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ABSTRACT
This paper reports on the detection of Gaussian stochastic tran-

sients in multipath environments described by random parameters.
The solutions developed herein correspond to quadratic proces-
sors, with low computational cost and robust to changes in the
statistical models of the channel. As a consequence, only a small
amount of a-priori information is necessary to derive the param-
eters of the processor. A recursive form of the processor is also
proposed, allowing for the recursive detection of the signal repli-
cas arriving at the receiver.

1. INTRODUCTION

The classical solution for the detection of signals in a multipath
environment is the generalized likelihood ratio test (GLRT), where
the likelihood test is computed from estimates of the channel pa-
rameters in both hypotheses. In general, the estimation step in the
GLRT is a heavy computational procedure. Furthermore, when
the signals to detect are stochastic processes in low signal-to-noise
ratio (SNR), which is the usual case in many passive detection
applications, the variances of the estimates are large and the detec-
tor performance degrades. Recently, some authors have developed
suboptimal processors to avoid the drawbacks of the GLRT. In
[1], a suboptimal approximation for the detection of continuous-
time, stationary processes in low SNR was proposed, assuming
that the channel parameters are random variables. This proces-
sor was based on a Taylor series approximation of the likelihood
ratio for the processor with known channel parameters. In [2],
a geometric framework based on multiresolution techniques was
proposed, where the set of all possible signals arriving at the re-
ceiver is approximated by a simpler linear subspace. The detectors
proposed in [1] and [2] are both quadratic processors.

This paper extends the work of [1] to short-duration stochas-
tic transients, which are nonstationary in nature. The following
situation is considered: i) the processor is developed in discrete
time; ii) the multipath channel is regarded as a ”signal amplifier”,
instead of a nuisance; iii) the low SNR condition assumes that the
signal eigenvalues are smaller than the noise ones. The solutions
proposed have two major concerns. First, they must rely on a
small a-priori amount of statistical information about the chan-
nel parameters. The basic idea is that this information should be
easily inferred from local data (i.e., depth, salinity, temperature
in an underwater media) and, when the local conditions change,
the processor parameters must be recalculated fast. The simula-
tion results show that the processors are robust to mismatches on
the channel parameters, and thus only mild information about the
range of the delay coefficients and approximate estimates of the at-
tenuation coefficient means and variances are necessary. Second,

the computational cost of the resulting processors must be low,
allowing for real-time processing. Two possible processing struc-
tures are proposed: i) a quadratic form, which can be directly opti-
mized in terms of a performance/computational complexity com-
promise using the methods proposed in [3]; ii) a recursive solution,
where a sequence of tests are performed at the arrival of each signal
replica. In most situations, this scheme reduces both the compu-
tational cost of the processor, and the mean time interval between
the arrival of the first replica at the receiver and its detection time
instant.

2. PROBLEM FORMULATION

The detection problem is formulated as a simple binary test. The
channel is modeled such that the signal arriving at the receiver
under hypothesis H1 is a weighted sum of delayed replicas of the
emitted signal. Thus, the observation process r(t) is defined as

r(t) =

{

y(t) + n(t), under hypothesis H1

n(t), under hypothesis H0,
(1)

where

y(t) = α1s(t− T0) +

Nq
∑

k=2

αks(t− T0 − τk) (2)

⇔ y(t + T0) =

Nq
∑

k=1

αks(t− τk), with τ1 = 0.

