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Abstract

This paper addresses the state estimation of a class of continuous-time affine systems with implicit outputs. We

formulate the problem in the deterministic H∞ filtering setting by computing the value of the state that minimizes

the induced L2-gain from disturbances and noise to estimation error, while remaining compatible with the past

observations. To avoid weighting the distant past as much as the present, a forgetting factor is also introduced. We

show that, under appropriate observability assumptions, the optimal estimate converges globally asymptotically to

the true value of the state in the absence of noise and disturbance. In the presence of noise, the estimate converges

to a neighborhood of the true value of the state. We apply these results to the estimation of position and attitude

of an autonomous vehicle using measurements from an inertial measurement unit (IMU) and a monocular charged-

coupled-device (CCD) camera attached to the vehicle.

Keywords: H∞ Estimation; Systems with implicit outputs; Robotics

1. Introduction

Consider a continuous-time system described by

ẋ = A(x, u) +G(u)w, (1)

E(x, u, v)y = C(x, u) + v, (2)

where A(x, u) and C(x, u) are affine functions in x, x ∈ R
n denotes the state of the system, u ∈ R

m its control

input, y ∈ R
q its measured output, w ∈ R

nw an input disturbance that cannot be measured, and v ∈ R
p
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measurement noise. The initial condition x(0) of (1) and the signals w and v are assumed deterministic but

unknown. The measured output y is only defined implicitly through (2) and the map E(x, u, v) satisfies the

property that for all x ∈ R
n, u ∈ R

m, v ∈ R
p, i ∈ {1, . . . , n}, j ∈ {1, . . . , p}

∂

∂xi
E(x, u, v) = Exi

(u),
∂

∂vj
E(x, u, v) = Evj

, (3)

where each Exi
(u) is a p × q matrix-valued function that may depend on u but not on x and v, and each

Evj
is a constant p× q matrix.

We call (1)–(2) a state-affine system with implicit outputs, or for short simply a system with implicit

outputs. These type of systems are motivated by applications in dynamic vision such as the estimation of

the motion of the camera from a sequence of images. In particular, we shall see in Section 4 that the system

(1)–(2) arises when one needs to estimate the pose (position and attitude) of autonomous vehicles using

measurements from an inertial measurement unit (IMU) and a monocular charged-coupled-device (CCD)

camera attached to the vehicle. It can also be seen as a generalization of perspective systems introduced by

Ghosh et al. [7]. The reader is referred to [8, 28] for several other examples of perspective systems in the

context of motion and shape estimation. The system with implicitly defined outputs described in [20] and

the state-affine systems with multiple perspective outputs considered in [2] are also special cases of (1)–(2).

In this paper we design a state-estimator for (1)–(2) using a deterministic H∞ approach. Given an initial

estimate and the past controls and observations collected up to time t, the optimal state estimate x̂ at time

t is defined to be the value that minimizes the induced L2-gain from disturbances to estimation error. To

avoid weighting the distant past as much as the present, a forgetting factor λ is also introduced.

Over the last two decades the H∞ criterion has been applied to filtering problems, cf., e.g., [3, 4, 16, 23,

25, 29]. Closely related to H∞ filtering are the minimum-energy estimators, which were first proposed by

Mortensen [22] and further refined by Hijab [10]. Game theoretical versions of these estimators were proposed

by McEneaney [21] and Fleming [6]. In [2], minimum-energy estimators were derived for systems with

perspective outputs and input-to-state stability like properties with respect to disturbances were presented.

These results were applied to the estimation of position and orientation of a wheeled mobile robot that only

uses a CCD camera mounted on-board to observe the apparent motion of stationary points.

It is worth pointing out that in general either minimum-energy or H∞ state estimators for nonlinear

systems lead to infinite dimensional observers with state evolving according to a first-order nonlinear partial

differential equation (PDE) of Hamilton-Jacobi type driven by the observations. The main contribution of

this paper is a closed-form solution that is filtering-like and iterative, continuously improving estimates as

more measurements become available, and that is robust to noise and disturbances. More precisely, under

appropriate observability assumptions, we show that the state-estimator proposed has the desirable property

that the state estimate converges asymptotically to the true value of the state in the absence of noise and

disturbance. In the presence of bounded noise, the estimate converges to a neighborhood of the true value

of the state. We can therefore use this state-estimator to design output-feedback controllers by using the

estimated state to drive state-feedback controllers.

