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João Xavier and Marko Stoŝić were partially supported by grant SIPM PTDC/EEA-
ACR/73749/2006, Marija Dodig was partially supported by the Fundação para a
Ciência e Tecnologia (Portugal) through the project ISFL-1-1431 and scholarship
SFRH/BPD/26607/2006.

2Corresponding author: mstosic@isr.ist.utl.pt



Abstract

We give an efficient, quick algorithm for the minimization of a quadratic
function over Stiefel manifold. We reduce the original (nonconvex) problem,
to an SDP, by computing a convex hull of the certain set of matrices.
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1 Introduction

Many important optimization problems can be written as the minimization
over the set of Stiefel matrices, i.e. the matrices whose columns form an
orthonormal set. The important particular case is when the Stiefel matrices
in question are of the size 3 × 2, i.e. when we are observing the set of all
matrices Q ∈ R3×2, such that QT Q = I2.

In this paper, we deal with the following Quadratic Programming prob-
lem:

(arg) min
q=vec(Q)

qT Cq, (1)

where Q ∈ R3×2 runs through Stiefel matrices, and C ∈ R6×6 is a given
matrix. This problem is indeed a quadratic programming problem since the
vector q ∈ R6×1 is of the form vec(Q) for some Stiefel matrix Q iff

qT

[
I3 0
0 0

]
q = 1,

qT

[
0 0
0 I3

]
q = 1,

qT

[
0 I3

0 0

]
q = 0.

The set over which we are minimizing is non-convex, and we managed to com-
pute its convex hull (tight convex relaxation), so that the problem becomes
an SDP, and thus easily resolvable via SeDuMi MATLAB toolbox.

2 Solution

Since we are minimizing a quadratic function over the set given by three
quadratic restrictions, it is beyond the scope of the known general techniques
(see Polyak [1]). Thus, we needed to apply some new techniques.

Problem (1) can be re-written in the following way:

min
q=vec(Q)

qT Cq = min
q=vec(Q)

Tr(CqqT ) = min
X∈S

Tr(CX),

where S is the set of matrices X of the form qqT with q = vec(Q), i.e. S

is the set of all real symmetric 6 by 6 matrices X =

[
X11 X12

X21 X22

]
, with
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X11 ∈ R3×3, satisfying the following

X < 0, (2)

Tr(X11) = Tr(X22) = 1, Tr(X12) = 0, (3)

rank X = 1. (4)

Because of the rank constraint the set S is non-convex. Since the cost
function is linear we have

min
X∈S

Tr(CX) = min
X∈co(S)

Tr(CX),

where co(S) is the convex hull of the set S, i.e. the set of all convex combi-
nations c1X1 + c2X2 + . . . + ckXk, where Xi ∈ S, i = 1, . . . , k, and ci’s are
nonnegative such that c1 + c2 + · · · + ck = 1. In other words, the convex
hull of the set S is the smallest convex set (with respect to inclusion) that
contains the set S.

The “standard” convex relaxation - simply loosing the rank constraint is
not the correct choice, as can be shown by the following example:

Example 1 The matrix

M =




1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

satisfies the conditions (2) and (3). However, it doesn’t belong to the convex
hull of S. Indeed, if there exists nonnegative numbers c1, . . . , ck such that
c1 + c2 + · · ·+ ck = 1, and the matrices M1, . . . , Mk ∈ S, such that

M = c1M1 + · · ·+ ckMk,

then we would have that in all matrices Mi, entries at the positions (2,2),
(3,3), (5,5) and (6,6) are zero, and consequently all entries in the second,
third, fifth and sixth rows and columns are zero (all matrices are positive
semi-definite). However, matrix M1 being from S is of the form qqT for
some q = vec(Q), and thus the corresponding matrix Q would be of the form

Q =



∗ ∗
0 0
0 0


 .

The last is impossible, since Q is the Stiefel matrix.
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So, we want to compute co(S), and if possible, to describe it by linear
matrix inequalities. The set S is not convex because of the rank condition
(4), and hence we want to find its relaxation, by introducing some further
constraints.

