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Abstract— The paper presents the design and performance
evaluation of a novel navigation solution that merges low-rate
delayed GPS measurements with high-rate linear acceleration,
attitude, and angular velocity measurements to estimate, in
three dimensions, linear motion quantities (position, linear
velocity, an acceleration of gravity) of unmanned aerial vehicles
(UAVs). The design is based on the continuous-discrete Kalman
filter solution for an equivalent LTI realization and allows for
the natural use of frequency weights to explicitly achieve ade-
quate disturbance rejection and measurement noise attenuation
on the state estimates. The proposed solution is optimal with
respect to all quantities assuming exact angular measurements
and, in the presence of noisy angular quantities, it outperforms
classic solutions developed in inertial coordinates. Simulation
results illustrate the achievable performance in the presence of
realistic measurements, including noise and delays.

I. INTRODUCTION

The design of Navigation and Positioning Systems plays

a key role in the development of UAVs. On one hand, the

acquired data sets should be properly georeferenced with

respect to a given mission reference point on survey tasks. On

the other hand, good navigation information is necessary for

control purposes, where other quantities such as the attitude

of the vehicle and the (linear and angular) velocities are also

usually required. This paper presents a novel navigation solu-

tion to estimate linear motion quantities, in three dimensions,

with application to UAVs.

Inertial Navigation Systems (INS) have been extensively

studied in the past, as evidenced by the large number of

publications on the subject, see [1], [2], [3], [4], [5], and

references therein. These systems have very high short-term

accuracy but, since they integrate, in open-loop, noisy quanti-

ties, the performance gets degraded over time. This limitation

is successfully overcome resorting to aiding sensors such as

the Global Positioning System (GPS) and several solutions

have been proposed in the literature [6], [7].

The main contribution of the paper is the design and

performance evaluation of a novel navigation solution that

merges low-rate position GPS measurements with high-rate

linear acceleration, attitude, and angular velocity measure-

ments to provide continuous-time estimates of the linear
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motion quantities (position, velocity, and acceleration of

gravity) in three dimensions. The present solution departs

from previous approaches as it considers each variable in

the most natural space, i.e., the space where it is measured,

thus avoiding the rotation of the acceleration to inertial

coordinates and the correction of the gravity and Coriolis

acceleration terms. In fact, the gravity is also estimated,

in body-fixed coordinates, and the Coriolis acceleration is

explicitly taken into account in the model. These last two

points are of major importance in the design of Navigation

Systems as, due to its magnitude, any misalignment in

the estimate of the acceleration of gravity or the Coriolis

acceleration results in severe problems in the acceleration

compensation. The advantages of the proposed solution are

also evident in the case of vehicle stabilization and control.

Indeed, while in classic estimation solutions the velocity

of the vehicle is estimated in inertial coordinates and must

be converted to body-fixed coordinates, with the proposed

solution the velocity is directly estimated in body-fixed

coordinates, thus reducing the impact of the noise of the

attitude measurements. The same applies to the acceleration

of gravity.

At the core of the proposed methodology there is a time-

varying orthogonal Lyapunov transformation that renders the

dynamics of the kinematic system linear time invariant (LTI).

This allows for the derivation of an equivalent continuous-

time Kalman filter with discrete-time delayed measurements

for the LTI realization, which is then converted back to the

original time-varying framework, yielding the final optimal

filtering solution. Frequency weights may be included in the

design to explicitly achieve adequate disturbance rejection

and measurement noise attenuation on the state estimates and

the proposed solution is optimal with respect to all signals

assuming exact angular measurements. Interestingly enough,

it is precisely in the presence of noisy angular quantities

that the present solution exhibits more clearly its advantages

over traditional approaches, as it will be shown. Finally,

an explicit limit filtering solution is presented which does

not require the solution of a Lyapunov matrix differential

equation each time a new measurement arrives. This is of

great practical importance since it lessens the computational

cost and allows for a straightforward digital implementation

of the filter.