Another contribution of the paper is the application of these results to the estimation of position and at-

titude of an autonomous vehicle using measurements from an IMU and a monocular CCD camera attached

to the vehicle. The problem of estimating the position and orientation of a camera mounted on a rigid body
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from the apparent motion of point features has a long tradition in the computer vision literature (cf., e.g.,

[5, 14, 15, 19, 24, 27] and references therein). In [24], rigid-body pose estimation using inertial sensors and a

monocular camera is considered. A locally convergent observer where the states evolve on SO(3) is proposed

(the rotation estimation is decoupled from the position estimation). In the area of wheeled mobile robots, Ma

et al. [17] addressed the problem of tracking an arbitrarily shaped continuous ground curve by formulating

it as controlling the shape of the curve in the image plane. An application for landing an unmanned air

vehicle using vision in the control loop is described in [26]. In [15], the autonomous aircraft landing problem

based on measurements provided by airborne vision and inertial sensors is addressed. The authors cast the

problem in a linear parametrically varying framework and solve it using tools that borrows from the theory

of linear matrix inequalities. These results are extended in [9] to deal with the so-called out-of-frame events.

The organization of the paper is as follows: Section 2 formulates the state estimation problem using a

H∞ deterministic approach. Section 3 presents the main results of the paper. In Section 3.1 we derive,

using dynamic programming, the equations for the optimal observer. In Section 3.2 we determine under

what conditions the state estimate x̂ converges to the true state x. An application to the estimation of the

position and attitude of an autonomous vehicle using measurements from an IMU and a monocular CCD

camera on-board in Section 4 illustrates the results. Concluding remarks are given in Section 5.

This paper builds upon and extends previous results by the authors that were presented in [1].

2. Problem Formulation

This section formulates the state estimation problem using a H∞ deterministic approach. Consider the

system with implicit outputs (1)–(2). Our goal is to design and analyze an observer which estimates the state

vector x(t) given an initial estimate x̂0 and the past controls and observations {(u(τ), y(τ)) : 0 ≤ τ ≤ t},
and minimize the induced L2-gain from disturbances and noise to estimation error. In particular, for a given

gain level γ > 0, the estimate x̂ should satisfy the following disturbance attenuation inequality

∫ t

0

‖x(τ) − x̂(τ)‖2 dτ ≤ γ2
(

(x(0) − x̂0)
′P−1

0 (x(0) − x̂0) +

∫ t

0

‖w(τ)‖2 + ‖v(τ)‖2 dτ
)

, ∀ t, x(0), w, v

where P−1
0 > 0, x̂0 encode a-priori information about the state. We also consider the possibility of intro-

ducing an exponential forgetting factor that decreases the weight of x, w and v from a distant past. More

specifically, we address the following deterministic optimization problem:

Problem 1 (H∞ state estimation) Given an initial estimate x̂0, a gain level γ > 0, an input u and a

measured output y defined on an interval [0, t), compute the estimate x̂(t) of the state at time t defined by

x̂(t) := arg min
z∈Rn

J(z, γ, t) (4)

with J(z, γ, t) given by
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J(z, γ, t) := min
w:[0,t]
v:[0,t]

{

γ2e−2λt(x(0) − x̂0)
′P−1

0 (x(0) − x̂0)

+ γ2

∫ t

0

e−2λ(t−τ)
(

‖w(τ)‖2 + ‖v(τ)‖2
)

dτ

−
∫ t

0

e−2λ(t−τ)‖x(τ) − x̂(τ)‖2 dτ :

x(t) = z, ẋ = A(x, u) +G(u)w,E(x, u, v)y = C(x, u)x+ v
}

, (5)

where the minimization is taken over all signals w and v that are square integrable in [0, t], t ≥ 0, P−1
0 > 0,

and λ ≥ 0 denotes a forgetting factor. 2

The symmetric negative of J(z, γ, t) is the information state introduced in [12, 13] and can be interpret

as a measure of the likelihood of state x = z at time t.

3. Main results

In this section we propose an H∞ observer that solves Problem 1 and provide conditions under which the

state estimate converges to a small neighborhood of the true values.