To that end, let Q ∈ R3×2 be a Stiefel matrix, and denote its columns by
q1 and q2. Then the vector q = vec(Q) ∈ R6×1 is given by qT = [qT

1 qT
2 ], and

the matrix X = qqT belongs to S.
The vectors q1, q2 and their cross-product q1 × q2 form an orthonormal

basis, and consequently the sum of projectors to these three vectors is equal
to the identity matrix I3. Moreover, we have an access to the entries of q1×q2

as linear functions of the entries of the off-diagonal block X12. So, we have
that the matrices X ∈ S satisfy

vvT + X11 + X22 = I3, (5)

where

v = v(X) :=




b23 − b32

b31 − b13

b12 − b21


 (6)

with X12 = [bij].
Thus, we have that every matrix X ∈ co(S) satisfy the following addi-

tional condition
vvT + X11 + X22 4 I3, (7)

where v is defined as above. Indeed, as we saw, all matrices from S satisfy
(7). Moreover, if matrices X ′ and X ′′ satisfy (7) (the corresponding vectors
v(X ′) and v(X ′′) are denoted by v1 and v2, respectively), and if c1 and c2 are
nonnegative and such that c1 + c2 = 1, then the matrix Y := c1X

′ + c2X
′′

also satisfy (7):

v(Y )v(Y )T + Y11 + Y22 = (c1v1 + c2v2)(c1v
T
1 + c2v

T
2 ) + c1X

′
11 + c1X

′
22 +

+c2X
′′
11 + c2X

′′
22 =

= c1(v1v
T
1 + X ′

11 + X ′
22) + c2(v2v

T
2 + X ′′

11 + X ′′
22)−

−c1c2(v1 − v2)(v1 − v2)
T 4

4 c1I3 + c2I3 = I3.

We can write the formula (7) as Linear Matrix Inequality

[
I3 −X11 −X22 v

vT 1

]
< 0. (8)
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It is straightforward to see that this new condition easily discards the
matrix from Example 1.

Thus we have proved the following:

Proposition 1 The convex hull co(S) satisfies the following:

co(S) ⊂





X

X < 0,
Tr(X11) = Tr(X22) = 1,

Tr(X12) = 0,[
I3 −X11 −X22 v

vT 1

]
< 0





.

Moreover, we conjecture that the converse is also valid:

Conjecture 1 Let Σ be the following set of symmetric 6× 6 matrices:

Σ =





X

X < 0,
Tr(X11) = Tr(X22) = 1,

Tr(X12) = 0,[
I3 −X11 −X22 v

vT 1

]
< 0





.

Then we have
co(S) = Σ.

Although we don’t have the complete rigorous proof of this conjecture,
we have some quite strong evidence of its validity. First of all, we run the
tests on very large number of randomly genereated matrices (10000), and
the results were always correct, i.e. randomly generated matrix from Σ was
always in the convex hull of the set S.

In order to prove Σ ⊂ co(S), we need to prove that every matrix X ∈ Σ
can be written as a convex combination of the matrices from S, i.e. that there
exist positive real numbers c1, . . . , ck ≥ 0, with

∑k
i=1 ci = 1, and matrices

X1, . . . , Xk ∈ S, such that

X =
k∑

i=1

ciXi.

So, let X ∈ Σ be arbitrary. First of all, note that if P ∈ R3×3 is the

orthogonal matrix, then the matrix

[
X11 X12

X21 X22

]
is from Σ (or from S) if

and only if the matrix
[

P 0
0 P

] [
X11 X12

X21 X22

] [
P T 0
0 P T

]
, (9)
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is from Σ (or respectively from S). Hence, it is enough to show that for some
orthogonal matrix P , the matrix (9) is from co(S).

Denote by v =




x
y
z


 the vector that corresponds to X by (6) (for a

matrix Y ∈ Σ, we shall denote the corresponding vector by v(Y )). Then,
since the condition (8) can be written as

X11 + X22 + vvT 4 I3,

and since X11 and X22 are positive semi-definite, we have that ||v|| ≤ 1.

We have managed to give the complete proofs of the conjecture in some
particular cases. Below, we include the proofs for two of them: the first one
when ||v|| = 1 and the second one when rank(X11 +X22) = 2. As can be seen
from these proofs, they are quite involved and messy, and we expect that the
general proof will be along the same lines.