The paper is organized as follows. The estimation problem

and the system dynamics are introduced in Section II. The

filter design is derived in Section III, where a limit filter-

ing solution and alternative approaches are also discussed.
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Realistic simulation results are presented in Section IV and

finally Section V summarizes the main contributions and

conclusions of the paper.

Throughout the paper the symbol 0n×m denotes an n×m
matrix of zeros, In an identity matrix with dimension n×n,

and diag(A1, . . . ,An) a block diagonal matrix. When the

dimensions are omitted the matrices are assumed of appro-

priate dimensions.

II. PROBLEM STATEMENT

Consider an aircraft moving with respect to an inertial

reference frame {I} and consider also a body-fixed reference

frame {B} attached to the center of mass of the vehicle. Let

p denote the inertial position of the vehicle, expressed in

inertial coordinates, and v the inertial velocity of the vehicle,

expressed in body-fixed coordinates. Then, the linear motion

kinematics of the vehicle are given by

ṗ(t) = R(t)v(t),

where R is the rotation matrix from {B} to {I}, that satisfies

Ṙ(t) = R(t)S (ω(t)) ,

where ω is the angular velocity and S (ω (t)) is the skew-

symmetric matrix such that S (ω(t))x(t) = ω(t) × x(t),
with × denoting the cross product between two vectors.

In addition to a GPS, which is assumed to provide the

inertial position p, the vehicle is typically equipped with

an Attitude and Heading Reference System (AHRS), which

provides the attitude and the angular velocity of the vehicle,

and a triad of orthogonal accelerometers that provide

a(t) = v̇(t) − g(t) + S (ω(t))v(t),

where g denotes the vector of the acceleration of gravity, ex-

pressed in body-fixed coordinates, and S (ω(t))v(t) stands

for the Coriolis acceleration term. Assuming that the gravity

vector is constant in inertial coordinates, it follows that its

time derivative when expressed in body-fixed coordinates is

simply given by

ġ(t) = −S (ω(t))g(t).

The dynamics of the linear motion quantities can thus be

written as














ṗ(t) = R(t)v(t)
v̇(t) = u(t) + g(t) − S (ω(t))v(t)
ġ(t) = −S (ω(t))g(t)
ψ(t) = p(t)

,

where ψ denotes the system output and u = a is the

system input. Although these equations are standard, classic

navigation approaches do not use this form. Instead, the

acceleration is converted to inertial coordinates and the

gravity and Coriolis terms canceled. The novelty of the

solution proposed in the paper steams from expressing each

quantity in the sensor space, i.e., in the same reference

frame of the sensor, thus reducing the impact of the noise

of the attitude measurements. Moreover, while in inertial-

based solutions the angular velocity measurement is quite im-

portant to the estimation of angular quantities but somehow

neglected in the estimation of the linear quantities, that does

not happen using this framework since it appears explicitly

in the dynamics of the system.

The estimation of all quantities should take place in a

continuous-time framework, avoiding the undesirable ap-

proximation of the system dynamics and facilitating the

project of the filters. Moreover, in the case of UAVs, where

controllers usually require the vehicle state to actuate the

control surfaces and thrusters, this is of particular impor-

tance. Sensors where high sampling rates are available are

not a problem as there exist simple and effective numerical

algorithms that solve the integration problem, but the GPS

offers only low sampling rate updates. What is more, it does

so with time-varying delays that must be taken into account

in the design, particularly for high-speed vehicles such as

UAVs. Suppose that the output of the system is sampled at

a constant rate and that the measurements arrive with time-

varying delays, as given by

ψd
k = ψd

(

td
k

)

= ψ (tk) + nd (tk) , k ∈ N,

where nd is discrete-time zero-mean white noise with covari-

ance NdI, td
k

denotes the instant of arrival of the measure-

ment k, and tk denotes the sampling instant of measurement

k, given by

tk = kT, k ∈ N,

where T denotes the sampling period. A temporal diagram

that illustrates the output sampling is depicted in Fig. 1.