3.1. The observer equations

We propose the following observer for (1)–(2):

Ṗ = (JxA(u) + λI)P + P (JxA(u) + λI)′ − γ2P
(
Ψ(u, y) − γ−2I

)
P + γ−2GG′, P (0) = P0 (6)

˙̂x = A(x̂, u) − γ2P (Ψ(u, y)x̂+ ψ(u, y)), x̂(0) = x̂0 (7)

with

Ψ(u, y) :=
(
Yx(u, y) − JxC

)′(
I − Yv(y)Y ⊥

v (y)
)′(
I − Yv(y)Y ⊥

v (y)
)(
Yx(u, y) − JxC

)
,

ψ(u, y) :=
(
Yx(u, y) − JxC

)′(
I − Yv(y)Y ⊥

v (y)
)(
I − Yv(y)Y ⊥

v (y)
)
(E(0, u, 0)y − C(0, u)),

where Yx(u, y) :=
[
Ex1

(u)y|Ex2
(u)y| · · · |Exn

(u)y
]
, Yv(y) :=

[
Ev1

y|Ev2
y| · · · |Evp

y
]
, (·)⊥ denotes the pseudo-

inverse, and JxA(u) the Jacobian of A(x, u) with respect to x. The following result solves Problem 1.

Theorem 1 (H∞ state estimator) Assuming that (6)–(7) has a solution on [0, T ), T ∈ [0,∞], then the

H∞ state estimate defined by (4)–(5) can be obtained from (6)–(7). Furthermore, the cost function J(z; t)

defined in (5) is quadratic and can be written as

J(z, γ, t) =
(
z − x̂(t)

)′
Q(t)

(
z − x̂(t)

)
+ c(t), (8)

where Q(t) = P−1(t) and c(t) satisfies an appropriate ODE (cf. (13) below).

Proof. The function J(z, γ, t), z ∈ R
n, t ≥ 0 defined in (5) can be viewed as a cost-to-go and computed

using dynamic programming. To derive the dynamic programming operator we can consider an elementary

time interval dt and write
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J(z, γ, t) = min
w:[0,t]
v:[0,t]

{

γ2e−2λdt
(
‖w‖2 + ‖v‖2 − 1

γ2
‖x− x̂‖2

)
dt

+ γ2e−2λdt
[

e−2λ(t−dt)(x(0) − x̂0)
′P−1

0 (x(0) − x̂0)

+

∫ t−dt

0

e−2λ(t−dt−τ)
(

‖w‖2 + ‖v‖2
)

dτ

− 1

γ2

∫ t−dt

0

e−2λ(t−dt−τ)‖x− x̂‖2dτ
]

:

x(t) = z, x(t− dt) = z − (A(z, u) +G(u)w)dt,

ẋ = A(x, u) +G(u)w, E(x, u, v)y = C(x, u) + v
}

,

= min
w:[t−dt,t]
v:[t−dt,t]

{

γ2e−2λdt
(
‖w‖2 + ‖E0(z, u, y) + Yv(y)v − C(z, u)‖2 − 1

γ2
‖x− x̂‖2

)
dt

+ γ2e−2λdt min
w:[0,t−dt]
v:[0,t−dt]

[

e−2λ(t−dt)(x(0) − x̂0)
′P−1

0 (x(0) − x̂0)

+

∫ t−dt

0

e−2λ(t−dt−τ)
(

‖w‖2 + ‖v‖2
)

dτ

− 1

γ2

∫ t−dt

0

e−2λ(t−dt−τ)‖x− x̂‖2dτ
]

:

x(t) = z, x(t− dt) = z − (A(z, u) +G(u)w)dt,

ẋ = A(x, u) +G(u)w, E(x, u, v)y = C(x, u) + v
}

,

where we have used the fact that from (3), the term E(x, u, v)y can be written as E(x, u, v)y = E0(x, u, y)+

Yv(y)v, with E0(x, u, y) := Yx(u, y)x + E(0, u, 0)y. For simplicity we also have dropped the argument t of

the signals outside the integral and the argument τ inside the integral.

We can now recognize the inner minimization to be precisely J(z − (A(z, u) +G(u)w)dt, γ, t− dt), which

leads to the following equation:

J(z, γ, t) = min
w:[t−dt,t]
v:[t−dt,t]

{

γ2e−2λdt
(

‖w‖2 + ‖E0(z, u, y) + Yv(y)v − C(z, u)‖2 − 1

γ2
‖z − x̂‖2

)

dt

+ e−2λdtJ(z − (A(z, u) +G(u)w)dt, γ, t− dt)
}

.