Proof of the two particular cases:

Case 1: ||v|| = 1

Then x2+y2+z2 = 1, and there exists the orthogonal matrix P , such that

Pv =




0
0
1


. Moreover, denote D = B − BT . Then, D is skew-symmetric,

and it has the form:

D =




0 z −y
−z 0 x
y −x 0


 .

Then we have
D2 = vvT − ||v||2I3 = vvT − I3.

Moreover, if D′ = PDP T , and w = v(D′), then we have that ||D′||2 =
||D||2 = 2, and so ||w|| = 1. Also, as above we have

D′2 = wwT − ||w||2I3 = wwT − I3,

and so
(Pv)(Pv)T = wwT .

Hence we have

w = ±Pv =




0
0
±1


 .
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If the sign is positive, we define P ′ = P , while if it is negative, we define

P ′ =




0 1 0
1 0 0
0 0 1


P.

Then, by applying the similarity operation (9) on the matrix X with the
orthogonal matrix P ′ instead of P , we obtain the matrix X ′ of the form:

X ′ =
[

A′ B′

B′T C ′

]
, (10)

with

B′ −B′T =




0 1 0
−1 0 0
0 0 0


 .

So, we are left with proving that such matrices X ′ ∈ Σ belong to co(S).
From the conditions (8) and the trace condition in the Conjecture 1 we have
that

A′ + C ′ =




1 0 0
0 1 0
0 0 0


 .

Moreover, since they are positive semi-definite, we have that A′
33 = C ′

33 = 0,
and hence the whole third and sixth row and column of X ′ are equal to zero.
Also, the only matrices from S which can make the convex combination of
X ′ must have the same property, and from now on we can restrict only to
the submatrix of X ′ formed by the first, second, fourth and fifth rows and
columns. Then we have that the obtained matrix (still denoted by X ′) is of
the following form:

X ′ =




a1 a2 b1 b2 + 1
a2 1− a1 b2 −b1

b1 b2 1− a1 −a2

b2 + 1 −b1 −a2 a1


 ,

for some a1, a2, b1, b2 ∈ R. From the positive semi-definiteness (non-negativity
of the principal minors), we obtain the following inequalities for the minors
of the dimension 1 and 2:

a1(1− a1) ≥ a2
2, (11)

a2
1 ≥ (b2 + 1)2, (12)

(1− a1)
2 ≥ b2

2, (13)

a1(1− a1) ≥ b2
1. (14)
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From the (11)-(13) we have b2 = a1 − 1. Moreover, the principal 3 by 3
minor, gives:

(a1 − 1)(a2 + b1)
2 ≥ 0.

The case a1 = 1, automatically gives the matrix from S. If a1 < 1, then we
must have b1 = −a2, and so our matrix has the form

X ′ =




a1 a2 −a2 a1

a2 1− a1 a1 − 1 a2

−a2 a1 − 1 1− a1 −a2

a1 a2 −a2 a1


 . (15)

The matrices from S have the similar form:



cos2ϕ sinϕcosϕ −sinϕcosϕ cos2ϕ
sinϕcosϕ sin2ϕ −sin2ϕ sinϕcosϕ
−sinϕcosϕ −sin2ϕ sin2ϕ −sinϕcosϕ

cos2ϕ sinϕcosϕ −sinϕcosϕ cos2ϕ


 ,

with ϕ ∈ R. Hence we are left with proving that the point (a1, a2) ∈ R2 is in
the convex hull of the set K = {(cos2ϕ, sinϕcosϕ)|ϕ ∈ [0, 2π]}. However, K
is in fact the circle given by the equation (x− 1

2
)2+y2 = (1

2
)2, i.e. x2+y2 = x,

while from (11) we have that the point (a1, a2) is inside this circle, which
finishes our proof in this case.

Moreover, we have obtained that matrices of the form (15) with a2
1 +a2

2 ≤
a1 belong to co(S) (remember that the third and the sixth rows and columns
are zero). Analogously, we can obtain the matrices of the form




a1 a2 a2 −a1

a2 1− a1 1− a1 −a2

a2 1− a1 1− a1 −a2

−a1 −a2 −a2 a1


 , (16)

with a2
1 + a2

2 ≤ a1 also belong to co(S).

