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Abstract— This paper addresses the problem of Multiple
Model Adaptive Estimation (MMAE) for discrete-time, linear,
time-invariant MIMO plants with parameter uncertainty and
unmodeled dynamics. Model identification is analyzed in a
deterministic setting by adopting a Minimum Energy selection
criterion. The MMAE system relies on a finite number of local
observers, each designed using a selected model (SM) from the
original set of possibly infinite plant models. Results akin to
those previously obtained in a stochastic setting are derived
in a far simpler manner, in a deterministic framework. We
show, under suitable distinguishability conditions, that the SM
identified is the one that corresponds to the observer with
smallest output prediction error energy. We also develop a
procedure to analyze the behavior of MMAE when the true
plant is not one of the SMs. This leads to an algorithm that
computes, for each SM, the set of equivalently identified plants,
that is, the set of plants that will be identified as that particular
SM. The impact of unmodeled dynamics on model identification
is discussed. Simulation results with a model of a motor coupled
to a load via an elastic shaft illustrate the performance of the
methodology derived.

I. INTRODUCTION

The design of a single state-observer for a given plant
requires exact knowledge of the plant parameters for superior
performance. In practice, parameter uncertainty will impact
the performance and robustness of the observer. In fact,
incorrect modeling in the observer design may lead to large
estimation errors or even error divergence [1]. To cope
with this problem, adaptive estimation algorithms (where the
adaptation is with respect to the uncertainty in the plant
parameters) have been proposed in the literature. Among
these, the Multiple Model Adaptive Estimation (MMAE)
algorithm has received special attention [2]–[5]. However, the
use of multiple models for Adaptive Estimation goes back
to the 1960s and 1970s when several authors including [2],
[3], studied Kalman filter based estimators.

In the stochastic version of the MMAE [2]–[4], a separate
discrete-time Kalman filter (KF) is developed for each “se-
lected model” (SM) defined by an hypothesized parameter
vector in the unknown parameter set. The resulting set of KFs
forms a “bank” where each local KF generates its own state
estimate and an output error (residual), as shown in Fig. 1.
The bank of KFs runs in parallel and at each sampling instant

This work was supported in part by project GREX / CEC-IST (Contract
No. 035223), the FREESUBNET RTN of the CEC, project DENO / FCT-PT
(PTDC/EEA-ACR/67020/2006), and the FCT-ISR/IST plurianual funding
program (through the POS C initiative in cooperation with FEDER).

The authors are with the Institute for Systems and Robotics (ISR),
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the MMAE uses a nonlinear function of the measurement
residuals of each SM to compute the conditional probability
pi that the filter selected be the one corresponding to the
true plant model. The state estimate is a probabilistically
weighted combination of each KF estimate. The rationale is
that the highest probability should be assigned to the state
estimation provided by the most accurate KF, and lower
probabilities assigned to the remaining KFs.

In the last decade, MMAE has been the subject of con-
siderable research effort that is patent in a vast number of
publications; see [5]–[9] and the references therein. MMAE
is at the root of many techniques for estimation, navigation,
tracking, and surveillance. It is also the basis for Multiple-
Model Adaptive Control, see [7], [10]–[16].

In [4], by introducing an information theoretic measure,
the authors analyzed the convergence of the conditional
probabilities pi and showed that the one corresponding to
the KF designed for the closest to the actual system (in a
stochastic norm sense) converges to one, while the others
tend to zero. The theoretical setup exploited in [4] requires
extensive knowledge of stochastic analysis, information the-
ory, and measure theory. Here, we show that similar results
can be obtained by resorting to a much simpler deterministic
framework that relies on the use of Krener Observers (KO)
[17] rather than Kalman Filters. We prove that under suitable
distinguishability conditions, the model identified is the one
that corresponds to the observer exhibiting the smallest
output prediction error energy.

Other contributions of this paper are the introduction of the
concept of set of Equivalently Identified Plants (EIP), defined
as the set of plants that will be identified as the same SM, and
an algorithm to compute it. We also analyze the impact of
unmodelled dynamics (unstructured uncertainty) on model
identification and in particular how this translates into the
topology of the EIP sets.