In (2), T0, αk and τk, k = 1, · · · , Nq denote, respectively, the time
delay between the emission and the reception of the first replica of
a signal s(t), the attenuation coefficients (AC) and the delay co-
efficients (DC), where Nq represents the number of replicas arriv-
ing at the receiver. The emitted signal, s(t), is a Gaussian, zero-
mean transient with autocorrelation function ks(t1, t2). The noise,
n(t), is stationary, Gaussian distributed with zero-mean and with
constant power spectrum up to a high frequency. The observa-
tion process is conveniently filtered and discretized at a sampling
frequency Ts. For simplicity, we assume in the sequel that the
sampled noise sequence is white, and that the DCs, τk, are integer
multiples of Ts, i.e., τk = qkTs, k = 1, · · · , Nq . The optimal
detector in this case corresponds to the likelihood test
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(r|H1, q, α)]
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= Eq,α
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pH1
(r|H1, q, α)
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] H1

>

<

H0

η,

(3)



where q = {q1, · · · , qNq}, α = {α1, · · · , αNq}, r = [r(Ts +
T0) · · · r(NTs + T0)]

′ corresponds to the observation vector over
an interval of length N and pHi

(r|Hi, q, α) represents the prob-
ability density function of r given q and α, under hypothesis Hi,
i = 0, 1. It is assumed that the interval N is large enough to in-
clude all the replicas of an emitted signal arriving at the receiver.

3. LIKELIHOOD RATIO FOR KNOWN AC AND DC

Since y(t) consists on a sum of zero-mean Gaussian-distributed
signals, then the joint probability density function of r under both
hypothesis is also Gaussian. Thus, the term inside brackets in (3)
may be rewritten as

l(r)=
pH1

(r|H1, q, α)

pH0
(r|H0)

=

√

|CH0
|

|CH1
|
exp

(

−
1

2
r
′[C−1

H1
−C

−1

H0
]r
)

,

(4)
where CHi

corresponds to the covariance matrix of dimension
(N × N) of r under hypothesis Hi and | · | denotes the deter-
minant. Let σ2 be the variance of the discretized noise and Cy the
covariance matrix of the discrete received signal, y, under hypoth-
esis H1. Then, CH0

= σ2I and CH1
= σ2I + Cy (I represents

the identity matrix). Denote by Cs the (N1 × N1) covariance
matrix of the discretized emitted transient signal s(t), where N1

represents the interval where most of the signal energy lies. Con-
sider the decomposition Cs = V sDV ′

s, where V s (N1 × Nλ)
and D = diag{λs

1, · · · , λNλ
} are, respectively, the eigenvector

and eigenvalue matrices of Cs. Under these conditions, we have

Cy = V yDV
′
y, (5)

with

V y =

Nq
∑

k=1

αkV
qk
s (6)

and

V
k
s =

[

o(k, Nλ)
V s

o(N −N1 − k, Nλ)

]

, (7)

where o(n, m) stands for the (n × m) null matrix. It is easy to
show [4] that the likelihood ratio (4) can be rewritten as

l(r) = exp
[

1

2
ln

(

|I − σ2
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′
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,

(8)
with

W y = D2(U1D2 + I)−1/σ2 (9)

U1 =

Nq
∑

k=1

Nq
∑

l=1

l6=k

αkαl(V
k
s )′V l

s (10)

D2 = (c1I + σ2
D

−1)−1, (11)

where c1 =
∑Nq

k=1
α2

k.
Remark that the optimal detector corresponds to taking the ex-

pected value in order to the ACs and DCs of (8). However, the
resulting processor has no closed-form expression and requires a
huge computational load. To overcome this inconvenient, we sim-
plify (8) by taking the terms up to the first order of its Taylor series
around a convenient working point. Under the conditions that the

SNR is low (i.e., λk < σ2, ∀k = 1, · · · , Nλ) and the multipath
channel amplifies the signal energy arriving at the receiver (i.e.,
c1 > 1), then the elements of the diagonal of the matrix D2 are
small. Thus, the first-order approximation of the likelihood ratio
around the point D2 = o(Nλ, Nλ) is

l(r) ' 1−
1

2
tr

{

V yD2V
′
y

}

+
1

2σ2
r
′
V yD2V

′
yr = π(r).

