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Abstract

Finding correspondences between feature points is one
of the most relevant problems in the whole set of visual
tasks. In this paper we address the problem of matching
a feature vector (or a matrix) to a given subspace. Given
any vector base of such a subspace, we observe a linear
combination of its elements with all entries swapped by an
unknown permutation. We prove that such a computation-
ally hard integer problem is uniquely solved in a convex set
resulting from relaxing the original problem. Also, if noise
is present, based on this result, we provide a robust estimate
recurring to a linear programming-based algorithm. We use
structure-from-motion and object recognition as motivating
examples.

1. Introduction

It is common knowledge that visual tasks like object
recognition, shape reconstruction or image and motion seg-
mentation may become from very hard to compute to very
simple, by �nding the adequate representation for the data
or model. Adjoint to this, assigning correspondences be-
tween several images or between images and models is es-
sential to implementing those tasks, as in locating objects in
images, computing depth, tracking and recognizing objects
in images.

Representing images and objects by linear subspaces, or
using them as constraints, is almost ”omnipresent” in com-
puter vision: Eigenfaces, shape-from-motion, shape from
shading, sound, illumination, style and content and optical
�ow estimation, to list a few �elds of application, where
linear (bilinear) models are extensively used with great suc-
cess.

This work was partially supported by the Fundacao para a Ciencia e
Tecnologia (ISR/IST pluriannual funding) through the POSC Program that
includes FEDER funds and J. Costeira is also supported by project FCT -
PTDC/EEA-ACR/72201/2006.

Figure 1. Feature matching constrained to a linear subspace: Fea-
ture vector W is constrained to the subspace generated by SA and
SB . The observation results from a linear combination of this base
followed by a permutation of its entries. The objective is to infer
the sorting knowing the original subspace.

In this article we tackle the problem of �nding the corre-
spondences between points clouds (or feature vectors) con-
strained to lie on a subspace. As illustrated in �gure 1, the
problem here is to sort entries of a vector (or columns of a
matrix) W, such that the permuted vector lies on the lin-
ear subspace resulting from the span of S. In other words,
observations result from a linear map of S followed by a
permutation of its coordinates. Note that this map can be
rank de�cient (like a camera projection).

In the absence of noise, this problem can be solved in
polynomial time [15]. However, with noise (or data which
deviates from the model), it becomes intractable. In this
paper we reveal a striking fact: The combinatorial (hard)
problem of �nding a permutation that ”best” �ts one vec-
tor with unsorted coordinates into its underlying subspace,
can be obtained by minimizing a convex function over a
convex set, which solution is a permutation. The problem
complexity will depend on the relative dimensions between
image and model, but will always lead to the execution of
one, or a �nite number of linear programs.

Even though this is a general result, we will focus, in the
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Figure 2. Subspace matching problem: Finding the correct permutation matrix P such that the resorted observed feature vector PW lies on
the subspace S generated by the model. Note that the subspace can be computed from the 3D shape or from several image correspondences.

�elds of structure-from-motion and object recognition with
af�ne cameras as an application framework.

1.1. Related Work

Looking at the aforementioned subjects, several algo-
rithms have been used to solve the object recognition prob-
lem from single images - feature/appereance and geomet-
ric approaches. Unlike 2D-2D recognition problem [14], a
common strategy to recognize a 3D object from one single
2D image is solving a matching problem between two point
clouds, because there are no general invariants between sub-
spaces of different dimensions, e.g. 3D-2D [4, 10]. In [1],
the shape context descriptors (orientation and distance his-
tograms) are used to compute the two sets correspondence,
using linear programming. The work presented in [2] al-
lows us to compute the match between two 2D views of a
3D object using appearance information (feature descrip-
tors) and geometric constraints, e.g. proximity between
points. Smooth motion is required and the algorithm’s con-
vergence is not guaranteed because the solution is found by
solving a linearized version of an integer quadratic problem.
In [16], the authors build a cost function based on geometric
and appearance information and �nd the solution through
graph-cuts.