The structure of the paper is as follows. In section II we
review the main issues of MMAE and define the structure of
a Minimum Energy (ME) MMAE. Section III summarizes
our main results. The effect of unmodeled dynamic upon
model identification is considered in Section IV. Section
V illustrates the performance of the ME-MMAE algorithm
proposed, through computer simulations with a model of a
motor coupled to a load via an elastic shaft. Conclusions and
suggestions for future research are summarized in Section
VI.



II. THE MULTIPLE-MODEL ADAPTIVE
ESTIMATOR

This section introduces a class of MMAEs in a deter-
ministic setting. MMAE relies on a finite number N of
selected models chosen from the original set of (possibly
infinite) plant models and consists of: i) a dynamic generator
of N weighting signals and ii) a bank of N discrete-time
observers, where each observer is designed based on one
of the SMs adopted. The state estimate is generated by a
weighted sum of the local state-estimates produced by the
bank of observers. The dynamic weights are provided by a
difference dynamic equation called the Dynamic Weighting
Signal Generator (DWSG). Fig. 1 shows the structure of the
MMAE in which the plant is described by an LTI difference
equation, ξt and θt are deterministic plant and measurement
noise sequences respectively, and the observers are designed
using different values of the uncertain parameters. We as-
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Fig. 1. The MMAE architecture

sume the plant model G is subjected to parameter uncertainty
κ ∈ Rl, that is, G = G(κ). In what follows we consider
multiple-input-multiple-output (MIMO) linear time-invariant
(LTI) plant models of the form

xt+1 = Aκxt + Bκut + Lκξt, (1a)
yt = Cκxt + θt, (1b)

where xt ∈ Rn denotes the state of the system, ut ∈ Rm its
control input, yt ∈ Rq its measured noisy output, ξt ∈ Rr

an input plant disturbance that can not be measured, and
θt ∈ Rq is the measurement noise. The initial condition x0

of (1) and the signals ξt and θt are assumed unknown but
bounded. The matrices Aκ, Bκ, Lκ, and Cκ contain unknown
constant parameters denoted by vector κ.
Consider a finite set of candidate parameter values κ :=
{κ1, κ2, . . . , κN} indexed by i ∈ {1, . . . , N}. We propose

the following MMAE. The state estimate is given by

x̂t :=
N∑

i=1

pi
tx̂t|κi

, (2)

ŷt :=
N∑

i=1

pi
tŷt|κi

, (3)

κ̂t := κi? , i? := arg max
i∈{1,...,N}

pi
t, (4)

where x̂t, ŷt and κ̂t are the estimates of the state x, output
yt, and parameter vector κ at time t, respectively and pi

t

are dynamic weights (which are defined below). In (2), each
x̂t|κi

; i = 1, . . . , N corresponds to a “local” state estimate
generated by the ith (steady state) Krener minmax observer
[17]

x̂t+1|κi
= Aκi

x̂t|κi
+ Bκi

ut + Hκi

(
yt − Cκi

x̂t|κi

)
, (5a)

ŷt|κi
= Cκi x̂t|κi

, (5b)

Hκi
= Σκi

CT
κi

[Cκi
Σκi

CT
κi

+ Θ]−1 (5c)

where Σκi is the solution of the discrete Riccati equation

0 = −Σκi + AκiΣκiA
T
κi

+ Lκi
ΞLT

κi

−AT
κi

ΣκiC
T
κi

[CκiΣκiC
T
κi

+ Θ]−1CκiΣκiAκi , (6)

and it is assumed that [Aκi , Lκi ] and [Aκi , Cκi ] for i =
1, . . . , N are controllable and observable, respectively. The
symmetric positive definite weighting matrices Ξ and Θ are
viewed as parameters to be chosen based on information
about the disturbance, the measurement noise, and the plant.

In the sequel we introduce dynamic weights which weigh
the local estimations (2) and dictate the estimation of the
uncertain parameter (4).

