points of the
model. (b) shows one particular projection of the object in which edges a, b, c, d, e and f
form the silhouette of the projected figure, while g, i and h are non-silhouette edges. (c),
(e) shows the areas sampled in the image to build he internal and external histograms. (f)
shows the couples of areas associated with non-silhouette edges.

projections in the image planeu(i) j
t . One of the advantages of our approach is that any

projection model can be employed. In this work we use the following types of cameras:
(i) a catadioptric camera modeled by the unified projection model [5]; (ii) a camera with
a fish-eye lens modeled by constant angular resolution; and (iii) and a standard camera
modeled by the perspective projection model. Definingρ as the radial distance in the

image sensor,ρ = |u(i) j
t |, the above projection models are respectively:

ρ =
l +m

l
√

r2 + z2− z
· r or ρ = f ·atan(r/z) or ρ = k · r/z (1)

wherel, m, k and f are parameters, andz,r are the cylindrical coordinates ofU(i) j
t .

Likelihood Measurement – The 2D points coordinates generated by the previous pro-
cess are sampled in the current image, and their photometricinformation is used to obtain

each particle’s likelihoodw(i)
t . This approximates the stateposterior probability density

function, represented by the set of weighted particlesX(i)
t ,w(i)

t . For color modeling we use
independent normalized histograms in the HSI color space, which decouples the intensity
(I) from color (H and S). We denote byhc

re f = (hc
1,re f , . . . ,h

c
B,re f ) theB-bin reference (ob-

ject) histogram model in channelc∈{H,S, I}. An estimate for the histogram color model,
denoted byhc

x = (hc
1,x, . . . ,h

c
B,x), can be obtained as

hc
i,x = β ∑

u∈U

δa(b
c
u), i = 1, . . . ,B. (2)

U is the region where the histogram is computed;bc
u ∈ {1, . . . ,B} denotes the histogram



bin index associated with the intensity at pixel locationu in channelc; δa is a Kronecker
delta function ata; andβ is a normalization constant such that∑B

i=1 hc
i,x = 1.

We definehmodel, hin andhout as a reference (object) color model, the inner boundary
points and the outer boundary points histogram, respectively. We definehsideA

i andhsideB
i

as the histograms of each of the two sides of theith non-silhouette edge (see Fig.2f).
To measure the difference between histograms we use the Bhattacharyya similarity as in
[3,13]:

S (h1,h2) =
B

∑
i=1

√

hi,1hi,2 (3)

The resulting distance used herein is

D = (1− 1−S0 +κ1(1−S1)+κ2(1−S2)

κ1 +κ2 +1
)− γ (4)

whereγ is a coefficient that modulates the distance based on the number of projected 3D
points that fall onto the image,γ = ln( used points ratio

ε ) and

S0 = S (hmodel,hin), S1 = S (hout,hin), S2 =
∑n

i=0S (hsideA
i ,hsideB

i )

n
(5)

are respectively, the object-to-model, object-to-background and mean-side-to-side (non-
silhouette edges) similarities.

The rationale for this definition is that the distance metricshould be high when candi-
date color histograms are different from the reference histogram and similar to the back-
ground. The distance metric should also be high when there islittle or no difference in
color on the sides of non-silhouette edges. Parametersκ1 andκ2 allow to balance the
influence of the different contributions. They were set to 1.5 and 0.6 respectively, for
the case of the polyhedron while for the sphere they were set to 1.5 and 0. The data
likelihood functionL is modeled as a Laplacian distribution over the distance metric:

p(yt | X(i)
t ) ∝ e−

|D |
ε . In our experiments we setε = 1/30.

Pose Measurement – Despite it is more informative to have a description of the state
as a weighted set of particles, for some purposes it may be useful to condensate this infor-
mation in a single measurement. We take either the best weighted particle, i.e.maximum
a posteriori (MAP) or the average of the most significant ones, that is,minimum mean
square error (MMSE). We term this process a particle fusion, which allowsus to obtain a
single observation, that will be used to maintain the unimodality (Gaussian assumption)
needed for the linear propagation, e.g. in the Kalman filter.Also, for visualization and
evaluation purposes, it is often convenient to consider a single value representative of the
system state.

Tracking Module: We use classical Bayesian inference to propagate the state informa-
tion between two consecutive time steps. This will be detailed in Section 3.

3 The Tracking Module

In this work several trackers are possible to be used. In thispaper we use two filtering
techniques: (i) particle filtering (PF), and (ii) Kalman filtering (KF). In following we
detail each one of the filtering techniques, and the common motion model.



