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Abstract

We address the problem of computing the
optimal Q-function in Markov decision prob-
lems with infinite state-space. We analyze
the convergence properties of several vari-
ations of Q-learning when combined with
function approximation, extending the anal-
ysis of TD-learning in (Tsitsiklis & Van Roy,
1996a) to stochastic control settings. We
identify conditions under which such approx-
imate methods converge with probability 1.
We conclude with a brief discussion on the
general applicability of our results and com-
pare them with several related works.

1. Introduction

Convergence of Q-learning with function approxima-
tion has been a long standing open question in rein-
forcement learning (Sutton, 1999). In general, value-
based reinforcement learning (RL) methods for opti-
mal control behave poorly when combined with func-
tion approximation (Baird, 1995; Tsitsiklis & Van Roy,
1996a). In this paper, we address this problem by an-
alyzing the convergence of Q-learning when combined
with linear function approximation. We identify a set
of conditions that imply the convergence of this ap-
proximation method with probability 1 (w.p.1), when
a fixed learning policy is used, and provide an interpre-
tation of the resulting approximation as the fixed point
of a Bellman-like operator. This motivates the analy-
sis of several variations of Q-learning when combined
with linear function approximation. In particular, we
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study a variation of Q-learning using importance sam-
pling and an on-policy variant of Q-learning (SARSA).

The paper is organized as follows. We start in Sec-
tion 2 by describing Markov decision problems. We
proceed with our analysis of the Q-learning algorithm
and its variants, and produce our main results in Sec-
tion 3. We also compare our results with other related
works in the RL literature. We conclude with some
further discussion in Section 4.

2. Markov Decision Problems

Let (X,A,P, r, γ) be a Markov decision problem
(MDP) with a compact state-space X ⊂ Rp and a
finite action set A. The action-dependent kernel Pa
defines the transition probabilities for the underlying
controlled Markov chain {Xt} as

P [Xt+1 ∈ U | Xt = x,At = a] = Pa(x, U),

where U is any measurable subset of X . The A-valued
process {At} represents the control process: At is the
control action at time instant t.1 Solving the MDP
consists in determining the control process {At} max-
imizing the expected total discounted reward

V
(
{At} , x

)
= E

[ ∞∑
t=0

γtR(Xt, At) | X0 = x

]
,

where 0 ≤ γ < 1 is a discount-factor and R(x, a)
represents a random “reward” received for taking ac-
tion a ∈ A in state x ∈ X . For simplicity of no-
tation, we consider a bounded deterministic function
r : X ×A× X −→ R assigning a reward r(x, a, y) ev-
ery time a transition from x to y occurs after taking

1We take the control process {At} to be adapted to the
σ-algebra induced by {Xt}.
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action a. This means that

E [R(x, a)] =
∫
X
r(x, a, y)Pa(x, dy).

The optimal value function V ∗ is defined for each state
x ∈ X as

V ∗(x) = max
{At}

V
(
{At} , x

)
=

= max
{At}

E

[ ∞∑
t=0

γtR(Xt, At) | X0 = x

]
and verifies the Bellman optimality equation

V ∗(x) = max
a∈A

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy). (1)

V ∗(x) represents the expected total discounted reward
received along an optimal trajectory starting at state
x. We can also define the optimal Q-function Q∗ as

Q∗(x, a) =
∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy), (2)

representing the expected total discounted reward
along a trajectory starting at state x obtained by
choosing a as the first action and following the optimal
policy thereafter. The control process {At} defined as

At = arg max
a∈A

Q∗(Xt, a), ∀t,

is optimal in the sense that V ({At} , x) = V ∗(x) and
defines a mapping π∗ : X → A known as the optimal
policy. The optimal policy determines the optimal de-
cision rule for a given MDP.

More generally, a (Markov) policy is any mapping πt
defined over X ×A generating a control process {At}
verifying, for all t,

P [At = a | Xt = x] = πt(x, a), ∀t.

We write V πt(x) instead of V ({At} , x) if the control
process {At} is generated by policy πt. A policy πt is
stationary if it does not depend on t and deterministic
if it assigns probability 1 to a single action in each
state and is thus represented as a map πt : X → A for
every t. Notice that the optimal control process can be
obtained from the optimal (stationary, deterministic)
policy π∗, which can in turn be obtained from Q∗.
Therefore, the optimal control problem is solved once
the function Q∗ is known for all pairs (x, a).

