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Abstract— The functional Magnetic Resonance Imaging (fMRI) is a
technique with increasing applications in studying the brain function.
The blood-oxygenation-level-dependent (BOLD) is a fMRI method that
allows the detection of brain activated regions after the application of
an external stimulus, e.g., visual or auditive. This technique is based
on the assumption that the metabolism increases in activated areas as
well as the oxygen uptake. Analising this information is a challenging
problem because the BOLD signal is very noisy and its changes due to
the application of a stimulus are very weak. Therefore, the detection of
temporal correlations with the applied stimulus requires sophisticated
statistical algorithms to understand if the changes on the BOLD signal
are pure noise or are related with the applied stimulus, called paradigm
in the fMRI scope.

The traditional approach to detect activated regions is based on
the general linear model (GLM) to describe the BOLD signal using
statistical inference techniques to infer the activation.Unfortunately,
this technique requires the tunning of parameters by a clinician which
makes it impossible to be completely automatic.

In this paper we propose a new technique, here called SPM-GC,
designed in a Bayesian framework where theexplanatory variables
(EV’s) that characterize the activation status of a given region are
considered to be binary. In this approach the classificationtask is
modeled as a huge combinatorial optimization task that is optimally
solved by using a recent optimization technique based onGraph-Cuts.

Exhaustive tests using synthetic data are presented and theerror
probability, Pe, of the algorithm is characterized. Examples using real
data are also presented to illustrate the application and performance
of the algorithm.

Index Terms— functional MRI, Estimation, Denoising, Bayes, Graph-
Cuts.

I. I NTRODUCTION

Functional Magnetic Resonance Imaging(fMRI) is a new tech-
nique for studying the dynamic processes occurring in the brain
of living beings, namely humans. This technique has an increas-
ing number of clinical applications such as the characterization
and mapping of functional areas in the damaged brain, defining
mechanisms of reorganization or compensation from injury and also
helping in brain surgical planning [1].

fMRI is based on the assumption that the metabolism increases
in activated areas as well as the oxygen uptake. This oxygen
increasing is measured by theblood-oxygenation-level-dependent
(BOLD) signal, represented in the functional magnetic resonance
images as displayed in Fig. 4. The BOLD signal is very noisy and its
changes due the application of stimuli are very weak. Therefore, the
detection of temporal correlations with the applied stimuli requires
sophisticated statistical algorithms to assess if the changes on the
BOLD signal are pure noise or are related with applied stimulus,
calledparadigm in the fMRI scope.

The usual approach to detect correlations with the paradigms is
based on theGeneral Linear Model(GLM) [2], [3], [1] where
the BOLD signal is modeled as a noisy version of the linear
combination of the stimuli signals convolved with ahemodynamic
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response function(HRF). The explanatory variables(EVs) are
the coefficients of the linear combination, estimated by linear
regression. The most used algorithm is the SPM-GLM [3] which is
based on a classical inference statistical test, e.g.,T or F , where a
p-value threshold is used to attribute a statistical significance to each
coefficient and, therefore, assess if a given area was activated ornot
by the correspondent stimulus. Other approaches have been also
proposed based on thePrincipal Component Analysis(PCA) [4],
Independent Component analysis(ICA) [5] or Bayesian approach
[6], [7].

An additional difficulty is thehemodynamic response function.
Usually, the HRF is unknown and can be different for each voxel
[8], [9]. A single approximation model may be used for the whole
brain, usually based on gamma functions [3] or it may be estimated
for each voxel [10].

In this paper, a new Bayesian algorithm is proposed, here called
SPM-GC, where the estimation and inference of theexplanatory
variables(EV) are performed together instead of the usual approach
of doing it independently. Here, for each stimulus, the EV of each
voxel is considered to be binary. The algorithm jointly estimates
these variables and the HRF at each voxel. The prior used to
estimate the HRF is physiologically supported as proposed in [11].

The estimation of the EVs in a Bayesian framework corresponds
to a huge combinatorial optimization problem that may be optimally
solved by using the algorithm proposed in [12] based onGraph-
Cuts. This algorithm is fast and is able to find out the global
minimum of the cost function.

The advantage of this algorithm is being parameter free which
allows to circumvent the subjectivity associated with the algorithms
that depend on tunning parameters defined by the clinician.

Monte Carlo tests using synthetic data are used to characterize
the robustness of the algorithm from an error probability point of
view. Experiments using real data are also presented to illustrate
its application in real situations. Furthermore, the results obtained
with real data are compared with the ones obtained by the medical
doctor with theBrainVoyagersoftware [13]. This comparison shows
that the proposed algorithm provides similar results with the ones
obtained withBrainVoyager without the need of any parameter
adjustment removing the subjectivity associated to the results.