Subtracting J(z, γ, t − dt) from both sides of the above equation, dividing by dt, and taking the limit as

dt→ 0 provided that all the derivatives exist, leads to

Jt(z, γ, t) = min
w(t),v(t)

{

γ2
(

‖w‖2 + ‖E0(z, u, y) + Yv(y)v − C(z, u)‖2 − 1

γ2
‖z − x̂‖2

)

− Jz(z, γ, t)(A(z, u) +G(u)w) − 2λJ(z, γ, t)
}

= min
w(t),v(t)

{

γ2‖w − 1

2γ2
G′(u)J ′

z(z, γ, t)‖2 − 1

4γ2
‖G′(u)J ′

z(z, γ, t)‖2

+ γ2‖E0(z, u, y) + Yv(y)v − C(z, u)‖2 − ‖z − x̂‖2 − Jz(z, γ, t)A(z, u) − 2λJ(z, γ, t)
}

= − 1

4γ2
‖G′(u)Jz(z, γ, t)‖2 + γ2‖

(
I − Yv(y)Y

⊥
v (y)

)(
E0(z, u, y) − C(z, u)

)
‖2

− ‖z − x̂‖2 − Jz(z, γ, t)A(z, u) − 2λJ(z, γ, t), (9)
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where Jt and Jz denote the partial derivatives of J with respect to t and z, respectively. The value of

J(z, γ, t) can be determined from the linear PDE (9) with initial condition

J(z, γ, 0) = (z − x̂0)
′P−1

0 (z − x̂0), z ∈ R
n. (10)

It turns out that there exists a solution to (9)–(10) which is differentiable with respect to z and can be

written as (8) for appropriately defined signals x̂(t) and c(t). The signal x̂ is then precisely the estimate

for the state x of (1)–(2). Moreover, matching (10) with (8) we conclude that P (0) = P0, x̂(0) = x̂0, and

c(0) = 0. To verify that the solution to (9)–(10) can indeed be written as (8), we substitute it into (9) and

obtain

−2(z − x̂)′Q ˙̂x+ (z − x̂)′Q̇(z − x̂) + ċ = − 1

γ2
(z − x̂)′QGG′Q(z − x̂)

+ γ2‖
(
I − Yv(y)Y ⊥

v (y)
)(
E0(z, u, y) − C(z, u)

)
‖2

− ‖z − x̂‖2 − 2(z − x̂)′QA(z, u) − 2λ(z − x̂)′Q(z − x̂) − 2λc.

Using the fact that A(x, u) = JxA(u)x+A(0, u) and E0(x, u, y) = Yx(u, y)x+ E(0, u, 0)y, we get

z′
[
Q̇+

1

γ2
QGG′Q+QJxA+ JxA

′Q+ 2λQ− γ2Ψ(u, y) + I
)
z

+ 2z′
[
−Q ˙̂x− Q̇x̂− 1

γ2
QGG′Qx̂− JxA

′Qx̂+QA(0, u) − 2λQx̂− γ2ψ(u, y) − x̂
]

+ ċ+ 2x̂′Q ˙̂x+ x̂′Q̇x̂+
1

γ2
x̂′QGG′Qx̂− x̂′QA(0, u) + 2λx̂′Qx̂+ 2λc

− γ2‖
(
I − Yv(y)Y ⊥

v (y)
)(
E(0, u, 0)y − C(0, u)

)
‖2 + ‖x̂‖2 = 0.

Since this equation must hold for all z ∈ R
n we conclude that

Q̇+
1

γ2
QGG′Q+QJxA+ JxA

′Q+ 2λQ− γ2Ψ(u, y) + I = 0 (11)

−Q ˙̂x− Q̇x̂− 1

γ2
QGG′Qx̂− JxA

′Qx̂+QA(0, u) − 2λQx̂− γ2ψ(u, y) − x̂ = 0 (12)

ċ+ 2x̂′Q ˙̂x+ x̂′Q̇x̂+
1

γ2
x̂′QGG′Qx̂− x̂′QA(0, u) + 2λx̂′Qx̂+ 2λc

−γ2‖
(
I − Yv(y)Y

⊥
v (y)

)(
E(0, u, 0)y − C(0, u)

)
‖2 + ‖x̂‖2 = 0 (13)

Substituting (11) in (12), we obtain

−Q̇ = Q(JxA+ λI) + (JxA+ λI)′Q+ γ−2QGG′Q− γ2Ψ(u, y) + I (14)

Q ˙̂x = QA(x̂, u) − γ2Ψ(u, y)x̂− γ2ψ(u, y) (15)

Since the solution P to (6) is positive definite (cf. Lemma 4 in Appendix), then P−1 is defined on [0, T ).

Using the fact that Ṗ−1 = −P−1ṖP−1, it is straightforward to show that both P−1 and Q satisfy (14).