3D particle based tracker: In this section we describe the method used for 3D target
tracking with particle filters (see Fig. 3). We are interested in computing, at each time
t ∈ N, an estimate of the 3D pose of the target. We represent the hidden state of the object
(“state-vector”) defined by a random variableXt ∈ R

nx whose distribution is unknown
(non-Gaussian);nx is the dimension of the state vector. The state sequence{Xt ; t ∈ N}
represents the state evolution along time and is assumed to be an unobserved Markov
process with some initial distributionp(X0) and a transition distributionp(Xt |Xt−1).

Figure 3: Modules of the Particle filter tracker.

The observations are represented by the random variable{yt ; t ∈ N}, yt ∈ R
ny . For

tracking, the distribution of interest is the posteriorp(Xt |y1:t), i.e., the filtering distri-
bution, wherey1:t = (y1, . . . ,yt) are the observations collected up to time instantt. In
Bayesian sequential estimation, the posteriorip(Xt |y1:t) is computed following the two
step recursion

prediction p(Xt |y1:t−1) =
∫

p(Xt |Xt−1)p(Xt−1|y1:t−1)dXt−1

f iltering p(Xt |y1:t) ∝ p(yt |Xt)p(Xt |y1:t−1)
(6)

This recursion requires the specification of the motion model p(Xt |Xt−1) and likeli-
hood modelp(yt |Xt) along with the assumptionsXt ⊥ y1:t−1|Xt−1 andyt ⊥ y1:t−1|Xt ,
where⊥ stands for independence. A more rigorous and broad description of Monte
Carlo probabilistic estimators can be found in [1,11]. The basic idea is simple, start-

ing from a weighted set of samples{X(i)
t−1,w

(i)
t−1}N

i=1 approximately distributed according
to p(Xt−1|y1:t−1), new samples are generated from a chosen proposal distribution q(.). In
this work the proposal follows the state dynamics, and the new set of weighted particles,

{X(i)
t ,w(i)

t }, is approximately distributed according top(Xt |y1:t), i.e.

w(i)
t ∝ w(i)

t−1

p(yt |X(i)
t )p(X(i)

t |X(i)
t−1)

q(X(i)
t |X(i)

t−1,yt)
−→ w(i)

t−1p(yt |X(i)
t ) (7)

3D Kalman based tracker: The motivation for the Kalman based tracker (see Fig. 4)
comes from control applications where it is required to havea smooth state estimation
in each frame. Using PF’s the state estimation is usually taken to be the mean or the
median of the particles, which are not particularly accurate estimates [10]. This can result
in motion estimates that are not as smooth as desired, and thus are not suitable for the
generation of control signals, leading to saturation or theso called “bang-bang” effect.

The KF consists in recursive computation of the mean and covariance as follows (see
(6))

prediction : X̂−
t = AX̂t−1 f iltering : X̂t = X̂−

t +K t(XM
t −HtX̂−

t )

P−
t = APt−1AT +Q Pt = (I −K tHt)P−

t (8)



Figure 4: Modules of the Kalman filter tracker.

whereX̂t ,Pt are the mean and covariance matrices;A,Q are the system dynamics and
its uncertainty;H,K t = P−

t HT
t (HtP−

t HT
t +R)−1 are the observation matrix and Kalman

gain;XM
t is the state measurement computed in the sensor model, X(MAP) or X(MMSE).

The noise covarianceR is assumed to be constant, although it can be be computed at each
time step.

Finally, the predicted statêXt+1|t is spread in a number ofNp particles following the
uncertainty of the predicted value of the covariance matrix. This is the main difference in
our tracking module regarding a classical Kalman filter, andis required due to our particu-
lar sample-based sensor module. This is similar to the Unscented Kalman Filtering [8], in
the sense that that filter computes the covariance by propagating a set of deterministically
chosen points, i.e.,sigma points, chosen in such a way that their sample mean and sample
covariance correspond to the mean and the covariance of the Gaussian being estimated.
However, in our case these points do not suffice to cope with the pdf of the likelihood
which is non Gaussian and largely multi-modal.

Motion model: In order to accommodate to any real object motion, we use a Gaussian
distributed one, giving no privilege to any direction of motion

p(Xt |Xt−1) = N (Xt |Xt−1,Λ) (9)

whereN (.|µ ,Σ) holds for Gaussian distribution with meanµ and covarianceΣ, andΛ
stands for the diagonal matrix with the variances for randomwalk models on the compo-
nents of the object state model. This approach has widely been used (e.g. [2,14]).