Now given any real function q defined over X ×A, we
define the Bellman operator

(Hq)(x, a) =
∫
X

[
r(x, a, y) + γmax

u∈A
q(y, u)

]
Pa(x, dy).

(3)

The function Q∗ in (2) is the fixed-point of H and,
since this operator is a contraction in the sup-norm, a
fixed-point iteration can be used to determine Q∗ (at
least theoretically).

2.1. The Q-Learning Algorithm

We previously suggested that a fixed-point iteration
could be used to determine the function Q∗. In prac-
tice, this requires two important conditions:

• The kernel P and the reward function r are known;

• The successive estimates for Q∗ can be repre-
sented compactly and stored in a computer with
finite memory.

If P and/or r are not known, a fixed-point iteration us-
ing H is not possible. To solve this problem, Watkins
proposed in 1989 the Q-learning algorithm (Watkins,
1989). Q-learning proceeds as follows: consider a
MDP M = (X,A,P, r, γ) and suppose that {xt} is
an infinite sample trajectory of the underlying Markov
chain obtained with some policy πt. The correspond-
ing sample control process is denoted as {at} and the
sequence of obtained rewards as {rt}. Given any ini-
tial estimate Q0, Q-learning successively updates this
estimate using the rule

Qt+1(x, a) = Qt(x, a) + αt(x, a)∆t, (4)

where {αt} is a step-size sequence and ∆t is the tem-
poral difference at time t,

∆t = rt + γmax
b∈A

Qt(xt+1, b)−Qt(xt, at). (5)

If both X and A are finite sets, each estimate Qt is
simply a |X | × |A| matrix and can be represented ex-
plicitly in a computer. In that case, the convergence of
Q-learning and several other related algorithms (such
as TD(λ) or SARSA) has been thoroughly studied (see,
for example, (Bertsekas & Tsitsiklis, 1996) and refer-
ences therein). However, if either X or A are infinite
or very large, explicitly representing each Qt becomes
infeasible and some form of compact representation is
needed (e.g., using function approximation). In this
paper, we address how several RL methods such as Q-
learning and SARSA can be combined with function
approximation and still retain their main convergence
properties.

3. Reinforcement Learning with Linear
Function Approximation

In this section, we address the problem of determining
the optimal Q-function for MDPs with infinite state-
space X . Let Q = {Qθ} be a family of real-valued
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functions defined in X × A. It is assumed that the
function class is linearly parameterized, so that Q can
be expressed as the linear span of a fixed set of M
linearly independent functions φi : X × A → R. For
each M -dimensional parameter vector θ ∈ RM , the
function Qθ ∈ Q is defined as,

Qθ(x, a) =
M∑
i=1

φi(x, a)θ(i) = φ>(x, a)θ,

where > represents the transpose operator. We will
also denote the above function by Q(θ) to emphasize
the dependence on θ over the dependency on (x, a).

Let π be a fixed stochastic, stationary policy and sup-
pose that {xt}, {at} and {rt} are sampled trajectories
of states, actions and rewards obtained from the MDP
using policy π. In the original Q-learning algorithm,
the Q-values are updated according to (4). The tem-
poral difference ∆t can be interpreted as a 1-step esti-
mation error with respect to the optimal function Q∗.
The update rule in Q-learning “moves” the estimates
Qt closer to the desired function Q∗, minimizing the
expected value of ∆t.

In our approximate setting, we apply the same under-
lying idea to obtain the update rule for approximate
Q-learning:

θt+1 = θt + αt∇θQθ(xt, at)∆t

= θt + αtφ(xt, at)∆t,
(6)

where, as above, ∆t is the temporal difference at time
t defined in (5). Notice that (6) updates θt using
the temporal difference ∆t as the error. The gradient
∇θQθ provides the “direction” in which this update is
performed.

To establish convergence of the algorithm (6) we adopt
an ODE argument, establishing the trajectories of
the algorithm to closely follow those of an associated
ODE with a globally asymptotically stable equilibrium
point. This will require several regularity properties on
the policy π and on its induced Markov chain that will,
in turn, motivate the study of the on-policy version of
the algorithm. This on-policy algorithm can be seen
as an extension of SARSA to infinite settings.