Case 2: rank(X11 + X22) = 2

In this case, from the condition (8) we have that there exists orthogonal
P ∈ R3×3 such that

P (X11 + X22)P
T =




1 0 0
0 1 0
0 0 0,


 ,
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and such that PX11P
T is diagonal. Again, as in the previous case, this

implies that the third and sixth rows and colums are zero, and hence we are
left with proving that the positive semi-definite matrix of the form

X =




a1 0 b1 b2 + x
0 1− a1 b2 −b1

b1 b2 1− a1 0
b2 + x −b1 0 a1


 , (17)

with −1 < x < 1 is from co(S). We shall show that it can be written as
the convex combination of the matrices of the form (15) and (16). Namely,
we shall show that there exists m1,m2, n1, n2 ∈ R, with m2

1 + m2
2 ≤ m1 and

n2
1 + n2

2 ≤ n1 such that

X =
1 + x

2




m1 m2 −m2 m1

m2 1−m1 m1 − 1 m2

−m2 m1 − 1 1−m1−m2

m1 m2 −m2 m1


 +

1− x

2




n1 n2 n2 −n1

n2 1− n1 1− n1−n2

n2 1− n1 1− n1−n2

−n1 −n2 −n2 n1


 .

(18)
Straightforward computation gives the unique solution of (18):

m1 =
a1 + b2 + x

1 + x
,

m2 = − b1

1 + x
,

n1 =
a1 − b2 − x

1− x
,

n2 =
b1

1− x
.

Hence, we are left with proving that m2
1 + m2

2 ≤ m1 and n2
1 + n2

2 ≤ n1, i.e.

b2
1 ≤ min{(a1 + b2 + x)(1− a1 − b2), (a1 − b2 − x)(1− a1 + b2)}. (19)

In order, to prove this, we will use that X < 0, and in particular that its
determinant is nonnegative, which gives:

b4
1−2(a1(1−a1)−b2(b2+x))b2

1+(1−a1−b2)(1−a1+b2)(a1−b2−x)(a1+b2+x) ≥ 0.
(20)

Denote A = a1(1− a1)− b2(b2 + x) and B = (1− a1 − b2)(1− a1 + b2)(a1 −
b2 − x)(a1 + b2 + x). Then we have

A2 −B = (a1b2 − (1− a1)(b2 + x))2,
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and so (20) is equivalent to

b2
1 ≤ A−

√
A2 −B or b2

1 ≥ A +
√

A2 −B. (21)

However, from the non-negativity of the principal 3 by 3 minors we obtain
that

b2
1 ≤ a1(1− a1)−max

{
a1b

2
2

1− a1

,
(1− a1)(b2 + x)2

a1

}
.

Since the geometric mean of the two expression in which maximum we are
interested in is |b2(b2 + x)|, we obtain

b2
1 ≤ a1(1− a1)− |b2(b2 + x)| ≤ A.

Thus (21), we have

b2
1 ≤ a1(1− a1)− b2(b2 + x)− |a1b2 − (1− a1)(b2 + x)|.

Finally, this gives

b2
1 ≤ min{a1(1− a1)− b2(b2 + x)− a1b2 + (1− a1)(b2 + x),

a1(1− a1)− b2(b2 + x) + a1b2 − (1− a1)(b2 + x)} =

= min{(a1 + b2 + x)(1− a1 − b2), (a1 − b2 − x)(1− a1 + b2)},

which gives (19), as wanted.

3 Algorithm and numerical experiments

By using the results from the prevous section, we can replace our problem
(1) with the equivalent problem of finding the minimum of a linear function
(Tr(CX)) on a convex set (Σ = co(S)), which is given only by LMI’s. Hence,
this problem can be easily solved by semi-definite programming (SDP).

We implemented this algorithm in SeDuMi toolbox of MATLAB, and we
quickly obtain the solution matrix X of rank 1.

We run more than 10000 experiments with randomly generated matrix C,
and in 100% of cases our algorithm always returned a minimization matrix
X of rank 1, and thus belonging to the set S, as wanted.

By factorizing X = qqT , we obtain the wanted Stiefel matrix Q ∈ R3×2

as Q = vec−1(q).
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