Based on geometric constraints, the correspondences be-
tween two 2D and 3D sets is computed by an highly non-
convex optimization problem, which is solved using de-
terministic annealing [7]. This approach requires a rough
alignment between the two sets. In [6], the 3D-3D match-
ing points is estimated by ICP-like algorithms. The 2D case
is also discussed and the Levenberg-Marquardt algorithm
is used to �nd the solution. An EM-type algorithm is pro-
posed in [5] but, such as [6], the convergence is not guar-
anteed and some solutions can correspondent to local mini-
mae. A quadratic optimization problem is suggested in [13]
to �nd the 2D-2D matching solution. The authors use a

newton-based algorithm to minimize the cost function, but
a global minimum may not be found. A global solution for
the 3D-3D correspondence can be found through a branch-
and-bound algorithm [9], a similar strategy used in [3, 12].
In [12], the proposed RANSAC-based approach is a com-
putationally expensive method. Imposing rank constrains
through a linear program [11] is another approach to reach
the global optimum. However, like some of the mentioned
methods, the solution given by the algorithm depends criti-
cally on the initial estimate. The algorithm proposed in [17]
uses a QR factorization approach to compute the correspon-
dence between two subspaces. In this case, the subspaces’
dimension must be equal, e.g. 2D-2D and 3D-3D.

In sum, the state of the art methods do not guarantee
global convergence [5, 6, 11, 13], global optimum solution
[15] or if they satisfy these two requirements are computa-
tionally heavy [3, 9, 12]. As in [9, 13, 17], our approach
does not deal with outliers, however we provide conditions
and an explicit solution that is always attained and a quite
ef�cient algorithm to compute it.

2. Problem formulation

As said before and shown in �gure 2, we consider the
case of an object characterized by a 3D point cloud, ob-
served by an af�ne camera. Recognizing the object in this
2D view requires the correspondences between the two sets
of features (3D object - 2D projections).

So, given the known 3D shape S, composed by points
S RN 3, and a set of 2D unsorted projections W
RN 2, resulting from a linear map of S (translation can be
removed by centering the data), the correspondence prob-
lem can be solved by computing the permutation
matrix P such that
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where is an unknown (camera) transformation. Note that
the subspace of interest is the column space of S (we use the
transposed notation introduced by Tomasi&Kanade). Thus,
matrix P permutes columns of W1 such that PW lies in

S . Equation (1) is equivalent to

W
T
PT S 0 (2)

where S represents a base in the orthogonal space to
S and 0 is a matrix of zeros. We seek the correct

sorting of image points that satis�es the projection model.
In the noiseless case, matrix is computed knowing 3 cor-
rect matches [15]. Knowing , permutationP can be calcu-
lated easily: The 3 initial matches are found by exhaustive
search in 3 , and the other assignments through a lin-
ear program solved in 3 (ex the Hungarian method).
However, in a real case (noisy data and approximate cam-
era model), �nding the globally optimal constrained to (1,2)
becomes a (very hard) combinatorial problem. State of the
art algorithms either require a close initial estimate or sim-
ply do not guarantee convergence to the global optimum.
It turns out, that the global optimum can be computed ef�-
ciently with some prior knowledge.

3. A unique solution for the subspace matching
problem

3.1. Assumptions and constraints for unicity

In noisy conditions, equation (2) will not be satis�ed in
general. The intuitive way of coping with this, is to de�ne
some criterion by which that equality is approximated, for
example, in the least square error sense. Then a solution is
found by searching for the minimum of the error 2

WTPT S 2
2 in the set of permutation matrices. This set

is de�ned as the set of matrices with elements 0 or 1, and
which rows and columns sum to 1, that is:

P N
i=1 Pij (3)
N
j=1 Pij (4)

Pij (5)

The combinatorial nature of the problem can be circum-
vented by relaxing the domain ( ), to its convex hull, the