3.1. Convergence of Q-Learning

We now proceed by identifying conditions that ensure
the convergence of Q-learning with linear function ap-
proximation as described by (6). Due to space limita-
tions, we overlook some of the technical details in the
proofs that can easily be filled in.

We start by introducing some notation that will
greatly simplify the presentation. Given an MDP

M = (X,A,P, r, γ) with compact state space X ⊂ Rp,
let (X ,Pπ) be the Markov chain induced by a fixed pol-
icy π. We assume the chain (X ,Pπ) to be uniformly
ergodic with invariant probability measure µX and the
policy π to verify π(x, a) > 0 for all a ∈ A and µX -
almost all x ∈ X . We denote by µπ the probability
measure defined for each measurable set U ⊂ X and
each action a ∈ A as

µπ(U × {a}) =
∫
U

π(x, a)µX(dx).

Let now {φi, i = 1, . . . ,M} be a set of bounded, lin-
early independent basis functions to be used in our
approximate Q-learning algorithm. We denote by Σπ
the matrix defined as

Σπ = Eπ
[
φ(x, a)φ>(x, a)

]
=
∫
X×A

φ φ>dµπ

Notice that the above expression is well-defined and
independent of the initial distribution for the chain,
due to our assumption of uniform ergodicity.

For fixed θ ∈ RM and x ∈ X , define the set of maxi-
mizing actions at x as

Aθx = {a∗ ∈ A | φ>(x, a∗)θ = max
a

φ>(x, a)θ}

and the greedy policy with respect to θ as any policy
that, at each state x, assigns positive probability only
to actions in Aθx. Finally, let φx denote the row-vector
φ>(x, a), where a is a random action generated accord-
ing to the policy π at state x; likewise, let φθx denote
the row-vector φ>(x, aθx), where aθx is now any action
in Aθx. We now introduce the θ-dependent matrix

Σ∗π(θ) = Eπ
[(
φθx
)>
φθx

]
.

By construction, both Σπ and Σ∗π are positive defi-
nite, since the functions φi are assumed linearly inde-
pendent. Notice also the difference between Σπ and
each Σ∗π: the actions in the definition of the former
are taken according to π while in the latter they are
taken greedily with respect to a particular θ.

We are now in position to introduce our first result.

Theorem 1 Let M, π and {φi, i = 1, . . . ,M} be as
defined above. If, for all θ,

Σπ > γ2Σ∗π(θ) (7)

and the step-size sequence verifies∑
t

αt =∞
∑
t

α2
t <∞,
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then the algorithm in (6) converges w.p.1 and the limit
point θ∗ verifies the recursive relation

Q(θ∗) = ΠQHQ(θ∗),

where ΠQ is the orthogonal projection onto Q.2

Proof We establish the main statement of the theo-
rem using a standard ODE argument.

The assumptions on the chain (X ,Pπ) and basis func-
tions {φi, i = 1, . . . ,M} and the fact that π(x, a) > 0
for all a ∈ A and µX -almost every x ∈ X ensure the
applicability of Theorem 17 in page 239 of (Benveniste
et al., 1990). Therefore, the convergence of the algo-
rithm can be analyzed in terms of the stability of the
equilibrium points of the associated ODE

θ̇ = Eπ
[
φ>x
(
r(x, a, y) + γφθyθ − φxθ

)]
, (8)

where we omitted the explicit dependence of θ on t to
avoid excessively cluttering the expression. If the ODE
(8) has a globally asymptotically stable equilibrium
point, this implies the algorithm (6) to converge w.p.1
(Benveniste et al., 1990). Let then θ1(t) and θ2(t) be
two trajectories of the ODE starting at different initial
conditions, and let θ̃(t) = θ1(t) − θ2(t). From (8), we
get

d

dt
‖θ̃‖22 = −2θ̃>Σπ θ̃ + 2γEπ

[(
φxθ̃

)(
φθ1y θ1 − φθ2y θ2

)]
.

Notice now that, from the definition of φθ1y and φθ2y ,

φθ1y θ2 ≤ φθ2y θ2 φθ2y θ1 ≤ φθ1y θ1.

