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Abstract— The functional Magnetic Resonance Imaging (fMRI) is a
technique with increasing applications in studying the bran function.
The blood-oxygenation-level-dependent (BOLD) is a fMRI method that
allows the detection of brain activated regions after the aplication of
an external stimulus, e.g., visual or auditive. This techmjue is based
on the assumption that the metabolism increases in activateareas as
well as the oxygen uptake. Analising this information is a chllenging
problem because the BOLD signal is very noisy and its changesud to
the application of a stimulus are very weak. Therefore, the dtection of
temporal correlations with the applied stimulus requires phisticated
statistical algorithms to understand if the changes on the BLD signal
are pure noise or are related with the applied stimulus, catd paradigm
in the fMRI scope.

The traditional approach to detect activated regions is basd on
the general linear model (GLM) to describe the BOLD signal using
statistical inference techniques to infer the activation.Unfortunately,
this technique requires the tunning of parameters by a clintian which
makes it impossible to be completely automatic.

In this paper we propose a new technique, here called SPM-GC,
designed in a Bayesian framework where theexplanatory variables
(EV’s) that characterize the activation status of a given rgion are
considered to be binary. In this approach the classificationtask is
modeled as a huge combinatorial optimization task that is opmally
solved by using a recent optimization technique based oGraph-Cuts.

Exhaustive tests using synthetic data are presented and therror
probability, P., of the algorithm is characterized. Examples using real
data are also presented to illustrate the application and pdormance
of the algorithm.

Index Terms— functional MRI, Estimation, Denoising, Bayes, Graph-

Cuts.
I. INTRODUCTION

Functional Magnetic Resonance Imagi(fyIRl) is a new tech-

nique for studying the dynamic processes occurring in the brain
of living beings, namely humans. This technique has an increa
ing number of clinical applications such as the characterizatio
and mapping of functional areas in the damaged brain, defining
mechanisms of reorganization or compensation from injury and aI§R

helping in brain surgical planning [1].

response functiofHRF). The explanatory variables(EVs) are

the coefficients of the linear combination, estimated by linear
regression. The most used algorithm is the SPM-GLM [3] which is
based on a classical inference statistical test, . @t F', where a
p-value threshold is used to attribute a statistical significance to each
coefficient and, therefore, assess if a given area was activateat or

by the correspondent stimulus. Other approaches have been also
proposed based on thHerincipal Component Analysi@PCA) [4],
Independent Component analy$i€A) [5] or Bayesian approach

61, [7].

An additional difficulty is thehemodynamic response function
Usually, the HRF is unknown and can be different for each voxel
[8], [9]. A single approximation model may be used for the whole
brain, usually based on gamma functions [3] or it may be estimated
for each voxel [10].

In this paper, a new Bayesian algorithm is proposed, here called
SPM-GC, where the estimation and inference of ¢éxglanatory
variables(EV) are performed together instead of the usual approach
of doing it independently. Here, for each stimulus, the EV of each
voxel is considered to be binary. The algorithm jointly estimates
these variables and the HRF at each voxel. The prior used to
estimate the HRF is physiologically supported as proposed in [11].

The estimation of the EVs in a Bayesian framework corresponds
to a huge combinatorial optimization problem that may be optimally
solved by using the algorithm proposed in [12] basedGraph-
Cuts This algorithm is fast and is able to find out the global
minimum of the cost function.

The advantage of this algorithm is being parameter free which
allows to circumvent the subjectivity associated with the algorithms
fhat depend on tunning parameters defined by the clinician.

Monte Carlo tests using synthetic data are used to characterize
e robustness of the algorithm from an error probability point of
view. Experiments using real data are also presented to illustrate
it application in real situations. Furthermore, the results obtained

'ré%i?;mg IS Imeasured tb):j t_ft&(t)r(])d-;)xygt_enatllon-leveIt-_dependentdoctor with theBrainVoyagersoftware [13]. This comparison shows
( ) signal, represented in the functional magnetic resonantgat the proposed algorithm provides similar results with the ones

images as displayed in Fig. 4. The BOLD signal is very noisy and itSbtained with BrainVoyager without the need of any parameter

changes due the application of stimuli are very weak. Therefore, tha(;t'ijustment removing the subjectivity associated to the results.

detection of temporal correlations with the applied stimuli requires This paper is organized as follows. Section Il formulates the

sophisticated statistical algorithms to assess if the changes on éﬂ%blem from a mathematical point of view and in section il the

BOLD 5'9”"’?' are pure noise or are related with applied stimulu experimental results are presented. Section IV concludes the paper.
called paradigmin the fMRI scope.