1Note that, in equation (1), indexes 1, · · · , N in W do not correspond
to indexes 1, · · · , N in S

set of doubly stochastic matrices ( ). Besides compact, this
set is convex thus suggesting a better way to designing ef�-
cient algorithms to seek the optimum. Mathematically this
set is obtained by replacing the non-convex constraint 5 in
the above de�nition by the ”convex” one Pij . In sim-
ple words we relax the 0,1 constraint. The main problem
here is that the solution is not guaranteed to be unique, and
possible solutions may not even be permutations. In fact
there are in�nite many solutions, resulting from the inter-
section of the polytope represented by equations (3,4) and
Pij , known as the Birkhoff polytope [18], and the lin-
ear subspace spanned by the shape matrix S. This intuitive
notion is rigorously handled in the appendix.

The surprising fact is that there exist conditions under
which the above relaxation can be done, leading to a unique
solution, that is to say, leading to the correct permutation.
This fact converts what we thought to be a very hard prob-
lem into a clearly solvable and computationally simple one.

For clarity purposes we will be using current notation
and focus on the particular case of 3D-2D matching. Con-
sidering the shape matrix S RN 3 and the image points
(observation matrix) W RN 2 as in equation (1,2) we
state the following

Proposition 1 If there are at least two known correspon-
dences between 3D points and their 2D image projections,
which for simplicity we de�ne to be the �rst 2 coordinates,
the solution of

W
T 2 2 0

0 P0
S 0 (6)

with P0 , is unique and consequentlyP0 is a permuta-
tion matrix.

This proposition is formally presented and generalized in
the appendix through the statement of theorem 1, together
with a sketch of its proof. Intuitively speaking, the known
points change the linear space spanned by the shape ma-
trix (S) into an af�ne subspace (revealed algebraically by
the identity matrix). The intersection of such an af�ne
subspace with the Birkhoff polytope is proved to be one ver-
tex which is, by de�nition, a permutation matrix.

In general, if the model has dimension and ob-
servations have dimension it is required the knowl-
edge of correspondences. We will introduce one
simple ”trick” by which one known correspondence can be
dropped. For the particular case illustrated here, we need
to know only one correspondence. Alternatively, we can
simply solve equations such as (6).

Finally remark that some degenerate cases exist, mostly
inherent to the representation. In particular, if one row of
S is expressed by a convex linear combination of 2 others
there will be a doubly stochastic row which also generates
the image point. However, most notably in the noisy case,
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these degenerate cases do not affect the solution globally.
In other words, if a small set of entries are degenerate this
only affects the corresponding elements of the permutation
matrix.

3.2. Approximate solutions using linear program-
ming

The facts stated above are true in the noiseless case. As
said before, equation (6) is not veri�ed if both S and W
are noisy. So, we need some criterion to approximate it.
Among all possible criteria, we seek one that exhibits ro-
bustness and computational ef�ciency. Note that P can be
of large dimension. We chose the minimization of the 1

norm which can be calculated using linear programming
(any other norm would do the job since the problem remains
convex)2. So, interpreting equation (6) in the least-error-
sense it boils down to the following optimization problem:

Problem 1
P arg P W

T
PT S

1

s.t.
P

Pi1,j1 Pi2,j2

where Pi1,j1 and Pi2,j2 are the two known correspon-
dences.

Though nonlinear, this problem can be solved by linear
programming recurring to the well-known epigraph tech-
nique. Using the same technique, the norm minimiza-
tion can be performed also by linear programming.

4. Experiments

To evaluate the algorithm’s performance under noisy
conditions, in this section we present synthetic and real ex-
periments. We will show the algorithm’s behavior in two
different real scenarios: matching between points of two
2D images and recognition of a 3D object from one 2D im-
age. In fact, given the assumptions and the theoretical proof
of the uniqueness of the solution the result stands by it-
self. However the effect of the af�ne camera approximation
and image noise require an experimental evaluation since it
leads to some noticeable errors.

We created 3 data sets: One with synthetic data follow-
ing the whole sequence of the article (matching 2D image
points to 3D object points) to test robustness to noise and
two real scenarios, as we mentioned before.