A. Dynamic Weighting Signal Generator (DWSG)

To generate the dynamic weights pi , we use the dynamic
recursion

pi
t+1 =

βie
−wi

t

∑N
j=1 pj

tβje−wj
t

pi
t, (7)

where βi is a positive weighting constant matrix and wi
t is a

continuous function called an error measuring function that
maps the measurable signals of the plant and the states of
the ith local observer to a nonnegative real value. Examples
of an error measuring function and a βi that we use in this
paper are

wi
t :=

1
2
‖yt − ŷt|κi

‖2
S−1

κi

, βi :=
1√
|Sκi |

, (8)

where Sκi is a positive definite weighting matrix and ‖x‖S =(
xT Sx

) 1
2 . The matrices Sκi are important to scale the energy

of the estimation error sequences in order to make them
comparable. They are computed as

Sκi = CκiΣ
−
κi

CT
κi

+ Θ. (9)

For stable dynamic plants, Sκi is a positive definite matrix.
The structure of the key equation (7), which generates the



time-sequence of the weights pi, is inspired by the “standard”
stochastic discrete-time MMAE formulas (see [3]). We im-
pose the constraint that the initial conditions pi

0 be chosen
such that pi

0 ∈ (0, 1) and
∑N

i=1 pi
0 = 1.

Remark 1. Throughout this paper we formulate the ME-
MMAE in a deterministic setting; however, the same method
is applicable to stochastic systems. In the stochastic setup
[2]–[4], the signals ξt and θt are assumed zero mean inde-
pendent discrete-time white noise sequence with covariances
cov[ξt; ξτ ] = Ξδtτ and cov[θt; θτ ] = Θδtτ , respectively
and (1) is initialized at t = 0 with E{x0} = 0 and
E{x0x

T
0 } = Σ0 and the Sκi in (9) represents the covariance

matrix of residuals and the observers are Kalman filters (in
fact, in [17] it is shown that the Kalman filter is also a
minimax filter). The advantage of using the deterministic
MMAE version is that it is easier to investigate stability and
performance-robustness issues as compared to the stochastic
version of the problem. 2

III. MAIN RESULTS
In this section we summarize our main results on identi-

fication and convergence of the ME-MMAE. We first show
that positiveness and boundedness of the dynamic weights pi

t

are independent of the input signals of the DWSG system.
We also show that the overall sum of the pi’s is always unity
for all t ≥ 0.

Theorem 1. Suppose that the initial conditions pi
0 satisfy

pi
0 ∈ (0, 1) and

∑N
i=1 pi

0 = 1. Then, each pi
t, i = 1, . . . N

governed by (7) is nonnegative, uniformly bounded and
contained in the interval [0, 1] for every t ≥ 0. Furthermore,

N∑

i=1

pi
t = 1, ∀t ≥ 0

Proof. Defining Pt :=
∑N

i=1 pi
t and computing its time-

evolution using (7) yields

Pt+1 =
N∑

i=1

βie
−wi

t

∑N
j=1 pj

tβje−wj
t

pi
t

=
∑N

i=1 pi
tβie

−wi
t

∑N
j=1 pj

tβje−wj
t

= 1

Therefore, if P0 = 1, then Pt = 1, ∀t ≥ 0. We now show,
that if pi

0 > 0, then pi
t ≥ 0, ∀t ≥ 0. From (7), if pi

0 > 0, then
pi

t cannot be negative. The boundedness condition pi
t ∈ [0, 1],

∀t ≥ 0 follows immediately from the fact that pi
t ≥ 0 and

Pt = 1 for all t ≥ 0.

We next provide conditions for convergence of the dy-
namic weights pi

t.

Theorem 2. Let i? ∈ {1, 2, . . . , N} be an index of a
parameter vector in κ and let I := {1, 2, . . . , N}\i? an
index set. Suppose that there exist positive constants n1, t1,
ε, and ε1 such that for all t ≥ t1 and n ≥ n1 the following
condition holds:

1
n

t+n−1∑
τ=t

(
(wi?

τ ) + ε
)

<
1
n

t+n−1∑
τ=t

min
j∈I

wj
τ , (10)

where wi are defined in (8) and
(
lnmax

j∈I
βj − ln βi?