Since P (0) = P0, by unicity of solution, Q(t) = Q−1(t), ∀t ∈ [0, T ). Therefore (14)–(15) and (6)–(7) are

equivalent. 2

To guarantee that the H∞ state estimate has a global solution (T = ∞), the value of γ should be suffi-

ciently large. In particular, a sufficient condition for this is given by the following observability condition.
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Lemma 2 (Observability condition) The H∞ estimator (6)–(7) has a global solution and

Q(t) ≥ δI > 0, ∀t ≥ 0, (16)

for some δ > 0, if there exists a sufficiently large γ > 0 such that the following condition

γ2W0(t) ≥
∫ t

0

Φ(τ, t)′Φ(τ, t)dτ + δI ∀t ≥ 0 (17)

holds, where

W0(t) :=

∫ t

0

Φ(τ, t)′Ψ(u, y)Φ(τ, t)dτ, (18)

and Φ(t, τ) denotes the state transition matrix of ż = (JxA+ γ−2GG′Q+ λI)z.

Proof. To prove this lemma we observe that (14) can also be written as

Q̇ = −Q(JxA+ γ−2GG′Q+ λI) − (JxA+ γ−2GG′Q+ λI)′Q+ γ−2QGG′Q+ γ2Ψ(u, y) − I,

and, therefore,

Q(t) = Φ(0, t)′P−1
0 Φ(0, t) +

∫ t

0

Φ(τ, t)′
(
γ−2QGG′Q+ γ2Ψ(u, y) − I

)
Φ(τ, t)dτ. (19)

This can be verified by taking derivatives of the candidate expression (19) forQ. Now, since Φ(t, 0)P−1
0 Φ(t, 0)′ >

0 and γ−2QGG′Q ≥ 0, from (19) and (17)–(18) we conclude that Q(t) ≥ Φ(0, t)′P−1
0 Φ(0, t)+δI for all t ≥ 0.

Therefore, the smallest singular value of Q remains strictly positive for every finite time t, which implies

that P (t) = Q−1(t) remains bounded for every finite t. Global existence of solutions to (6) follows. 2

3.2. Estimator convergence

We are now interested in determining under what conditions does the state estimate x̂ converges to the

true state x. The following result provides an input-to-state (ISS) stability condition for the estimation error.

Theorem 3 (Convergence) Assuming that the solutions to the system with implicit outputs (1)–(2) and

to state estimator (6)–(7) exist on [0, T ), T ∈ [0,∞], Q(t) ≥ δI, and λ > 0, then there exist positive

constants c, κ, γw, γv such that

‖x̃(t)‖ ≤ ce−κt‖x̃(0)‖ + γw sup
τ∈[0,t)

‖w(τ)‖ + γv sup
τ∈[0,t)

‖v(τ)‖, ∀t ∈ [0, T ) (20)

where x̃(t) := x̂(t) − x(t) denotes the state estimation error.

Proof. From (1) and (7) we conclude that

˙̃x = (JxA− γ2PΨ(u, y))x̃− γ2P (Ψ(u, y)x+ ψ(u, y)) −Gw

= (JxA− γ2PΨ(u, y))x̃− γ2P
[
(Yx(u, y) − JxC)′(I − Yv(y)Y

⊥
v (y))′(I − Yv(y)Y

⊥
v (y))(v − Yv(y)v) −Gw

= (JxA− γ2PΨ(u, y))x̃− γ2P
[
(Yx(u, y) − JxC)′(I − Yv(y)Y

⊥
v (y))′(I − Yv(y)Y

⊥
v (y))v −Gw (21)

Defining V (x̃) := x̃′Qx̃, Q := P−1, computing its time-derivative, and using (14), we obtain
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V̇ = x̃′(Q̇+QJxA+ JxA
′Q− 2γ2Ψ(u, y))x̃− 2x̃′QGw

− 2γ2(Yx(u, y) − JxC)′(I − Yv(y)Y
⊥
v (y))′(I − Yv(y)Y ⊥

v (y))v

= −x̃′
( 1

γ2
QGG′Q+ 2λQ+ γ2Ψ(u, y) + I

)

x̃

− 2x̃′QGw − 2γ2(Yx(u, y) − JxC)′(I − Yv(y)Y ⊥
v (y))′(I − Yv(y)Y ⊥

v (y))v

By completing the squares, we further conclude that

V̇ = −x̃′(2λQ+ I)x̃− 1

γ2
‖G′Qx̃+ γ2w‖2 + γ2‖w‖2

− γ2‖(I − Yv(y)Y
⊥
v (y))(Yx(u, y) − JxC)x̃+ v‖2 + γ2‖v‖2

≤ −(2λ+ 1/λmax(Q))V + γ2‖w‖2 + γ2‖v‖2

≤ −(2λ+ 1/λmax(Q))(1 − θ)V, for all V ≥ γ2

(2λ+ 1/λmax(Q))θ
(‖w‖2 + ‖v‖2),

where θ ∈ (0, 1). It is now straightforward to conclude that the input-to-state stability bound (20) holds

with c =

√
λmax(P−1

0
)

δ , κ = (λ+ 1
2λM

)(1 − θ), γw = γv = γ√
(2λ+1/λM )θ

, where λM = supτ∈[0,T ) λmax(Q(τ)).