Taking this into account and defining the sets S+ =
{(x, a) | φ>(x, a)θ̃ > 0} and S− = X × A − S+, the
previous expression becomes

d

dt
‖θ̃‖22 ≤ −2θ̃>Σπ θ̃ + 2γEπ

[(
φxθ̃

)(
φθ1y θ̃

)
IS+

]
+ 2γEπ

[(
φxθ̃

)(
φθ2y θ̃

)
IS−
]
,

where IS represents the indicator function for the set
S. Applying Hölder’s inequality to each of the expec-

2The orthogonal projection is naturally defined in the
(infinite-dimensional) Hilbert space containing Q with
inner-product given by

〈f, g〉 =

∫
X×A

f g dµπ.

tations above, we get

d

dt
‖θ̃‖22 ≤ −2θ̃>Σπ θ̃

+ 2γ
√

Eπ
[
(φxθ̃)2IS+

]
Eπ
[
(φθ1x θ̃)2IS+

]
+ 2γ

√
Eπ
[
(φxθ̃)2IS−

]
Eπ
[
(φθ2x θ̃)2IS−

]
and a few simple computations finally yield

d

dt
‖θ̃‖22 ≤ −2θ̃>Σπ θ̃

+ 2γ
√
θ̃>Σπ θ̃max

(
θ̃>Σ∗π(θ1)θ̃, θ̃>Σ∗π(θ2)θ̃).

Since, by assumption, Σπ > γ2Σ∗π(θ), we can conclude
from the expression above that

d

dt
‖θ̃‖22 < 0.

This means, in particular, that θ̃(t) converges asymp-
totically to the origin, i.e., the ODE (8) is globally
asymptotically stable. Since the ODE is autonomous
(i.e., time-invariant), there exists one globally asymp-
totically stable equilibrium point for the ODE, that
verifies the recursive relation

θ∗ = Σ−1
π Eπ

[
φx
(
r(x, a, y) + γφθ

∗

y θ
∗)] . (9)

Since Σπ is, by construction, positive definite, the in-
verse in (9) is well-defined. Multiplying (9) by φ>(x, a)
on both sides yields the desired result. �

It is now important to observe that condition (7) is
quite restrictive: since γ is usually taken close to 1,
condition (7) essentially requires that, for every θ,

max
a∈A

φ>(x, a)θ ≈
∑
a∈A

π(x, a)φ>(x, a)θ.

Therefore, such condition will seldom be met in prac-
tice, since it implies that the learning policy π is al-
ready close to the policy that the algorithm is meant
to compute. In other words, the maximization above
yields a policy close to the policy used during learning.
And, when this is the case, the algorithm essentially
behaves like an on-policy algorithm.

On the other hand, the above condition can be ensured
by considering only a local maximization around the
learning policy π. This is the most interesting aspect
of the above result: it explicitly relates how much in-
formation the learning policy provides about greedy
policies, as a function of γ. To better understand this,
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notice that each policy π is associated with a partic-
ular invariant measure on the induced chain (X ,Pπ).
In particular, the measure associated with the learn-
ing policy may be very different from the one induced
by the greedy/optimal policy. Taking into account the
fact that γ measures, in a sense, the “importance of
the future”, Theorem 1 basically states that:

In problems where the performance of the agent greatly
depends on future rewards (γ ≈ 1), the information
provided by the learning policy can only be “safely gen-
eralized” to nearby greedy policies, in the sense of (7).
In problems where the performance of the agent is less
dependent on future rewards (γ � 1), the information
provided by the learning policy can be safely generalized
to more general greedy policies.

Suppose then that the maximization in the update
equation (6) is to be replaced by a local maximiza-
tion. In other words, instead of maximizing over all
actions in A, the algorithm should maximize over a
small neighborhood of the learning policy π (in policy
space). The difficulty with this approach is that such
maximization can be hard to implement. The use of
importance sampling can readily overcome such diffi-
culty, by making the maximization in policy-space im-
plicit. The algorithm thus obtained, which resembles
in many aspects the one proposed in (Precup et al.,
2001), is described by the update rule

θt+1 = θt + αtφ(xt, at)∆̂t, (10)

where the modified temporal difference ∆̂t is given by

∆̂t = rt + γ
∑
b

πθ(xt+1, b)
π(xt+1, b)

Qθt(xt+1, b)−Qθt(xt, at),

(11)
where πθ is, for example, a θ-dependent ε-greedy pol-
icy close to the learning policy π.3 A possible imple-
mentation of such algorithm is sketched in Figure 1.
We denoted by πN the behavior policy at iteration N
of the algorithm; in the stopping condition for the al-
gorithm, any adequate policy norm can be used.