)
< ε1 with ε1 < ε. (11)

Then, pi?

t governed by (7) satisfies pi?

t → 1 as t → ∞.
2

Proof. Define

Lt =
pj

t

pi?

t

; j ∈ I.

From (7) we have

pi
t = pi

0

t−1∏
τ=0

βie
−wi

τ

∑N
j=1 pj

τβje−wj
τ

,

from which it follows that

Lt+n = [
t+n−1∏

τ=t

βje
−wj

τ

βi?e−wi?
τ

] Lt. (12)

Taking logarithms of both sides,

ln
Lt+n

Lt
=

t+n−1∑
τ=t

ln(βje
−wj

τ ) −
t+n−1∑

τ=t

ln(βi?e−wi?

τ )

≤
t+n−1∑

τ=t

ln(βje
−wj

τ ) −
t+n−1∑

τ=t

ln(βi?e−wi?

τ )

= n ln βj − n ln βi? +
t+n−1∑

τ=t

wi?

τ −
t+n−1∑

τ=t

wj
τ , (13)

where βj = maxs∈I βs.
From (13), (10), and (11) it can be concluded that there

exists a positive γ such that

ln
Lt+n

Lt
≤ −nγ (14)

or, equivalently,

Lt+n ≤ e

(
−nγ

)
Lt. (15)

It follows that Lt = pj
t

pi?
t

converges to zero for all j ∈ I,

as n → ∞. Since
∑N

i=1 pi
0 = 1, it is now straightforward

to conclude that pj
t → 0, and pi?

t → 1. Furthermore, the
convergence is exponentially fast.

Condition (10) can be viewed as a distinguishability crite-
rion and implies that for sufficiently large t one of the local
observers will exhibit least output error (residual) “energy”.
In fact, the following Corollary holds.

Corollary 1. Suppose that the conditions of Theorem 2
hold and let the input signal η = [ξt θt ut]T consist of
a bounded-spectral sequence with power spectral density
Ψη(ω). Further, let wi

t := 1
2‖yt − ŷt|i‖2S−1

κi

. Then, the



parameter estimate κ̂t converges to the closest to the true
parameter κ as t →∞, in the following sense:

lim
t→∞

κ̂t = κi? , (16a)

i? = arg min
i∈{1,...,N}

{Υκ1,κ, Υκ2,κ, . . . , ΥκN ,κ} (16b)

Υκi,κ = tr[
1
2π

∫ π

−π

(Hi(ejω)Ψη(ω)Hi(ejω)HS−1
κi

) dω]

(16c)

where Hi(z) is the discrete transfer matrix defined by

Hi(z) = Ci(zI − Ai)−1Bi + D, (17)

with

Ai :=
[

Aκ 0
HκiCκ Aκi −HκiCκi

]
, Ci :=

[
Cκ −Cκi

]
,

Bi :=
[
Lκ 0 Bκ

0 Hκi
Bκi

]
, D :=

[
0 I 0

]
.

A proof is available in [18].
Remark 2. In the stochastic MMAE, when the inputs to

(17) are discrete-time white noise with intensity matrix Q,
Υκi,κ in (16) can be computed as

Υκi,κ = tr[(CiΣiCT
i + Θ) S−1

κi
],

where Σi satisfies the Lyapunov equation

Σi = AiΣiAT
i + BiQBT

i .

2

We now analyze the situation when the nominal values
κi, for i = 1 . . . N do not include the true parameter κ. As
Theorem 2 shows, as long as the distinguishability condition
holds, one of the dynamic weights pi governed by (7), say
pi?

, converges to 1 and the rest converge to 0. In this case,
the actual parameter is identified as κi? . Notice however that
it cannot be concluded that the true value of κ is actually
κi? . Nevertheless, in a well defined sense it can be said that
the true value of κ is closer to κi? than to any other κi

for i ∈ I. This simple reasoning allows us to conclude that,
corresponding to each κi,; i = 1 . . . N there is a set of plants
that are naturally identified as κi.

In what follows, we call each of these sets a set of
Equivalently Identified Plants (EIP), denoted Si

EIP . With an
obvious abuse of notation, for each κi we define the corre-
sponding EIP as a subset in the uncertain parameter space κ

with the property that if the uncertain parameter belongs to
that subset, then the selected model with parameter κi will
be identified. Corollary 1 provides a method to compute the
set of Equivalently Identified Plants (EIP) for all the κi.