t

TT

tk tk+1 tk+2td
k

td
k+1 td

k+2

ψd
k

ψd
k+1

ψd
k+2

ψ (t)

Fig. 1. Temporal Diagram of GPS sampling

To complete the formulation of the system dynamics, it is

interesting to add continuous-time system disturbances. To

that purpose, consider the system dynamics
{

η̇p(t) = AAAp(t)ηp(t) + Bpu(t) + d(t)
ψ(t) = Cpηp(t) + n(t)

,

where ηp(t) =
[

pT (t)vT (t)gT (t)
]T

∈ R
9 is the system

state, d(t) denotes the system disturbances input, n(t) de-

notes a disturbance that affects the output of the system,

AAAp(t) =





0 R(t) 0
0 −S (ω(t)) I
0 0 −S (ω(t))



 , Bp =





0
I
0





and Cp = [I3 0 0]. For design purposes consider that the

disturbance input d(t) is given by

d(t) := TT (t)d(t),
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where

T(t) := diag (I,R(t),R(t))

and d(t) is the output of a stable LTI system Wd driven

by zero-mean, unit intensity white noise. Similarly, suppose

that n(t) is the output of a stable LTI system Wn, also

driven by zero-mean, unit intensity white noise. Further

assume that Wn is a stricly proper system. If that was not

the case, ψ(t) would contain white noise components that

would lead to a discrete sequence of measurements with

infinite variance. This is, nevertheless, a mild assumption

since in nature there are no processes with infinite energy.

Let xd(t) and xn(t) denote the internal states of state space

realizations (Ad,Bd,Cd,Dd) and (An,Bn,Cn,0) of Wd

and Wn, respectively. Then, the augmented system dynamics

can be written as
{

η̇(t) = AAA(t)η(t) +BBBpu(t) +BBB(t)w(t)

ψd
k = CCCη (tk) + nd (tk) , k ∈ N

, (1)

where η(t) :=
[

ηT
p(t)x

T
d xT

n

]T
,

AAA(t) =





AAAp(t) TT (t)Cd 0
0 Ad 0
0 0 An



 ,

BBBp =





Bp

0
0



 , BBB(t) =





TT (t)Dd 0
Bd 0
0 Bn



 ,

and CCC = [Cp |0 |Cn]. The overall design setup is depicted

in Fig. 2, where w =
[

wT
d wT

n

]T
is zero-mean, unit intensity

white noise. The system disturbance model Wd and the

output disturbance model Wn may be useful, e.g., to model

colored noise of the accelerometer and the GPS, respectively.

Also, notice that the transformation matrix T(t) preserves

the norm of the disturbances that affect the states p, v, and

g, and the directionally is only affected for the disturbances

on the latter two, v and g.

AAA(t)

Bp Cp

TT(t)

Wd

Wn

Time
Delay

ψu ηp

wd

wn

nd

nd

ψd
k

System Dynamics

Sensor Model

Disturbance Model

∫ +

++

++

+
+

Fig. 2. Filter design setup

The problem considered in the paper is the design of

an optimal continuous-time filter with discrete-time delayed

measurements for the linear time-varying system (1).

III. FILTER DESIGN

This section presents the filter design concepts that are

at the core of the navigation solution proposed in the

paper. The derivation of the filter equations is detailed in

Section III-A, whereas Section III-B suggests a time-varying

filtering limit solution. Implementation issues and alternative

filtering solutions for the problems addressed in the paper are

discussed in Section III-C.

A. Filter Equations

In order to derive the optimal Kalman filter, consider the

Lyapunov coordinate transformation similar to the one first

proposed in [8] and define

x(t) := Tc(t)η(t), (2)

where

Tc(t) := diag (T(t), I, I) .