The usual approach to detect correlations with the paradigms is
based on theGeneral Linear Model(GLM) [2], [3], [1] where
the BOLD signal is modeled as a noisy version of the linear
combination of the stimuli signals convolved withhemodynamic
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Gaussian nois¢AWGN), pi(n) is the k" stimulus anddy,; is the

binary explanatory variableassociated with it. The binary variable

Br.i is 1 when thei®" voxel is activated by thé!" stimulus and
0 otherwise. WhenV stimuli are applied simultaneously

z;(n)

%> Br.ipr(n) +n(n).

zi(n)

yi(n) = )

The signalx; = {z;(n)} (see Fig.1) may be expressedsas—=

0b, whereb; = {f1,, B2, ..., Bn.: } and
pi(1)  p2(1) ps(1) pn (1)
p1(2) p2(2) p3(2) pn(2)
g—=| »@3) p2A3) p3(3) pn(3) @)
pi(L) p2(L)  ps(l) pn (L)
The output ofh;(n), zi(n) = hi(n) * z;(n), may be obtained
by z; = H;x or by z; = ®;h whereH,; and ®; are the following

L x L Toeplitz matrices (it is assumed thlathas the same length
of pr. = {pr(n)}),

ha(1) 0 0 0 0
hi(2) hi(1) 0 0 0 0
H, = hi(3)  hi(2) hi(1) 0 0 0 ©)
hi(L) hi(3)  h(2) hi(1)
zi(1) 0 0 0 0
z(2) (1) 0 0 0
b, = . . (4)
: : 0
zi (L) xi(L—1) xi(1)

The vectory; may be, therefore, obtained by the following two

ways yi=%b,+n

vi=®h;+n

(®)
(6)

where®; = H;0 andn = {n(n)}.
The Maximum a Posteriori(MAP) estimation is obtained by
minimizing the following energy function

E(yi,bi,hi) = Ey(yi, bi, hi) + En(h;)

where the data fidelity term is Ey(y:,bs, h;)
—log(p(yi|zi(bs, h;))) and the prior term associated th;
is En(hi) = —log(p(hy)).

This prior incorporate tha priori knowledge abouh; which is,
according with [11]:
i) the HRF starts and ends atand
if) HRF is smooth.

(@)

The smoothness [14] oh may be imposed by assuming that

p(h;) is aGibbsdistribution with quadratic potential functions,

L —a X, (i) —hi(n-1)?
Zn,

which leads tOEh(hz‘) = — log(p(hi)) = Oz(Ahl)T(AhZ) + Ch
wherea is a parameter that tunes the smoothing degreé. for),

C}, is a constantZ;, is a partition function and\ is the following
difference operator

p(hi) 8)

1 0 0 0 0 -1
-1 1 0 0 0 0
A_| 0 -11 0 0 0 ©)
S s 11 0
0O 0 0 .. 0 -1 1

Assuming AWGN (after the pre-whitening pre-processing [1])
over each time course the energy function to be minimized may be
written in the following two ways,

1
E(yi,bi,h;) = 2 = (¥;b; — yi)' (¥ibi — yi) + Di(10)
Z/
1
= ®,h—y;) (®;h;, —y;
2Uy( yi)'( yi) +
ah! (AT A)h; + C; (1)

whereC; and D, are constants. The minimization 8f(y;, b;, h;)
with respect tob; and h; is obtained by solvingvy, E = 0 and
Vi, E =0.