(12)
When the DCs and the ACs are known, π(r) still represents the
optimum solution when there is no overlapping between the repli-
cas arriving at the receiver, since U 1 = o(Nλ, Nλ). This situation
corresponds to the case where the duration of the emitted signal is
small comparing to the channel delays. However, the examples
presented in [4] show that, even when there is a large overlapping
between replicas, the power of the signal arriving at the receiver
increases and the performance of the processor does not degrade
significantly.

In the next section the suboptimal processor is derived by tak-
ing the expected value in order to the ACs, α, and DCs, q, of the
approximated likelihood ratio π(r) (12).

4. EXPECTED VALUE OF π(r)

In the sequel, the elements of {α1, · · · , αNq , q1, · · · , qNq} are as-
sumed to be mutually independent. By taking the expected value
in order to the ACs, α, one gets

Eα[π(r)]=1+
1

2σ2
r
′Eα[V yD2V

′
y]r−

1

2
tr{Eα[V yD2V

′
y]},

(13)
where tr{X} denotes the trace of X . Since D2 depends on α

through c1, the expected value in (13) should be evaluated using
the joint probability density function of α. However, if we assume
that c1 = cc

1 is approximately constant, it is only necessary to
know the first and second order statistics of α, i.e.,

Eα[V yD2V
′
y] '

Nq
∑

k1=1

Nq
∑

k2=1

Cαk1
αk2

V
qk1
s D2(V

qk2
s )′, (14)

where Cαk1
αk2

= E[αk1
αk2

] represents the crosscorrelation be-
tween αk1

and αk2
. The constant cc

1 is for now left as a free pa-
rameter that will be chosen in order to maximize the performance
of the final expression of the processor.

The final expression of the likelihood test is obtained taking
the expected value of (13)with respect to the DCs, q, i.e.,

πp(r)

H1

>

<

H0

µ, (15)

where the threshold µ includes the terms of (13) that do not depend
on the observation process r, and
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When k = k1 = k2 we have
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where Pk(m) denotes the probability function of qk, and for k1 6=
k2,
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, (18)

with

V̄ k =

Nq
∑

m=1

V
m
s Pk(m). (19)

The probability Pk(m) related to the DC qk, corresponds to an
uncertainty measure of the time interval between the arrival of the
first and the k-th replica at the receiver. Thus, as noted before,
q1 = 0, and P1(m) = δm (the kronecker delta). The quadratic
form of the likelihood ratio is given by

πp(r) = r
′
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(20)
where Cαk

= Cαkαk
= ᾱ2

k + σ2
k (ᾱk and σ2

k being, respectively,
the mean and variance of αk).

In (20), matrices C̄k and D2 depend on the constant cc
1, that

is tuned in order to maximize the detector performance, using the
following procedure: i) for each possible value of cc

1, let M be the
matrix inside brackets in (20), and determine the covariance ma-
trix C∗

H1
that corresponds to a hypothesis for which the processor

(20) is optimal, i.e., M = C−1

H0
− (C∗

H1
)−1 (CH0

= σ2I); ii)
choose the value of cc

1 that maximizes either the Chernoff or the
Bhattacharyya distances [5] between C∗

H1
and CH0

. This pro-
cedure corresponds to minimizing a bound for the probability of
error between both hypotheses and is computationally efficient.

The processor presented in (20) is a quadratic form. Its com-
putational cost is relatively low, comparing with the GLRT, be-
cause the matrix M can be computed off-line when the condi-
tions of the multipath channel change. Although the processor de-
pends on the probability functions of the delay coefficients which
may not be easy to determine, the simulation studies show that the
receiver performance is robust to mismatches on these probabili-
ties. Thus, when the true Pk(m) are unknown, the processor is
designed assuming uniform probabilities and, in general, the re-
sulting performance degradation is not important.