Then, the dynamics of the system expressed in this new

coordinate space can be written as
{

ẋ(t) = Ax(t) + Bw(t) + Tc(t)BBBpu(t)
yd

k = Cx(tk) + nd (tk) , k ∈ N
, (3)

where

A :=





Ap Cd 0
0 Ad 0
0 0 An



 , Ap :=





0 I 0
0 0 I
0 0 0



 ,

B :=





Dd 0
Bd 0
0 Bn



 ,

and C := CCCTT
c (tk) = [Cp |0 |Cn] = CCC. The advantage

of using this coordinate transformation is that the state

dynamics become linear time invariant in what concerns the

dependence on the state and the noise. The deterministic

input is simply replicated in the filter design.

The Kalman filter for the continuous-discrete system (3)

is given by










˙̂x(t) = Ax̂(t) + Tc(t)BBBpu(t), td
k
≤ t < tdk+1

x̂
(

td
k

)

= x̂
(

td
k

−

)

+ Φ
(

td
k
, tk

)

K (tk)
[

y
(

td
k

)

−Cx̂(tk)
]

x̂ (t0) = x̂0 = Tc(t0) η̂0

,

where td0 = t0, η̂0 is the initial state estimate, Φ
(

td
k
, tk

)

is

the transition matrix

Φ
(

td
k
, tk

)

= eA(td

k
−tk),

that simply propagates the discrete update to compensate for

the measurement delays, and K (tk) is the Kalman matrix

gain, given by

K (tk) =
1

Nd

Pc(tk)C
T,

where Pc(t) denotes the covariance of the error of the esti-
mate of the state at time t assuming there are no measurement
delays, whose dynamics are given by

{

Ṗc(t)=APc(t)+Pc(t)A
T +BBT , tk−1≤ t < tk, k∈N

Pc (t0)=Pc0 = Tc (t0)PPPc0T
T
c (t0)

,

where PPPc0 = PPP0 ≻ 0 is the initial covariance matrix and the
discrete update at tk is given by

Pc (tk) = Pc

(

tk

−
)

−Pc

(

tk

−
)

C
T

[

CPc

(

tk

−
)

C
T + NdI

]

−1

CPc

(

tk

−
)

. (4)
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The filter equations in the original coordinate space can
be recovered by inverting the coordinate transformation (2),
which gives











˙̂η(t) = AAA(t)η̂(t) +BBBpu(t), td
k−1 ≤ t < td

k, k∈ N

η̂
(

td
k

)

= η̂
(

td
k

−

)

+Φ
(

td
k, tk

)

KKK (tk)
[

ψd
k−CCCη̂(tk)

]

η̂ (t0) = η̂
0

, (5)

where Φ
(

td
k
, tk

)

denotes the transition matrix associated with

AAA(t), simply written as

Φ
(

td
k
, tk

)

= TT
c

(

td
k

)

Φ
(

td
k
, tk

)

Tc (tk) ,

and KKK (tk) denotes the Kalman matrix gain, given by

KKK (tk) =
1

Nd

PPPc (tk)CCC
T , (6)

where PPPc (t) denotes the covariance matrix of the error of

the estimate of η at time t if there were no measurement

delays, which can be expressed as

PPPc (t) = TT
c (t)Pc(t)Tc (t) . (7)

The following theorem summarizes the main result of this

section.