3.2. SARSA with Linear Function
Approximation

The analysis in the previous subsection suggests that
on-policy algorithms may potentially yield more re-
liable convergence properties. Such fact has already
been observed in (Tsitsiklis & Van Roy, 1996a; Perkins
& Pendrith, 2002). In this subsection we thus focus on

3Given ε > 0, a policy π is ε-greedy with respect to
a function Qθ ∈ Q if, at each state x ∈ X , it chooses
a random action with probability ε and a greedy action
a ∈ Aθx with probability (1− ε).

Algorithm 1 Modified Q-learning.
Require: Initial policy π0;
1: Initialize X0 = x0 and set N = 0;
2: for t = 0 until T do
3: Sample At ∼ πN (xt, ·);
4: Sample next-state Xt+1 ∼ Pat

(xt, ·);
5: rt = r(xt, at, xt+1);
6: Update θt according to (10);
7: end for
8: Set πN+1(x, a) = πθ∗(x, a);
9: N = N + 1;

10: if ‖πN − πN−1‖ then
11: return πN ;
12: else
13: Goto 2;
14: end if

on-policy algorithms. We analyze the convergence of
SARSA when combined with linear function approxi-
mation. In our main result, we recover the essence of
the result in (Perkins & Precup, 2003), although in a
somewhat different setting. The main differences be-
tween our work and that in (Perkins & Precup, 2003)
are discussed further ahead.

Once again, we consider a familyQ of real-valued func-
tions, the linear span of a fixed set of M linearly inde-
pendent functions φi : X × A → R, and derive an
on-policy algorithm to compute a parameter vector
θ∗ such that φ>(x, a)θ∗ approximates the optimal Q-
function. To this purpose, and unlike what has been
done so far, we now consider a θ-dependent learning
policy πθ verifying πθ(x, a) > 0 for all θ. In particular,
we consider at each time step a learning policy πθt

that
is ε-greedy with respect to φ>(x, a)θt and Lipschitz
continuous with respect to θ, with Lipschitz constant
C (with respect to some preferred metric). We fur-
ther assume that, for every fixed θ, the Markov chain
(X ,Pθ) induced by such policy is uniformly ergodic.

Let then {xt}, {at} and {rt} be sampled trajectories
of states, actions and rewards obtained from the MDP
M = (X,A,P, r, γ) using (at each time-step) the θ-
dependent policy πθt

. The update rule for our approx-
imate SARSA algorithm is:

θt+1 = θt + αtφ(xt, at)∆t, (12)

where ∆t is the temporal difference at time t,

∆t = rt + γφ>(xt+1, at+1)θt − φ>(xt, at)θt.

In order to use the SARSA algorithm above to approx-
imate the optimal Q-function, it is necessary to slowly
decay the exploration rate, ε, to zero, while guaran-
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teeing the learning policy to verify the necessary reg-
ularity conditions (namely, Lipschitz continuous w.r.t.
θ). However, as will soon become apparent, decreasing
the exploration rate to zero will render our convergent
result (and other related results) not applicable.

We are now in position to introduce our main result.

Theorem 2 LetM, πθt
and {φi, i = 1, . . . ,M} be as

defined above. Let C be the Lipschitz constant of the
learning policy πθ with respect to θ. Assume that the
step-size sequence verifies∑

t

αt =∞
∑
t

α2
t <∞.

Then, there is C0 > 0 such that, if C < C0, the algo-
rithm in (12) converges w.p.1.

Proof We again use an ODE argument to establish
the statement of the theorem.