This paper is organized as follows. Section II formulates the
problem from a mathematical point of view and in section III the
experimental results are presented. Section IV concludes the paper.
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Fig. 1. BOLD signal generation model.

II. PROBLEM FORMULATION

Let yi = {yi(n)} with 0 ≤ n ≤ L−1 be the BOLD signal atith

voxel generated according Fig.1 wherehi = {hi(n)} is the HRF
associated with theith voxel, η(n) ∼ N (0, σ2

y) is additive white



Gaussian noise(AWGN), pk(n) is thekth stimulus andβk,i is the
binary explanatory variableassociated with it. The binary variable
βk,i is 1 when theith voxel is activated by thekth stimulus and
0 otherwise. WhenN stimuli are applied simultaneously

yi(n) =

zi(n)
︷ ︸︸ ︷

hi(n) ∗
N∑

k=1

βk,ipk(n)

︸ ︷︷ ︸

xi(n)

+η(n). (1)

The signalxi = {xi(n)} (see Fig.1) may be expressed asxi =
θbi wherebi = {β1,i, β2,i, ..., βN,i} and

θ =










p1(1) p2(1) p3(1) ... pN (1)
p1(2) p2(2) p3(2) ... pN (2)
p1(3) p2(3) p3(3) ... pN (3)

...
...

... ...
...

p1(L) p2(L) p3(l) ... pN (L)










(2)

The output ofhi(n), zi(n) = hi(n) ∗ xi(n), may be obtained
by zi = Hix or by zi = Φih whereHi andΦi are the following
L × L Toeplitz matrices (it is assumed thath has the same length
of pk = {pk(n)}),

Hi =










hi(1) 0 0 0 0 0
hi(2) hi(1) 0 0 0 0
hi(3) hi(2) hi(1) 0 0 0

...
...

...
...

...
...

hi(L) ... hi(3) hi(2) ... hi(1)










(3)

Φi =








xi(1) 0 0 0 0
xi(2) xi(1) 0 0 0

...
...

...
... 0

xi(L) xi(L − 1) ... ... xi(1)








. (4)

The vectoryi may be, therefore, obtained by the following two
ways

yi = Ψibi + n (5)

yi = Φihi + n (6)

whereΨi = Hiθ andn = {η(n)}.
The Maximum a Posteriori(MAP) estimation is obtained by

minimizing the following energy function

E(yi,bi,hi) = Ey(yi,bi,hi) + Eh(hi) (7)

where the data fidelity term is Ey(yi,bi,hi) =
− log(p(yi|zi(bi,hi))) and the prior term associated tohi

is Eh(hi) = − log(p(hi)).
This prior incorporate thea priori knowledge abouthi which is,

according with [11]:
i) the HRF starts and ends at0 and
ii) HRF is smooth.

The smoothness [14] ofh may be imposed by assuming that
p(hi) is a Gibbsdistribution with quadratic potential functions,

p(hi) =
1

Zh

e−α
∑

N

n=2
(hi(n)−hi(n−1))2 (8)

which leads toEh(hi) = − log(p(hi)) = α(∆hi)
T (∆hi) + Ch

whereα is a parameter that tunes the smoothing degree forhi(n),
Ch is a constant,Zh is a partition function and∆ is the following
difference operator

∆ =










1 0 0 ... 0 0 −1
−1 1 0 ... 0 0 0
0 −1 1 ... 0 0 0
...

...
... ... −1 1 0

0 0 0 ... 0 −1 1










(9)

Assuming AWGN (after the pre-whitening pre-processing [1])
over each time course the energy function to be minimized may be
written in the following two ways,

E(yi,bi,hi) =
1

2σ2
y

(Ψibi − yi)
T (Ψibi − yi) + Di(10)

=
1

2σ2
y

(Φih − yi)
T (Φihi − yi) +

αh
T
i (∆T

∆)hi + Ci (11)

whereCi andDi are constants. The minimization ofE(yi,bi,hi)
with respect tobi and hi is obtained by solving∇bi

E = 0 and
∇hi

E = 0.
The first minimization is performed by minimizing the energy

function (10) which may be written as folllows

E(yi,bi,hi) =
1

2σ2
y

N∑

k=1

∑

n

(Ψi(n, k)βk,i − yi(n))2 + Di (12)

where each term is

∑

n

(Ψi(n, k)βk,i − yi(n))2 =

{∑

n
y2

i (n) βi,k = 0
∑

n
(Ψi(n, k) − yi(n))2 βi,k = 1

(13)

Therefore, the binarization ofβk,i that leads to the minimization
of (10) is the following

βk,i =

{

1 if
∑

n

[
(Ψi(n, k) − yi(n))2 − y2

i (n)
]
≤ 0

0 otherwise
(14)

The second minimization is performed by minimizing the energy
function (11) which leads to

ĥi =
(

Φ
T
i Φi + λ(∆T

∆)
)−1

Φ
T
i yi (15)

whereλ = 2ασ2
y.