Theorem 1: Consider the generalized system dynamics

as depicted in Fig. 2, where w =
[

wT
d wT

n

]T
is zero-

mean, unit intensity, continuous-time white noise and nd is

zero-mean, discrete-time white noise, with covariance matrix

NdI. Assume that η (t0), w(t), and nd (tk) are mutually

uncorrelated for all time. Let td0 = t0, η̂0 be the initial state

estimate, and PPP0 the initial error covariance matrix. Then, the

optimal Kalman filter is given by (5) and the error covariance

matrix PPP(t) is given by

PPP(t) = TT
c (t)P(t)Tc(t)

where P(t) satisfies
{

Ṗ(t)=AP(t)+P(t)AT +BBT, td
k−1 ≤ t < td

k, k∈N

P
(

td
0

)

=P0

, (8)

and the discrete update is given by the propagation of Pc (tk),
which can be written as

P
(

t
d
k

)

= P
(

t
d
k

−

)

−Φ
(

t
d
k, tk

)

P (tk)CT

[

CP (tk)CT+ I
]

−1

CP (tk)ΦT
(

t
d
k, tk

)

, k∈N. (9)

Proof: The Kalman filter dynamics (5) are standard,
where Φ

(

td
k
, tk

)

accounts for the correction due to the
measurement delays. To show that the Kalman gain is given
by (6) it remains to show that (7) is the solution of

ṖPPc(t)=AAA(t)PPPc(t)+PPPc(t)AAA
T(t)+BBB(t)BBBT(t), tk−1≤ t<tk, k∈N,

(10)
with PPPc (t0)= PPPc0 and

PPPc (tk) =PPPc

(

tk

−
)

−PPPc

(

tk

−
)

CCCT

[

CCCPPPc

(

tk

−
)

CCCT +NdI
]

−1

CCCPPPc

(

tk

−
)

. (11)

Substituting (4) in (7) immediately yields (11). After a few

algebraic manipulations, the time derivative of (7) gives (10).

The actual error covariance matrix does not coincide with

PPPc(t) due to the measurement delays. Thus, between arrivals

of the measurements, the covariance matrix is integrated in

open-loop as given by (8). At the time of arrival td
k
, the

covariance is updated so that it coincides with PPPc(t
d
k
), i.e.,

PPP
(

td
k

)

= PPPc(t
d
k
) or, using (7),

PPP
(

td
k

)

= TT
c

(

td
k

)

Pc

(

td
k

)

Tc

(

td
k

)

. (12)

The covariance matrix Pc

(

td
k

)

can be written as

Pc

(

t
d
k

)

=Φ
(

t
d
k, tk

)

Pc (tk)ΦT
(

t
d
k, tk

)

+

∫ td

k

tk

Φ
(

t
d
k, τ

)

B (τ)BT (τ)ΦT
(

t
d
k, τ

)

dτ. (13)

Substituting (4) in (13), and since Pc (tk
−) = P (tk), gives

Pc

(

t
d
k

)

=Φ
(

t
d
k, tk

)

P (tk)ΦT
(

t
d
k, tk

)

+

∫ td

k

tk

Φ
(

t
d
k, τ

)

B (τ)BT (τ)ΦT
(

t
d
k, τ

)

dτ

−Φ
(

t
d
k, tk

)

P (tk)CT
[

CP (tk)CT + NdI
]

−1

CP (tk)ΦT
(

t
d
k, tk

)

. (14)

Now, notice that

P
(

t
d
k

−

)

=Φ
(

t
d
k, tk

)

P (tk)ΦT
(

t
d
k, tk

)

+

∫ td

k

tk

Φ
(

t
d
k, τ

)

B (τ)BT (τ)ΦT
(

t
d
k, τ

)

dτ.

Thus, (14) may be rewritten as

Pc

(

t
d
k

)

=P
(

t
d
k

−

)

−Φ
(

t
d
k, tk

)

P (tk)CT
[

CP (tk)CT + NdI
]

−1

CP (tk)ΦT
(

t
d
k, tk

)

. (15)

But (15) corresponds to (9), which means, from (12), that

PPP
(

td
k

)

= TT
c

(

td
k

)

P
(

td
k

)

Tc

(

td
k

)

,

which concludes the proof.

B. Filtering Limit Solution

In the previous section the filter equations were derived

by means of an appropriate Lyapunov transformation that

rendered the dynamics linear time invariant, as given by (3).