As before, the assumptions on (X ,Pθ) and basis func-
tions {φi, i = 1, . . . ,M} and the fact that the learning
policy is Lipschitz continuous with respect to θ and
verifies π(x, a) > 0 ensure the applicability of Theo-
rem 17 in page 239 of (Benveniste et al., 1990). There-
fore, the convergence of the algorithm can be analyzed
in terms of the stability of the associated ODE:

θ̇ = Eθ
[
φ>x
(
r(x, a, y) + γφyθ − φxθ

)]
. (13)

Notice that the expectation is taken with respect to
the invariant measure of the chain and learning pol-
icy, both θ-dependent. To establish global asymptotic
stability, we re-write (13) as

θ̇(t) = Aθθ(t) + bθ

where

Aθ = Eθ
[
φ>x
(
γφy − φx

)]
; bθ = Eθ

[
φ>x r(x, a, y)

]
.

An equilibrium point of (13) must verify θ∗ = A−1
θ∗ bθ∗

and the existence of such equilibrium point has been
established in (de Farias & Van Roy, 2000) (Theo-
rem 5.1). Let θ̃(t) = θ(t)− θ∗. Then,

d

dt
‖θ̃‖22 = 2θ̃>

(
Aθθ + bθ

)
=

= 2θ̃>
(
Aθθ −Aθ∗θ

∗ + bθ − bθ∗
)
.

Let

λA = sup
θ
‖Aθ −Aθ∗‖2 λb = sup

θ 6=θ∗

‖bθ − bθ∗‖2
‖θ − θ∗‖2

,

where the norm in the definition of λA is the induced
operator norm and the one in the definition of λb is

the regular Euclidian norm. The previous expression
thus becomes

d

dt
‖θ̃‖22 =

= 2θ̃>Aθ∗ θ̃ + 2θ̃>(Aθ∗ −Aθ)θ + 2θ̃>(bθ − bθ∗)

≤ 2θ̃>Aθ∗ θ̃ + 2(λA + λb)‖θ̃‖22.

Letting λ = λA + λb, the above expression can be
written as

d

dt
‖θ̃‖22 ≤ θ̃>

(
Aθ∗ + λI)θ̃.

The fact that the learning policy is assumed Lipschitz
w.r.t. θ and the uniform ergodicity of the correspond-
ing induced chain implies that Aθ and bθ are also
Lipschitz w.r.t. θ (with a different constant). This
means that λ goes to zero with C and, therefore, for
C sufficiently small, (A+λI) is a negative definite ma-
trix.4 Therefore, the ODE (13) is globally asymptoti-
cally stable and the conclusion of the theorem follows.

�

Several remarks are now in order. First of all, The-
orem 2 basically states that, for fixed ε if the depen-
dence of the learning policy πθ can be made sufficiently
“smooth”, then SARSA converges w.p.1. This result
is similar to the result in (Perkins & Precup, 2003),
although the algorithms are not exactly similar: we
consider a continuing task, while the algorithm fea-
tured in (Perkins & Precup, 2003) is implemented in
an episodic fashion. Furthermore, in our case, con-
vergence was established using an ODE argument, in-
stead of the contraction argument in (Perkins & Pre-
cup, 2003). Nevertheless, both methods of proof are,
in its essence, equivalent and the results in both papers
concordant.

A second remark is related with the implementation
of SARSA with a decaying exploration policy. The
analysis of one such algorithm could be conducted us-
ing, once again, an ODE argument. In particular,
SARSA could be described as a two-time-scale algo-
rithm: the iterations of the main algorithm (corre-
sponding to (12)) would develop on a faster time-scale
and the decaying exploration rate would develop at a
slower time-scale. The analysis in (Borkar, 1997) could
then be replicated. However, it is well-known that, as ε
approaches zero, the learning policy will approach the
greedy policy w.r.t. θ which is, in general, discontinu-
ous. Therefore, there is little hope that the smoothness

4The fact that Aθ is negative definite has been estab-
lished in several works. See, for example, Lemma 3 in
(Perkins & Precup, 2003) or, in a slightly different setting
(easily extendable to our setting) the proof of Theorem 1
in (Tsitsiklis & Van Roy, 1996a).
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condition in Theorem 2 (or its equivalent in (Perkins
& Precup, 2003)) can be met as ε approaches to zero.

4. Discussion

We now briefly discuss some of the assumptions in the
above theorems.

We start by emphasizing that all stated conditions are
only sufficient, meaning that it is possible that conver-
gence may occur even if some (or all) fail to hold. We
also discuss the relation between our results and other
related works from the literature.