The estimation ofbi and hi for each voxel is iteratively per-
formed and the overall estimation algorithm is developed according
to the prototyping algorithm described in Table I.

1. � Initialization of βk,i = 0.5 and hi = g, whereg is
gamma function [3].

2. � set t = 1
3. � set i = 1,
4. � setk = 1
5. � binarize theβk,i by minimizing (10)
6. � estimateĥt

i according (15)
7. � incrementk and return to step 5 ifk < number of

stimuli
8. � incrementi and return to step 4 ifi < number of

voxels
9. � increment t and return to step 3 while

∑

k,i |ℓ
t
k,i

− ℓ
t−1
k,i

| 6= 0

10. � binarize theβk,i → ℓk,i for all voxels taking into
account spatial correlation by using Graph-Cuts

TABLE I
PROTOTYPE ALGORITHM

The binarization procedure at step 10) is performed indepen-
dently for each stimulusk, βk,i, by using the algorithm proposed
in [12] where spatial correlation is taken into account. In fact, this is



the only step where the correlation among neighbors is considered.
Before, the estimation procedure ofhi and bi, associated with
each voxels, is performed independently of the neighbors in atime-
coursebasis.

Let Bk be a 3D matrix volume containing the binary EV,βk,i, at
each voxel location with respect to the singlekth stimulus obtained
at step 5) of the iterative algorithm andLk = {ℓk,i} a spatial
correlated version ofBk where ℓk,i ∈ {0, 1}. In step 10) each
Bk is processed, in a slice-by-slice basis, by solving the following
optimization problem

B̂k = arg min
Bk

E(Bk,Lk) (16)

where the energy function is

E(Bk,Lk) =
∑

i

|ℓk,i − βk,i| (17)

+ α
∑

i

[V (ℓk,i, ℓk,ih
) + V (ℓk,i, ℓk,iv

))] /g̃i

and ℓk,iτ
are the causal neighbors ofℓk,i at each slice,α is a

parameter to tune the strength of smoothness,g̃i is the normalized
(ǫ ≤ g̃k ≤ 1) gradient ofBk at the ith node andǫ = 10−2 is a
small number to avoid division by zero.V (ℓ1, ℓ2) is a penalization
function defined as follows

V (ℓ1, ℓ2) =

{

0 ℓ1 = ℓ2

1 ℓ1 6= ℓ2
(18)

The energy function (18) is composed by two terms: the first
called data termand the second calledregularization term. The
first forces the classification to beℓk,i = βk,i. The second term
forces the uniformity of the solution because the cost associated
with uniform labels is smaller than non uniform ones (see equation
(18)). However, in order to preserve transitions the terms are divided
by the normalized gradient magnitude ofBk at ith location, g̃i.
Therefore, when the gradient magnitude increases the regularization
strength is reduced at that location.

The minimization task of (18), formulated in (16), is a huge com-
binatorial optimization problem in the{0, 1}M high dimensional
space whereM is the number of voxels in each 3D volume.

In [12] it is shown that several energy minimization problems in
high dimensional discrete spaces can be efficiently solved by using
Graph-Cuts(GC) based algorithms. The authors have designed a
very fast and efficient algorithm to compute the global minimum
of the energy function. However, the algorithm is not completely
general which means that some energy functions can not be
minimized with the proposed method. In [15] the authors present
a wide class of energy functions that may be minimized with the
GC method. Fortunately, the function (16) belongs to that class.

III. E XPERIMENTAL RESULTS

A. Synthetic Data

In this section, Monte Carlo tests of the SPM-GC algorithm
are presented in order to characterize its robustness. Two synthetic
binary images of128× 128 pixels were generated representing the
regions activated by two complementary stimuli. However, only
one stimulus is presented here where the white voxels represent the
activated regions. The BOLD signal,y(n), was generated using the
model previously presented in Fig.1. The paradigm was generated
in a block-design basis of 4 epochs, 20 seconds each (10 seconds
of activation and 10 seconds of rest). The HRF signal was a
basic gamma function known by its physiological meaning [11].
To evaluate the performance of the algorithm several noise levels

were tested in the rangeσy = [0; 5] which can also be compared to
the BOLD signal energy level by thesignal-to-noise ratio(SNR).
This generated synthetic data, composed by2×128×128 = 32768
independenty(n) time courses is equivalent to perform32768 runs
of Monte Carlo tests, were used to compute the error probability,
Pe(σ) = 1