Under appropriate stabilizability and detectability hypothesis,

it is well known that the Kalman filter for the continuous-

discrete LTI system (3) converges to an asymptotically stable

steady-state solution. The existence of a special relationship

between (3) and (1) induces a limit filtering solution for the

the system at hand.

Define

Φ := Φ(T, 0) ,

Q :=

∫ T

0

Φ(T, τ)BBT ΦT (T, τ) dτ,

and suppose that the pairs
(

Φ,Q
)

and
(

Φ,C
)

are stabi-

lizable and detectable, respectively. Notice that this only

depends on the choice of the filters Wd and Wn. Under these
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conditions the estimation error covariance matrix Pc (tk)
converges to

lim
k→∞

Pc (tk) = P∞

c
, (16)

with

P∞

c
:=Pr

c
− Pr

c
CT

(

CPr
c
CT +NdI

)−1
CPr

c
,

where Pr
c

is the solution of the discrete-time algebraic
Riccati equation

P
r
c = ΦP

r
cΦ

T
+ Q − ΦP

r
cC

T [CP
r
cC + NdI]

−1
CP

r
cΦ

T
.

From (6), (7), and (16) it follows that the Kalman gain

converges to the limit solution

lim
k→∞

KKK (tk) =
1

Nd

TT
c (tk)P

∞

c
Tc (tk)CCC

T . (17)

The Kalman filter that results from using the limit solution

for the gain (17) is still time-varying due to the inherent

nature of the system dynamics. However, the gain is now

readily obtained and does not require the online solution of

the Lyapunov matrix differential equation (8), which could

be computationally expensive.

C. Alternative Realizations and Implementation

It was assumed throughout all the derivations that the

output of the system was sampled at a constant rate. This

constraint may be discarded and the previous filter modi-

fied accordingly to allow aperiodic sampling of the system

output. However, in that situation, a limit filtering solution,

as reported in Section III-B, does not exist. In fact, for

aperiodic sampling, a Lyapunov matrix differential equation

must be solved each time a new measurement arrives in

order to compute the optimal gain, which is computationally

expensive.

In the paper it was chosen a Kalman filtering setup,

assuming zero-mean white noise and zero-mean white dis-

turbances. However, it should be said that the optimal H∞

filter for the continuous-time system with discrete-time de-

layed measurements presented in Section II may be derived

following similar steps, see [9] for details on the general H∞

filtering setup for sampled-data systems.

Figure 3 presents the block diagram implementation of the

proposed solution, where the dashed lines represent injection

of initial conditions on the various blocks each time a new

measurement is available. Although the system dynamics

presented in the paper are continuous, it turns out, in practice,

that the filter is implemented in a discrete-time framework.

Thus, the open-loop propagation of the system state estimate

is done resorting to integration algorithms, namely, numerical

algorithms such as Runge-Kutta methods. The signals ω, R,

and u are thus sampled at high rates in order to allow precise

numerical integration of the state estimate.

IV. SIMULATION RESULTS

In order to evaluate the performance achieved with the

proposed navigation solution, simulations were carried out

using a full nonlinear model (see [10] for further details)

of a small scale airplane. The simulations are carried out in

AAAp(t)

Bp

CpTT(t)

Wd

Wn

ψd
k

u η̂p

η̂
(

td
k

)

Φ
(

td
k, tk

)

KKK (tk)

Time
Delay

Open-Loop Estimation

Update Cycle

∫

++

+

+

+

+
+

−

Fig. 3. Block Diagram of the Filter Implementation

the presence of wind disturbances and the path-following

controller proposed in [10] is employed to generate the

trajectory depicted in Fig. 4.