5. SEQUENTIAL DETECTION OF REPLICAS

In (20), the length N of the observation vector r must be large
enough to include all replicas arriving at the receiver. Therefore, it
is only possible to detect a signal when its last replica arrives. This
section develops a sequential structure based on (20) that allows
the detection of a signal without the need of waiting for all repli-
cas. In this case, the detection is performed as soon as an arbitrary
number of replicas possess a sufficient amount of energy to ensure
with high probability that a signal was emitted by the source. Fur-
thermore, in many situations, the sequential detection of replicas
may reduce the computational cost of the processor.

In (20), matrices C̄k and V̄ k have dimensions (N × N) and
(N ×Nλ). However, the dimension of the non-null terms of each
of these matrices is significantly lower than N due either to the
transient characteristic of the emitted signal and also because it is
assumed that the probabilities Pk(m) associated to each replica
have compact support. Let [θi

k; θf

k ] be the support of Pk(m) (with
θi
1 = 0); then, the matrices C̄k and V̄ k have, respectively, support

[θi
k+1; θf

k +N1]×[θi
k+1; θf

k +N1] and [θi
k+1; θf

k +N1]×[1; Nλ].
Defining Nqk

= θf

k − θi
k + N1, we denote by C̄

r
k (Nqk

× Nqk
)

and V̄
r
k (Nqk

× Nλ) the matrices that include only the elements
belonging to the support of C̄k and V̄ k. If, at each time instant n,
the vector of the last Nqk

elements of the observation process is
represented by rk(n) = [r(n−Nqk

+ 1) · · · r(n)]′, then expres-
sion (20) may be rewritten as

πp(r) =

Nq
∑

k=1

(ᾱ2
k + σ2

k)lk(θf

k + N1)

+2

Nq
∑

k1=2
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∑
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b
′
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(θf
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+ N1)D2bk2

(θf
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(21)
where

lk(n) = r
′
k(n)ZkD

z
kZ

′
krk(n) and bk(n) = (V̄

r
k)′rk(n).

(22)
In (22), Zk and Dz

k represent, respectively, the matrices of eigen-
vectors and eigenvalues of C̄

r
k (C̄r

k = ZkDz
kZ′

k). Remark that,
due to the fact that q1 = 0 and P1(m) = δm, then Z1 = V s and
Dz

1 = D2. Under these conditions, the likelihood ratio may be
rewritten in a recursive form:

πh(n) = πh−1(n− θf

h + θf

h−1
) + (ᾱ2

h + σ2
h)lh(n)

+ 2ᾱh

[

h−1
∑

k=1

ᾱkb
′
k(n− θf

h + θf

k )

]

D2bh(n), (23)

with π1(n) = (ᾱ2
1 + σ2)l1(n). For h = Nq , πNq (n) corresponds

to expression (20).
Comparing expressions (20) and (23) from a computational

point of view, the solution that leads to a less expensive processor
depends both on the signals to detect and on the multipath chan-
nel structure. In general, however, two situations may arise. First,
when there is a large overlapping between replicas, using the re-
cursive processor (23), it is necessary to perform Nq eigenvector
decompositions of length Nqk

, while the non-recursive form (20)
only needs one eigenvector decomposition of length N . Since, in
this case, N �

∑

k
Nqk

, we should expect that the non-recursive
solution would be less expensive than the recursive one. However,
this may not be true because, in most cases, the number of relevant
eigenvalues is much more important in the non-recursive proces-
sor, thus increasing its computational cost. When the overlapping
is smaller, then clearly the recursive solution becomes more attrac-
tive than the non-recursive one.

From the recursive processor (23), it is possible to derive a
detection structure suited for sequential detection of replicas. For
every h = 1, · · · , Nq−1, two likelihood tests are performed. The
first test compares πh(n) with a high-valued threshold, µsup

h ; if
πh(n) > µsup

h , then it is assumed that a signal arrived to the
receiver with a low probability of false alarm, and there is no
need to evaluate πh+1(n + θf

h+1
− θf

h), that corresponds to the
arrival of the next replica; if πh(n) < µsup

h , then another test
is performed against a low threshold µinf

h ; if πh(n) < µinf

h ,
we consider that no signal is present at the receiver (with low
miss probability) and the procedure stops. Only in the case where
µinf

h ≤ πh(n) ≤ µsup

h , the processor waits for the next replica to
make a decision. When h = Nq , only one final test is performed.