In this work two cases are addressed: (i) spherical object and (ii) polyhedral object.
For the first case, the state vector consists of the 3D Cartesian position and linear velocities
of the ball,Xt = [x y z ẋ ẏ ż]T . The motion is modeled by a constant velocity model, i.e.
the motion equations correspond to a uniform acceleration during one sample time:

Xt+1 =

[

I (∆t)I
0 I

]

Xt +

[

(∆t2

2 )I
(∆t)I

]

at (10)

whereI is the 3×3 identity matrix,∆t = 1, andat is a 3×1 white zero mean random
vector corresponding to an acceleration disturbance. The covariance matrix of the random
acceleration vector is usually set experimentally ascov(at) = σ2I.

For the polyhedral object, the state vector isXt = [pt ; qt ] wherept = [x y z]T denotes
the position of the mass-center of the object andqt = [qw qx qy qz]

T is a quaternion
representing the object orientation. To model the dynamics, in this case we use a constant
pose model,pt+1 = pt + ηp andqt+1 = qt ∗ηq, where∗ stands for quaternion product,
ηp is Gaussian noise andηq is a quaternion generated by sampling Euler angles from a
Gaussian distribution.



Figure 5: Tracking a jumping ball in a catadioptric sensor. Top: Particle Filter. Bottom:
Kalman filter. Frames: 113, 122, 146.

4 Experimental Results

We have conducted an extensive evaluation under the proposed framework in realistic
scenarios. We illustrate the performance of the methods in three experiments using in
each one a distinct camera1: (i) catadioptric, (ii) fisheye (constant angular resolution),
and (iii) perspective.

In the first experiment we illustrate the performance of the tracker on images ac-
quired with the catadioptric vision system. This sensor is composed by a perspective
camera looking upright to a convex mirror, providing omnidirectional view in the az-
imuth direction and an orthographic view of the ground plane. This type of systems is
characterized by strong geometrical distortions and optical blur (see Fig.5). The tracked
object is a ball on a typical RoboCup Middle Size League (MSL)scenario. We use the
constant velocity motion model defined in (10). The covariance matrix of the random
acceleration vector was experimentally tuned tocov(at) = σ2I, with σ = 120mm/frame2.
Fig. 5 shows some snapshots of the sequence, illustrating the tracking results with both
the Kalman and the Particle Filters.

In thesecond experimentwe use a fisheye vision system (a dioptric camera coupled
with a fisheye lens) to track a ball in the RoboCup MSL scenario. Figure 6 shows the
tracking performance under partial occlusion and the case where the target passes close
to another identical ball. The motion model is the same as thefirst experiment. It is inter-
esting to note that the Kalman filter, as compared to the Particle filter with MAP/MMSE
pose estimation, takes advantage of the motion model to return a more centered estimate
of the position in the cases of large occlusions or confusionto nearby objects (see cols. 4
and 6 of Fig. 6; the MAP/MMSE are shown by the black/white dots).

In the third experiment we use an off-the-shelf web camera to track a box being
manipulated by the user. We use the constant pose motion model defined before. The
standard deviation for the positional noise was set to 15 mm/frame, while that of the
rotational noise was set to 0.1 rad/frame, in any direction.The results are presented in
Fig. 7 where we can observe good performance even in the case of partial occlusion.

1The results can be also evaluated through the accompanying videos.



Figure 6: Ball tracking under occlusion (cols. 1..4) and having two close targets
(cols. 5..8) in a fisheye lens camera. Columns 1 and 5 are full-size images (the other
ones just show the region of interest). Top/bottom compare Particle vs Kalman filters.

Figure 7: Tracking a box with a perspective camera. Top: Particle Filter. Bottom: Kalman
filter. Frames: 11, 207, 291.

5 Conclusions

We have presented a novel observation model for 3D model based tracking. The method
uses color features thus avoiding both explicit edge extraction from images and full object
appearance rendering. Rather it is based on the computationand comparison of color
histograms obtained from a sparse set of points in the images, arising from likely target’s
posture hypotheses. Only sparse point rendering (projection) is required, which facilitates
the utilization of arbitrary linear or non-linear camera projection models. Also, being a
method based on sampled hypotheses, it fits nicely with the particle filtering paradigm.
Anyway, it can also be used with more classical methods, likethe Kalman filter, whenever
Gaussianity is a reasonable assumption to rely on.

In future work we will look at variations of the observation model to improve likeli-
hood estimation, e.g. devising better ways to model the luminance changes induces by
orientation changes in the target’s surfaces. Also, we willlook at ways to reduce the
number of used particles. This may be related to varying distance of the sampling points



from the boundaries of the targets. Longer distances may provide smoother likelihood
estimates, and an annealed particle filtering methodology might be designed.
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