0 200 400 600 800−400
−200

0

−1500

−1000

−500

0

x (m)y (m)

z
 (

m
)

end

start

Fig. 4. Trajectory described by the UAV

In the simulation the GPS measurements are corrupted

with additive zero-mean white noise, with standard deviation

of 1m, and arrive with delays that follow an exponential

distribution with parameter λ = 0.075, whereas the sampling

rate is 1Hz. The remaining sensors, viz. the AHRS and the

triad of accelerometers, are sampled at 100Hz. In addition,

the acceleration and the angular velocity measurements are

corrupted by additive zero-mean Gaussian noises, with stan-

dard deviations of 0.006 m/s2 and 0.02 °/s, respectively, and

the attitude of the vehicle, assumed to be given by the roll,

pitch, and yaw Euler angles, corrupted by additive zero-mean

white Gaussian noises with standard deviation of 0.2 ° for the

roll and pitch and 1 ° for the yaw. The open-loop propagation

of the system state estimates was carried out with a Runge-

Kutta method of fourth-order. In order to properly tune the

behavior of the filter the frequency weight transfer functions

were chosen as Wd = 0.001I6, Wn = 0, and Nd = 1.

The evolution of the filter error variables is shown in

Fig. 5. The initial transients arise due to the mismatch of

the initial conditions of the states of the filter and can

be considered as a warming up time of 3 minutes of the

corresponding Integrated Navigation System. Notice that this

can be drastically reduced by proper initialization of the

filter variables. The filter error variables are shown in greater

detail in Fig. 6. From the various plots it can be concluded

that the measurement noise is highly attenuated by the filter,

producing very accurate estimates of the inertial position of
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the vehicle, velocity, and acceleration of gravity. The delays

in the position measurements are also dealt with successfully.
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Fig. 5. Time evolution of the Kalman filter error variables
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Fig. 6. Detailed evolution of the Kalman filter error variables

To compare the strategy proposed in the paper with

classic strategies, the previous simulation was repeated with

a Kalman filter completely developed in inertial coordinates.

The evolution of the resulting filter error is shown in Fig. 7

and, in greater detail, in Fig. 8. The differences between the
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Fig. 7. Time evolution of the inertial Kalman filter error variables
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Fig. 8. Detailed evolution of the inertial Kalman filter error variables

proposed solution and the classic solution are highlighted

in Table I, where the steady-state standard deviations of

the errors for both strategies are presented. The proposed

sensor-based strategy clearly outperforms the classic inertial

solution, especially in what concerns the estimation of the

velocity and acceleration of gravity. The position is not as

affected as it is estimated in inertial coordinates in both

solutions.

Standard deviation of the errors Proposed Filter Inertial Filter

Position - x axis (m) 0.4796 0.4992
Position - y axis (m) 0.3669 0.3645
Position - z axis (m) 0.3225 0.3186

Velocity - x axis (m/s) 0.0454 0.0519
Velocity - y axis (m/s) 0.0357 0.5229
Velocity - z axis (m/s) 0.0356 0.3413

Gravity - x axis (m/s2) 0.0023 0.0342

Gravity - y axis (m/s2) 0.0018 0.0292

Gravity - z axis (m/s2) 0.0020 0.0184

TABLE I

STANDARD DEVIATION OF THE FILTER ERRORS

V. CONCLUSIONS

The paper presented the design and performance evalua-

tion of a novel sensor-based navigation solution that merges

low-rate delayed GPS measurements with high-rate linear

acceleration, attitude, and angular velocity measurements

to estimate, in three dimensions, linear motion quantities

(position, linear velocity, an acceleration of gravity) of un-

manned aerial vehicles (UAVs). The design is based on the

continuous-discrete Kalman filter solution for an equivalent

LTI realization and allows for the natural use of frequency

weights to explicitly achieve adequate disturbance rejection

and measurement noise attenuation on the state estimates.

The proposed solution is optimal with respect to all quantities

assuming exact angular measurements and, in the presence

of noisy angular quantities, it outperforms classic solutions

developed in inertial coordinates. Simulation results were

discussed that illustrate the achievable performance in the

presence of realistic measurements, including noise and

delays.
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