6. SIMULATION RESULTS

The received signal is a weighted sum of 10 delayed replicas of a
chirplike stochastic transient with autocorrelation function shown
in figure 1. The noise variance is σ2 = 5. The mean value for the
overlapping between consecutive replicas ∆̄q , is 80% or 20%.

0

10

20

30

40

50

60

0

10

20

30

40

50

60

−1

−0.5

0

0.5

1

PSfrag replacements

t1
t2

k
s
(t

1
,t

2
)

Fig. 1. Autocorrelation function of the emitted signal.
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Fig. 2. ROCs: a) ∆̄q = 80%. b) ∆̄q = 20%.
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Fig. 3. Statistics mismatch: a) ∆̄q = 80%. b) ∆̄q = 20%.

The DCs are generated from a Gaussian probability function
with 1/3rd of the length of the emitted signal, while the ACs have
ᾱk = 1 and σk = 0.2, ∀k = 1, · · · , 10. The receiver operat-
ing characteristics (ROC) are obtained by simulation with 5000
Monte-Carlo runs. In figures 2 a) and b), the performance of the
proposed detector (PROPOSED) is compared with i) a reference
one (REFERENCE), consisting on the best possible quadratic pro-
cessor obtained from the covariance matrix estimated from the
5000 signals arriving at the receiver; and ii) a detector that as-
sumes that the DCs and ACs take fixed values (FIXED), equal to
the mean values of the real channel parameters. We conclude that,
for both overlapping situations, the performance of the proposed
solution is very close to the best quadratic processor and presents

Table 1. Sequential detection of replicas
Scenario PFA PD CC

i) 0.1810 0.7102 18.16%
ii) 0.1064 0.8374 65.31%
iii) 0.1246 0.8140 41.59%

a huge gain comparing to the fixed parameters one. Figures 3 a)
and b) show the performance degradation due to mismatch in the
statistics of the DCs. For FP = 0 the DCs probability function
is known, while for FP = 1 an uniform probability with the sup-
port of the true one is used. When SH = 5, a shift (25 %) of the
support of the DCs probability function is considered in the tem-
poral localization of the DCs. If SH = 0, no mismatch exists. For
a large overlapping between replicas (∆̄q = 80%), the proposed
processor shows to be robust to statistics mismatch. However, for
a smaller overlapping, figure 3 b) shows some sensitivity to shifts
mismatch. In both cases, the assumption of an uniform probability
function introduces only a small degradation on the processor.

Regarding the sequential detection of replicas, and for mean
overlapping between replicas of 50%, three scenarios are consid-
ered: i) small µsup and large µinf ; ii) the opposite of i); and iii)
an intermediate situation, between i) and ii). Table 1 shows the
probabilities of detection (PD) and of false alarm (PFA), and the
percentage of computational complexity (CC) needed, comparing
with the processor that waits for the arrival of all the 10 replicas,
for which PD = 0.8442 and PFA = 0.1. In situation i) the CC re-
duces drastically but the PD and the PFA also suffer an important
degradation. In this case, detection is performed at the arrival of
few replicas. In situation ii), although there is only a small loss of
performance, the CC is still reduced to 65.31%.

7. CONCLUSION

The optimal processor for stochastic transient signal detection in a
multipath environments is, in general, computationally untractable.
This paper presents a computationally efficient suboptimal solu-
tion, where the multipath parameters are modelled as random vari-
ables. A structure for sequential detection of replicas is proposed,
avoiding the need to wait for all replicas to make a decision. The
proposed solution is robust to the multipath statistics mismatch,
thus requiring only mild a-priori information about the channel.
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