Fig. 2 illustrates graphically how the EIP sets can be
obtained. In Fig. 2, it is assumed that a scalar uncertain
parameter κ lies in the interval [κL , κU ], and three local
observers are designed based on κ1, κ2, and κ3. We have
plotted the weighted RMS of the output estimation error
for each observer as a function of κ in [κL , κU ]. The
intersections of these curves define the boundaries of the
EIP sets.
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Fig. 2. Graphical Illustration of Equivalently Identified Plant (EIP) Sets
and Models

Remark 3. A systematic methodology to compute EIP
sets is as follows:
1. For each κi, i = 1 . . . N compute Υκi,κ for κ ∈ [κL , κU ].
2. The EIP set for ith model is defined by

Si
EIP = {κ : Υκi,κ = min

i∈{1,...,N}
{Υκ1,κ,Υκ2,κ, . . . , ΥκN ,κ}}.

2

IV. EFFECT OF UNMODELED DYNAMICS

Consider a discrete-time, multi-input, multi-output linear
time-invariant plant with unmodeled dynamics described by
multiplicative unstructured uncertainty of the type

G(z) = G0(z)[I + W (z)∆(z)]. (18)

where G0(z) is the nominal plant discrete transfer matrix,
W (z) is a known fixed stable discrete transfer matrix, and
∆(z) represents any unknown stable discrete transfer matrix
satisfying ‖∆(z)‖∞ ≤ 1. See Fig. 3, where H(z) denotes

ty
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Fig. 3. Uncertain Plant (Nominal Discrete Transfer Matrix with Multi-
plicative Uncertainty) and Local Observer

the discrete transfer matrix of the local observer. The power
spectral density of sequence η′t in Fig. 3 is given by

Ψη′(ω) = |I + W (ejω)∆(ejω)|2Ψη(ω).

Since ∆(z) is unknown and satisfies ‖∆(z)‖∞ ≤ 1, the
following holds:

[HLB(ejω)]2Ψη(ω) ≤ Ψη′(ω) ≤ [HUB(ejω)]2Ψη(ω),
(19)



where

HUB(ejω) := sup
‖∆(ejω)‖∞≤1

|I + W (ejω)∆(ejω)|

= I + |W (ejω)|, (20a)

HLB(ejω) := inf
‖∆(ejω)‖∞≤1

|I + W (ejω)∆(ejω)|

=
{

0 if |W (ejω)| ≥ 1
I − |W (ejω)| if |W (ejω)| < 1 (20b)

Using (16c) and substituting Ψη(ω) by the upper and lower
bound of Ψη′(ω) determined in (19), one can compute an
uncertainty band around the nominal RMS of the output error
sequence. As shown in Fig. 4, the unmodeled dynamics lead
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to “undecidable sets” in the uncertain parameter space. If
the true parameter lies in one of these sets, then it cannot be
ascertained which model will be selected. Computer simula-
tions have shown for specific examples that the larger the size
of the unmodeled dynamics, the larger the undecidable set is.
Notice, however that by exploiting the above circle of ideas
one obtains a clear procedure to compute the undecidable
sets.

Remark 4. The modified methodology to compute EIP
sets in the presence of unmodelled dynamics is as follows:
1. For each κi, i = 1 . . . N compute the upper and lower
bounds of Υκi,κ for κ ∈ [κL , κU ] given by

Υκi,κ = tr[
1
2π

∫ π

−π

(Gi
UB(ejω)Ψη(ω)Gi

UB(ejω)HS−1
κi

) dω]

(21a)

Υκi,κ
= tr[

1
2π

∫ π

−π

(Gi
LB(ejω)Ψη(ω)Gi

LB(ejω)HS−1
κi

) dω]

(21b)

where Gi
LB and Gi

UB are transfer matrices from input η to
local estimation error ỹt (see Fig. 3) considering the upper
and lower bounds of multiplicative uncertainty as computed
in (20).
2. The EIP set for ith model is defined by