Seconsly, uniform ergodicity of a Markov chain essen-
tially means that the chain quickly converges to a sta-
tionary behavior uniformly over the state-space and
we can study any properties of the stationary chain by
direct sampling.5 This property and the requirement
that π(x, a) > 0 for all a ∈ A and µX -almost all x ∈ X
can be interpreted as a continuous counterpart to the
usual condition that all state-action pairs are visited
infinitely often. In fact, uniform ergodicity implies
that all the regions of the state-space with positive µX
measure are “sufficiently” visited (Meyn & Tweedie,
1993), and the condition π(x, a) > 0 ensures that, at
each state, every action is “sufficiently” tried. It ap-
pears to be a standard requirement in this continuous
scenario, as it has also been used in other works (Tsit-
siklis & Van Roy, 1996a; Singh et al., 1994; Perkins &
Precup, 2003).6 The requirement that π(x, a) > 0 for
all a ∈ A and µX -almost all x ∈ X also corresponds to
the concept of fair control as introduced in (Borkar,
2000).

We also remark that the divergence example in (Gor-
don, 1996) is due to the fact that the learning policy
fails to verify the Lipschitz continuity condition stated
in Theorem 2 (as discussed in (Perkins & Pendrith,
2002)).

4.1. Related Work

In this paper, we analyzed how RL algorithms can be
combined with linear function approximation to ap-
proximate the optimal Q-function in MDPs with in-
finite state-spaces. In the last decade or so, several
authors have addressed this same problem from differ-
ent perspectives. We now briefly discuss several such

5Explicit bounds on the rate of convergence to station-
arity are available in the literature (Meyn & Tweedie, 1994;
Diaconis & Saloff-Coste, 1996; Rosenthal, 2002). However,
for general chains, such bounds tend to be loose.

6Most of these works make use of geometric ergodicity
which, since we admit a compact state-space, is a conse-
quence of uniform ergodicity.

approaches and their relation to the results in this pa-
per.

One possible approach is to rely on soft-state aggrega-
tion (Singh et al., 1994; Gordon, 1995; Tsitsiklis & Van
Roy, 1996b), partitioning the state-space into “soft”
regions. Treating the soft-regions as “hyper-states”,
these methods then use standard learning methods
(such as Q-learning or SARSA) to approximate the op-
timal Q-function. The main differences between such
methods and those using linear function approxima-
tion (such as the ones portrayed here) are that, in the
former, only one component of the parameter vector is
updated at each iteration and the basis functions are,
by construction, restrained to be positive and to add
to one at each point of the state-space.

Sample-based methods (Ormoneit & Sen, 2002;
Szepesvári & Smart, 2004) further generalize the ap-
plicability of soft-state aggregation methods by us-
ing spreading functions/kernels (Ribeiro & Szepesvári,
1996). Sample-based methods thus exhibit superior
convergence rate when compared with simple soft-
state aggregation methods, although under somewhat
more restrictive conditions.

Finally, RL with general linear function approxima-
tion was thorougly studied in (Tsitsiklis & Van Roy,
1996a; Tadić, 2001). Posterior works extended the ap-
plicability of such results. In Precup01icml, an off-
policy convergent algorithm was proposed that uses
an importance-sampling principle similar to the one
described in Section 3. In (Perkins & Precup, 2003),
the authors establish the convergence of SARSA with
linear function approximation.

4.2. Concluding Remarks

We conclude by observing that all methods analyzed
here as well as those surveyed above experience a
degradation in performance as the distance between
the target function and the chosen linear space in-
creases. If the functions in the chosen linear space
provide only a poor approximation of the desired func-
tion, there are no practical guarantees on the useful-
ness of such approximation. The error bounds derived
in (Tsitsiklis & Van Roy, 1996a) are reassuring in that
they state that the performance of approximate TD
“gracefully” degrades as the distance between the tar-
get function and the chosen linear space increases. Al-
though we have not addressed such topic in our anal-
ysis, we expect the error bounds in (Tsitsiklis & Van
Roy, 1996a) to carry with little changes to our set-
ting. Finally, we make no use of eligibility traces in
our algorithms. However, it is just expectable that the
methods described herein can easily be adapted to ac-
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commodate for eligibility traces, this eventually yield-
ing better approximations (with tighter error bounds)
(Tsitsiklis & Van Roy, 1996a)
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