2

4. Autonomous vehicles motion estimation using CCD cameras and inertial sensors

In this section we show how one can estimate the position and attitude of an autonomous vehicle with

respect to an inertial coordinate frame defined by visual landmarks using both measurements from an inertial

measurement unit (IMU) and a monocular charged-coupled-device (CCD) camera mounted on-board. We

do this by reducing the problem to the estimation of the state of a system with implicit outputs of the form

(1)–(2).

4.1. Kinematic equations of motion

Let {I} be an inertial coordinate frame and {B} a body-fixed coordinate frame whose origin is located

e.g. at the center of mass of the vehicle. The configuration of the vehicle
(

I
BR,

IpB

)
or for simplicity of

notation (R, p), is an element of the Special Euclidean group SE(3) := SO(3) × R
3, where R ∈ SO(3) :=

{R ∈ R
3×3 : RR′ = I3,det(R) = +1} is a rotation matrix that describes the orientation of the vehicle by

mapping body coordinates into inertial coordinates, and p ∈ R
3 is the position of the origin of {B} in {I}.

Denoting by v ∈ R
3 and ω ∈ R

3 the linear and angular velocities of the vehicle relative to {I} expressed in

{B}, respectively, the following kinematic relations apply:

ṗ = Rv, (22)

Ṙ = RS(ω), (23)

where S(·) is a function from R
3 to the space of skew-symmetric matrices S := {M ∈ R

3×3 : M = −M ′}
defined by

S(x) :=
[ 0 −x3 x2

x3 0 −x1

−x2 x1 0

]

, ∀x := (x1, x2, x3) ∈ R
3.
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Let {V } be another inertial coordinate frame, but this one defined by visual landmarks. The objective is

to determine the position VpB ∈ R
3 and orientation V

BR ∈ SO(3) of the vehicle with respect to the visual

coordinate system {V }. It is assumed that the position and orientation of {I} with respect to the visual

coordinate frame {V } are unknown.

4.2. Sensor Measurements

We consider that the IMU provides the vehicle’s linear velocity v, angular velocity ω, and pose (position

and attitude) with respect to some inertial coordinate frame {I}. The measurements are denoted by

ζ1 = v,

ζ2 = ω,

ζ3 = p, (24)

ζ4 = R, (25)

where ζ1 ∈ R
3, ζ2 ∈ R

3, ζ3 ∈ R
3, and ζ4 ∈ SO(3).

We also suppose that there is a camera attached to the vehicle that sees N points qi = (xi, yi, zi)
′,

i = 1, 2, . . . , N with known coordinates in the visual coordinate system {V }. Denoting by ζi+4 ∈ R
3 the

homogeneous image coordinates provided by the camera of the point qi, the following relationships apply:

µi+4ζi+4 = F Cqi, (26)

[ 0 0 1 ] ζi+4 = 1, ∀i ∈ {1, 2, . . . , N} (27)

where Cqi is the position of qi expressed in the camera’s frame {C}, µi+4 ∈ R captures the depth of the

point Cqi (which is unknown), and F is an upper triangular matrix with the camera’s intrinsic parameters,

of the form
[ f11 f12 f13

0 f22 f23

0 0 1

]

,

where each fij denotes a scalar [18, Chapter 3].

Given the measurements ζi, i = 1, . . . , N + 4, we now proceed with the formulation of a system with

implicit outputs.

4.3. System with implicit outputs

Let Vq1 and Bq1 be the coordinates of a point q1 in the frames {V } and {B}, respectively. Then, the

following holds:

Vq1 = VpB + V
BR

Bq1. (28)

From this and (22)–(23), we obtain the state equations

Bq̇1 = V
BR

′ Vq̇1 − S(ω) Bq1 − v, (29)

V
BṘ = −S(ω) V

BR
′. (30)
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To obtain the output equations for the vision system, we first note that if Vqj and Bqj denote the coordinates

of another point qj in the frames {V } and {B}, respectively, we conclude that

Bqj = V
BR

′ Vqj − V
BR

′ VpB

= V
BR

′
(

Vqj − Vq1
)

+ Bq1.