The first minimization is performed by minimizing the energy
function (10) which may be written as folllows

= 507 L

Yk=1 n

E(ys, bi,hy) (n,k)Br.i — yi(n))> + D; (12)

where each term is

(n s —ui(n)? = Zny’?(n) Bik =
;(\1}1( ,k)ﬁ 5T yz( )) {Zn(qu(n7 k) 7yl(n))2 sz =1

Therefore, the binarization @y; that leads to the minimization
of (10) is the following

o {1 8 Sl

(13)

k) —yi(n))* —yi(n)] <0

(14)
0 otherwise
The second minimization is performed by minimizing the energy

function (11) which leads to

“ —1
h = (2/®+)AT4)) &y, (15)

where\ = 2a07;.

The estimation ofb; and h; for each voxel is iteratively per-
formed and the overall estimation algorithm is developed according
to the prototyping algorithm described in Table I.

1.

\%

Initialization of 8, ; = 0.5 andh; = g, whereg is
gamma function [3].

sett =1

seti = 1,

setk =1

binarize thes;, ; by minimizing (10)

estimateh? according (15)

incrementk and return to step 5 ik < number of
stimuli

increment: and return to step 4 if < number of
voxels

increment ¢ and return
Dk M}i Et 1|7'50
binarize theﬁk i — 4,; for all voxels taking into
account spatial correlation by using Graph-Cuts
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to step 3 whilg

TABLE |
PROTOTYPE ALGORITHM

The binarization procedure at step 10) is performed indepen-
dently for each stimulug, (,;, by using the algorithm proposed
in [12] where spatial correlation is taken into account. In fact, this is



the only step where the correlation among neighbors is consideretiere tested in the rangg, =

Before, the estimation procedure &f and b;, associated with
each voxels, is performed independently of the neighborstimer
coursebasis.

Let Bx, be a 3D matrix volume containing the binary B3, ;, at
each voxel location with respect to the singfé stimulus obtained
at step 5) of the iterative algorithm anfl, = {/x;} a spatial
correlated version oB;, where{,; € {0,1}. In step 10) each

[0; 5] which can also be compared to
the BOLD signal energy level by thgignal-to-noise ratioSNR).
This generated synthetic data, compose byl 28 x 128 = 32768
independeny(n) time courses is equivalent to perfo2768 runs

of Monte Carlo tests, were used to compute the error probability,
P.(0) = ZN“‘b bi| where N = M = 128. Fig. 2
displays the algorithm error probability with (red) and without
(blue) the post-processin@raph-Cutbinarization at step 10 (see

By is processed, in a slice-by-slice basis, by solving the followingrable 1). The error probability is always smaller when using the
optimization problem post-processing step. Even for high levels of noiseVR >
—25dB), the algorithm with post-processing manage to detect the

By, = arg I%inE(Bk’ £x) (16) correct activated regions without misclassification. Fig.3 shows an
where the energy function is example of the activation detection for a SNR=-24.5 time-course
(o0, = 3.4) with (left) and without (right) post-processing with
E(Bg, L) Z Ck,i — (17)  Graph-Cuts

(Crisliyip,) +V(lhis lryiy,))] /G

+O‘Z

and ¢, ;. are the causal neighbors éf ; at each slicex is a
parameter to tune the strength of smoothnésss the normalized
(e < gr < 1) gradient of B, at thei*" node ande = 1072 is a
small number to avoid division by zer® (41, ¢2) is a penalization
function defined as follows

0 41 =140
V(ZhZQ)_{l 0 A by

The energy function (18) is composed by two terms: the first
called data termand the second callecegularization term The
first forces the classification to b&,; = (4. The second term °
forces the uniformity of the solution because the cost associated
with uniform labels is smaller than non uniform ones (see equatioRig. 2. Graphic with the computed error probability for eadise level
(18)). However, in order to preserve transitions the terms are divide each algorithm (SPM-GC and SPM proposed algorithm witttoe step
by the normalized gradient magnitude Bf, at " location, §;.
Therefore, when the gradient magnitude increases the regularlzation
strength is reduced at that location.

The minimization task of (18), formulated in (16), is a huge com-
binatorial optimization problem in thé0,1}* high dimensional
space wheré/ is the number of voxels in each 3D volume.