Si
EIP = {κ : Υκi,κ ≤ Υκj ,κ for all j ∈ {1, 2, . . . , N}\i}.
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V. ILLUSTRATIVE EXAMPLE

The ME-MMAE procedure is now evaluated through the
example depicted in Fig. 5. The plant consists of a motor
driving a load through a flexible coupling and the load is
connected to a wall trough a torsional spring and torsional
damper. The output signal is the load shaft angle corrupted
by measurement noise θt and the disturbance torque ξt

affects only the load. The measuring functions wi
t = 1

2 (yt−
ŷt|i)T S−1

κi
(yt − ŷt|i) were used during the simulations. A

state-space representation of the plant, including the distur-
bance and noise inputs, is given by (1) with

A =




0 1 0 0 0
−K1
Jm

K1
Jm

−D1
Jm

D1
Jm

0

0 0 0 0 1
K1
JL

−(K1+K2)
JL

D1
JL

−(D1+D2)
JL

1
JL

0 0 0 0 −0.3


 , B =




0
0
1

Jm
0
0


 ,

L′ = [ 0 0 0 0 0.3 ] , C = [ 0 0 1 0 0 ] ,

where Jm = JL = 1 (Kgm2), K2 = 0.2 (N/rad), D1 =
D2 = 0.1 , (Ns/rad), and K1 is an unknown parameter
assumed to have a value in the interval [0.5, 2.5]; we divided
uniformly the interval where the unknown parameter K1 can
live into 4 sub-intervals. We remark that the above dynamics
are similar to the mass-spring-dashpot system (MSD) testbed
for robust adaptive control (RMMAC), [14]. Using the results
in Corollary 1, we computed the nominal values for K1

such that the EIP set of each observer corresponds to
the sub-intervals. Fig. 6 illustrates the procedure adopted



with N = 4 local observers and the following set κ =
{0.65, 1.19, 1.70, 2.21} was obtained for nominal values.
The y-axis corresponds to the weighted RMS of output error
sequences. It is also assumed that input torque is provided
through an amplifier whose bandwidth is unknown but in the
interval [20 25] rad/s; this amplifier can be described in the
form of a model with multiplicative uncertainty with

G0(z) =
0.2015

z − 0.7985
, W (z) =

0.1235z − 0.1235
z − 0.8187

.

The undecidable sets between adjacent EIPs can be seen in
Fig. 6.
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Fig. 7 shows the time evolution of some representative
signals. In this figure, the first sub-plot is the output es-
timation error and the second sub-plot is the output (load
shaft angle) together with the estimated output (almost coin-
cident). The remaining plots show the time evolution of the
dynamic weighting signals. In the deterministic case, θt and
ξt are swept-frequency cosine (chirp) sequences (with initial
frequency 1 (Hz), target time 50 (sec), and final frequency
10 (Hz)). In Fig. 7, the unknown parameter K1 is located
near the boundary between two adjacent EIP sets, where
identification is harder and the convergence takes longer. We
have used different values of the K1 in the simulations in
both the stochastic and deterministic setups (in the stochastic
case, θt and ξt are discrete-time white noise sequences) and
except for the values which are very close to the boundaries,
the correct model is always identified (the results are not
shown due to the space limitations).

VI. CONCLUSIONS AND FUTURE RESEARCH
We presented and analyzed a class of Minimum Energy

MMAE systems for LTI MIMO discrete systems with para-
metric uncertainty. We showed that if some suitable distin-
guishability condition holds, then the model identified is the
SM that exhibits least output error “energy”. Based on the
energy of the output error sequences, we introduced the con-
cept of Equivalently Identified Plant (EIP) sets corresponding

to each local observer. The methodology proposed allowed
us to deal with both parametric and unstructured uncertainty.
In particular, we introduced the concept of undecidable
sets, which capture the fact that unmodeled uncertainty will
necessarily lead to basic limitations to identification. This
issue and that of determining general geometric properties
of the EIP sets deserve further research. Another topic that
warrants consideration is that of deriving adaptive control
systems for uncertain plants (especially unstable and non-
minimum phase plants) using the multiple model approach.
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