Using now (26) and the fact that Cqi = CpB + C
BR

Bqi, we obtain the output equations

µi+4ζi+4 = F
(

CpB + C
BR

V
BR

′
(

Vqi − Vq1
)

+ C
BR

Bq1

)

, ∀i ∈ {1, 2, . . . , N} (31)

where
(

C
BR,

CpB

)
∈ SE(3) denotes the configuration of the frame {B} with respect to the camera’s frame

{C}.
We will regard ζ1 and ζ2 as inputs to the implicit output system. The dynamics of (24)–(25) can be

written as

˙︷ ︸︸ ︷
V
BR

′ VpI = −S(ω) V
BR

′ VpI , (32)

V
IṘ

′ = 0, (33)

with the output equations

ζ ′4ζ3 = V
BR

′ Vq1 − Bq1 − V
BR

′ VpI , (34)

ζ4
V
I R

′ = V
BR

′. (35)

Thus, our implicit output system is composed by (32)–(33), (29)–(30), (34)–(35) and (31). We now need to

rewrite it in the form (1)–(2).

To proceed we use the following notation: Given an m × n-matrix M , we denote by stack(M) the mn-

vector obtained from stacking the columns of M one on top of each other, with the first column on top.

Given two matrices Mi ∈ R
mi×ni , i ∈ {1, 2} we denote by M1⊗M2 ∈ R

m1m2×n1n2 the Kronecker product of

M1 by M2. Using the fact that given three matrices A, B, X with appropriate dimensions, stack(AX B) =

(B′ ⊗A) stack(X) [11], we can rewrite (32)–(33), (29)–(30), (31), (34)–(35) as follows:

˙︷ ︸︸ ︷
V
BR

′ VpI = −S(ω) V
BR

′ VpI , (36)

stack(V
I Ṙ

′) = 09×1 (37)

Bq̇1 = −S(ω) Bq1 − v +
(

Vq̇′1 ⊗ I3×3

)
stack( V

BR
′), (38)

stack(V
BṘ

′) =
(
I3×3 ⊗−S(ω)

)
stack( V

BR
′), (39)

ζ ′4ζ3 =
(V
q′1 ⊗ I3×3

)
stack( V

BR
′) − Bq1 − V

BR
′ VpI , (40)

(
V
I R⊗ I3×3

)
stack(ζ4) = stack( V

BR
′), (41)

µi+4ζi+4 = F CpB +
[(

Vqi − Vq1
)′ ⊗ F C

BR
]
stack( V

BR
′) + F C

BR
Bq1 (42)

Thus, defining the vectors x ∈ R
24, y ∈ R

12+N , and u ∈ R
6 as

x :=





V
B R′ VpI

stack( V
I R′)

Bq1

stack( V
B R′)



 , y :=







ζ′

4ζ3

stack(ζ4)
ζ5

...
ζ4+N






, u :=

[
ζ1

ζ2

]

,
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it follows that system (36)–(42) can be expressed in the form (1)–(2) with

A(x, u) :=

[
−S(ω) 0 0 0

0 0 0 0
0 0 −S(ω) Vq̇′

1⊗I3×3

0 0 0 I3×3⊗−S(ω)

]

x+

[
0
0

−v
0

]

,

C(x, u) :=









−I 0 −I Vq′

1⊗I3×3

0 0 0 I
0 0 F C

BR 0

0 0 F C
BR ( Vq2−

Vq1)
′
⊗F C

BR

0 0 F C
BR ( Vq3−

Vq1)
′
⊗F C

BR
··· ··· ··· ···

0 0 F C
BR ( Vq2+N−

Vq1)
′
⊗F C

BR









x+








0
0

F CpB
.
...
.

F CpB








To determine E(x, u, v) we introduce additive noise to (26), i.e.,

µi+4ζi+4 = F Cqi + vi, i = 1, . . . , N (43)

Note that noise does not destroy the constraint (27).

From (43), (27) and (31) we conclude that

µi+4 = [ 0 0 1 ]F
[

CpB + C
BR

V
BR

′
(

Vqi − Vq1
)

+ C
BR

Bq1
]
+ vi, ∀i ∈ {1, 2, . . . , N}.