In [12] it is shown that several energy minimization problems in
high dimensional discrete spaces can be efficiently solved by using
Graph-Cuts(GC) based algorithms. The authors have designed a
very fast and efficient algorithm to compute the global minimum
of the energy function. However, the algorithm is not completelyjq 3 activated regions of a synthetic binary image with SNE%.5
general which means that some energy functions can not k& one of the paradigmteft - Activated regions using SPM-GC where
minimized with the proposed method. In [15] the authors presert. = 0; right - Activated regions using the algorithm without the preiyu
a wide class of energy functions that may be minimized with th&*entioned step 10 whet, = 0.0012.

GC method. Fortunately, the function (16) belongs to that class. B. Real Data

1. EXPERIMENTAL RESULTS TV\{O voll_mteers participated on stimulatg_d verbal and_ motor
) activity during a fMRI data acquisition onRhilips Intera Achieva
A. Synthetic Data Quasar Dual 3Twhole-body system with a 8 channel head-coil.
In this section, Monte Carlo tests of the SPM-GC algorithmZ:*-weighted echo-planar images (EPI)@8square field of view
are presented in order to characterize its robustness. Two synthetiith 128 x 128 matrix size resulting in an in-plane resolution of
binary images ofl28 x 128 pixels were generated representing thel, 8 x 1, Smmfor each4 mmslice. echo time=38s flip angle=0°
regions activated by two complementary stimuli. However, onlyvere acquired witifTR=300ms The paradigms were all structured
one stimulus is presented here where the white voxels represent tirethe same block-design, with 20 samples per epoch (meaning 10
activated regions. The BOLD signal(n), was generated using the samples of stimulus followed by 10 samples of baseline, summing
model previously presented in Fig.1. The paradigm was generata@ to 60s time per epoch) and a total of 4 epochs. The fMRI
in a block-design basis of 4 epochs, 20 seconds each (10 secoddsa was preprocessed with the standard procedures implemented in
of activation and 10 seconds of rest). The HRF signal was the BrainVoyagersoftware [13] for motion correction, registration,
basic gamma function known by its physiological meaning [11]whitening and spatial smoothing. This data was then statistically
To evaluate the performance of the algorithm several noise levgisocessed by th@rainVoyagerSPM-GLM algorithm and by the
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SPM-GC algorithm. The SPM-GLM brain maps depend on the psteps are joint together where tlexplanatory variables(EVs)
value tuned by the clinician. A neurologist provided the results o&re considered binary and jointly estimated with treenodynamic
SPM-GLM giving areferenceresult (the one he considered to beresponse functiofHRF) in a space varying basis. The detection
the correct one) and he also provided two other results which hproblem is formulated in a Bayesian framework where an energy
considered to bloseandrestricted The activated regions of SPM- function is minimized and where a physiological based prior for the
CG algorithm are coded with color intensity gradient, inverselHRF is used in order to force its smoothness. The estimation of the
proportional to the energy function of (11). This applied colormaginary EVs is performed by using@raph-Cutshased thresholding
gives an important perception of the confidence of this results sinedgorithm that takes into account the spatial correlation among
the low intensity regions correspond to a higher value of the energyeighbors in order to remove spurious activation foci generated by
function (see 11) that is being minimized. Visual inspections ofhe noise which reduces the error probability. Monte Carlo tests
the results in Figs. 4 and 5 show some resemblance between thith synthetic data are presented to characterize the robustness
reference result of the SPM-GLM brain maps and the ones obtainefl the algorithm in terms of error probability. Examples using
by the SPM-GC algorithm. Although the SPM-GC also detectseal data are also presented and the results obtained with the
some regions not present in the reference result, those can be foymdposed algorithm are compared with the ones obtained with the
in the loose result provided by the neurologist. It should be noticeBrainvoyagercommercial software. These comparisons shows that
that those regions represent a less confident result given its cqornthe proposed algorithm leads to similar results obtain with the
intensity. Brainvoyagersoftware without need of any parameter tunned by
the medical doctor, removing the subjective nature of the results.
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