NM

∑NM

i=1

∣
∣
∣b̂i − bi

∣
∣
∣ where N = M = 128. Fig. 2

displays the algorithm error probability with (red) and without
(blue) the post-processingGraph-Cut binarization at step 10 (see
Table I). The error probability is always smaller when using the
post-processing step. Even for high levels of noise (SNR >
−25dB), the algorithm with post-processing manage to detect the
correct activated regions without misclassification. Fig.3 shows an
example of the activation detection for a SNR=-24.5 time-course
(σy = 3.4) with (left) and without (right) post-processing with
Graph-Cuts.
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Fig. 2. Graphic with the computed error probability for each noise level
of each algorithm (SPM-GC and SPM proposed algorithm without the step
10).

Fig. 3. Activated regions of a synthetic binary image with SNR=-24.5
for one of the paradigm:left - Activated regions using SPM-GC where
Pe = 0; right - Activated regions using the algorithm without the previously
mentioned step 10 wherePe = 0.0012.

B. Real Data

Two volunteers participated on stimulated verbal and motor
activity during a fMRI data acquisition on aPhilips Intera Achieva
Quasar Dual 3Twhole-body system with a 8 channel head-coil.
T2*-weighted echo-planar images (EPI) 23cm square field of view
with 128 × 128 matrix size resulting in an in-plane resolution of
1, 8×1, 8mmfor each4 mmslice. echo time=33ms, flip angle=200

were acquired withTR=300ms. The paradigms were all structured
on the same block-design, with 20 samples per epoch (meaning 10
samples of stimulus followed by 10 samples of baseline, summing
up to 60s time per epoch) and a total of 4 epochs. The fMRI
data was preprocessed with the standard procedures implemented in
the BrainVoyagersoftware [13] for motion correction, registration,
whitening and spatial smoothing. This data was then statistically
processed by theBrainVoyagerSPM-GLM algorithm and by the



SPM-GC algorithm. The SPM-GLM brain maps depend on the p-
value tuned by the clinician. A neurologist provided the results of
SPM-GLM giving a referenceresult (the one he considered to be
the correct one) and he also provided two other results which he
considered to belooseandrestricted. The activated regions of SPM-
CG algorithm are coded with color intensity gradient, inversely
proportional to the energy function of (11). This applied colormap
gives an important perception of the confidence of this results since
the low intensity regions correspond to a higher value of the energy
function (see 11) that is being minimized. Visual inspections of
the results in Figs. 4 and 5 show some resemblance between the
reference result of the SPM-GLM brain maps and the ones obtained
by the SPM-GC algorithm. Although the SPM-GC also detects
some regions not present in the reference result, those can be found
in the loose result provided by the neurologist. It should be noticed
that those regions represent a less confident result given its colormap
intensity.

Fig. 4. Real data activated regions of a verb generation paradigm: up, left
- Result of the parameter free SPM-GC algorithm.;up, right - Reference
result given by the SPM-GLM algorithm.;down, left- Loose result given
by the SPM-GLM algorithm.;up, right - Restricted result given by the
SPM-GLM algorithm.;

Fig. 5. Real data activated regions of a motor paradigm:up, left- Result of
the parameter free SPM-GC algorithm.;up, right - Reference result given by
the SPM-GLM algorithm.;down, left- Loose result given by the SPM-GLM
algorithm.;up, right - Restricted result given by the SPM-GLM algorithm.;

IV. CONCLUSIONS

In this paper an algorithm parameter free to detect brain activated
areas in fMRI is described. The traditional estimation and inference

steps are joint together where theexplanatory variables(EVs)
are considered binary and jointly estimated with thehemodynamic
response function(HRF) in a space varying basis. The detection
problem is formulated in a Bayesian framework where an energy
function is minimized and where a physiological based prior for the
HRF is used in order to force its smoothness. The estimation of the
binary EVs is performed by using aGraph-Cutsbased thresholding
algorithm that takes into account the spatial correlation among
neighbors in order to remove spurious activation foci generated by
the noise which reduces the error probability. Monte Carlo tests
with synthetic data are presented to characterize the robustness
of the algorithm in terms of error probability. Examples using
real data are also presented and the results obtained with the
proposed algorithm are compared with the ones obtained with the
Brainvoyagercommercial software. These comparisons shows that
the proposed algorithm leads to similar results obtain with the
Brainvoyagersoftware without need of any parameter tunned by
the medical doctor, removing the subjective nature of the results.
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