Thus,

E(x, u, v) :=








I 0 ··· ··· ··· 0
0 V

I R⊗I3×3 0 ··· ··· 0
0 0 µ3 0 ··· 0
0 ··· 0 µ4 ··· 0

0 ··· ··· ···
. . . 0

0 ··· ··· ··· 0 µ2+N








and in particular

Ev1
= diag{03×3, 09×9, 1, 0, . . . , 0},

Evj
= diag{03×3, 09×9, 0..., 1, .., 0},

EvN
= diag{03×3, 09×9, 0, . . . , 0, 1}.

We can now use the results given in the previous sections to compute x̂. From Bq̂1 and V
BR̂

′, the position
VpB can also be estimated using

VP̂B = Vq1 −V
B R̂Bq̂1.

4.4. Simulation Results

We now illustrate the performance of the proposed estimator through computer simulation. The au-

tonomous vehicle starts at the origin VpB = 0 with orientation V
BR = I and follows a circular path with

a camera looking up at four non-coplanar points. The linear velocity is v = [0.3, 0, 0]′m/s and the angu-

lar velocity is ω = [0, 0, 0.2]′ rad/s. The measurements were corrupted with additive Gaussian noise with

standard deviation equal to roughly 5% of the measurements.

Fig. 1 displays the time evolution of the estimation errors. It can be seen that the estimated pose without

noise converges to zero (see Fig. 1(a)) and in the presence of noise tend to a small neighborhood of the true

value (see Fig. 1(b)).
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5. Conclusions

We considered the problem of estimating the state of a system with implicit outputs. We designed es-

timators using a deterministic H∞ approach that are globally convergent under appropriate observability

assumptions and can therefore, be used to design output-feedback controllers. We apply these results to the

estimation of position and attitude of an autonomous vehicle using measurements from an inertial measure-

ment unit and a monocular charged-coupled-device camera attached to the vehicle. The estimation problem

in the presence of latency and intermittency of the observations is a topic of current research. Another issue

for future research is the study of the complexity and performance of the proposed estimator algorithm as

the number of features N increase.

Appendix

Lemma 4 Assuming that (6) has a solution on [0, T ), T ∈ [0,∞], then P (t) is positive definite for all

t ∈ [0, T ).

Proof. Observe that (6) can also be written as

Ṗ =
[
JxA(u) + λI − γ2

2
P (Ψ(u, y) − γ−2I)

]
P + P

[
JxA(u) + λI − γ2

2
P (Ψ(u, y) − γ−2I)

]′
+ γ−2GG′,

and, therefore,

P (t) = Φ(0, t)′P0Φ(0, t) + γ−2

∫ t

0

Φ(τ, t)′GG′Φ(τ, t)dτ, t ∈ [0, T ), (44)

where Φ(t, τ) denotes the state transition matrix of ż = −(JxA(u) + λI − γ2

2 P (Ψ(u, y)− γ−2I))z. This can

be verified by taking derivatives of the candidate expression (44) for P , i.e.,

Ṗ = (JxA(u) + λI − γ2

2
P (Ψ(u, y) − γ−2I))′Φ(0, t)′P0Φ(0, t)

+ Φ(0, t)′P0Φ(τ, t)(JxA(u) + λI − γ2

2
P (Ψ(u, y) − γ−2I))

+ γ−2GG′ + γ−2(JxA(u) + λI +
γ2

2
P (Ψ(u, y) − γ−2I))′

∫ t

0

Φ(τ, t)′GG′Φ(τ, t)dτ

+ γ−2

∫ t

0

Φ(τ, t)′GG′Φ(τ, t)dτ(JxA(u) + λI − γ2

2
P (Ψ(u, y) − γ−2I))

=
[
JxA(u) + λI − γ2

2
P (Ψ(u, y) − γ−2I)

]
P + P

[
JxA(u) + λI − γ2

2
P (Ψ(u, y) − γ−2I)

]′
+ γ−2GG′.

Here, we used the fact that, for every fixed τ ,

d

dt
Φ(τ, t) = −Φ(t, τ)−1

( d

dt
Φ(t, τ)

)

Φ(t, τ)−1

= Φ(t, τ)−1(JxA(u) + λI − γ2

2
P (Ψ(u, y) − γ−2I))Φ(t, τ)Φ(t, τ)−1

= Φ(τ, t)(JxA(u) + λI − γ2

2
P (Ψ(u, y) − γ−2I)).

Now, since Φ(t, 0)P0Φ(t, 0)′ > 0 and GG′ ≥ 0, from (44) we conclude that P (t) remains positive definite for

all t ∈ [0, T ). 2
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Fig. 1. Time evolution of the estimation errors in position and orientation. The orientation errors labeled R1, R2, and R3

correspond to the estimation errors for the first, second, and third columns of V

B
R, respectively.
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