4.1. Synthetic data

In the synthetic case, we de�ned 8 different noise levels,
and for each of them, 200 independent experiments were

2Matlab code using Yalmip software is available at
http://users.isr.ist.utl.pt/˜manuel

run. The 3D object is composed of 22 randomly generated
points. In each experiment, we used two different sets: a
3D object (S) and one 2D image (W), generated by an or-
thographic projection and added gaussian noise ( 2 ).
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Figure 3. Synthetic experiments

In �gure 3, we show the noise standard deviation ( -
X axis) in pixels whereas image size is . See
that, if pixels ( ) the percentage of wrong
matches is below 5%. For higher noise levels (ex. ),
we obtained 90% of correct matches. Note that with such
level of noise, 99% of the points may have up to 100 pixels
deviation in an image of size .

4.2. Image to shape matching

To evaluate our method with real data, we used the Hotel
sequence3. The 3D object has 106 points and the sequence
is composed by 182 2D images (�gure 4 - Up Left).
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0
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10

15

20
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Figure 4. Real data - Left: Hotel’s sequence with image tracks.
Right: Histogram of wrong matches

Using this data, 60 experiments were performed ran-
domly selecting 5 (out of 182) 2D images in each exper-
iment. The object’s shape (S ) is computed from 4 im-
ages using Tomasi-Kanade shape-from-motion algorithm,
and the other one is used as a test image (W). By observ-
ing �gure 4 (Right), we can see that the algorithm obtained
the correct solution in almost and switched 2 points in

of cases. Note that the maximum number of wrong
matches in all 60 experiments was 9 (less than of 106
features).

3http://vasc.ri.cmu.edu/idb/html/motion/long-hotel/index.html
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Figure 5. A common wrong match

Although the percentage of ”completely” correct solu-
tions is not high, a wrong solution does not imply a gross
mistake. As shown in �gure 5, common mistakes occur
because neighboring points are switched. Also, sometimes
the images used to compute the shape are almost degenerate
(very close frames in time).

4.3. Face recognition: a 2D-2D example

Figure 6. Face images with strong pose

As referred before, the main goal of our method is recog-
nizing a 3D object from one 2D image. But, we can apply
this approach to �nd the correspondence between two -
dimensional sets, such as [8]. In this section, we present the
matching results between 2D points from two images, an
useful task to several face recognition methods.

Figure 7. Frontal face images

To evaluate our method, we use 145 2D images of 20
different people and each face is represented by 7 features
points (see �gure 6)4. The images were captured by a reg-
ular digital camera ( pixels) and there were no

4The whole faces’ database is available at
http://users.isr.ist.utl.pt/˜manuel/faceRecog/facesDatabase.zip

constraints on the distance between the camera and the sub-
ject (scale factor).

In �rst experiment, face images with strong pose are used
(�gure 6). The results presented in table were obtained from
100 experiments. Each one consists of randomly selecting
one image and computing the correspondence between the
2D points of this image and the points of each other images.
This means that, in each experiment, 144 permutations ma-
trices were calculated. According to the obtained results,
the highest percentage of correct matches occurs between
eye features.

Feature n. 1 2 3 4 5 6 7
1 98 1 - - - - 1
2 1 96 1 - - - 2
3 - 2 94 - 1 2 1
4 - - 2 96 1 1 -
5 - - - 2 98 - -
6 1 1 2 - - 94 2
7 - - 1 2 - 3 94

Table 1. Confusion matrix for �rst face matching experiment. En-
tries {i,j} represent the percentage of correspondences between
feature i and j.

By quick inspection of the tables we see that frontal face
images produce less error. This is due to the wider spread
of feature points (�g. 7). In �gure 6 it is noticeable that
features 1 and 2 have a very close projection. Thus, it is
possible that the minimum error solution switches these two
points. This is the same source of error described in the
previous experiment (�g. 5).

Feature n. 1 2 3 4 5 6 7
1 99 1 - - - - -
2 1 99 - - - - -
3 - - 98 1 - 1 -
4 - - 1 99 - - -
5 - - - - 100 - -
6 - - 1 - - 99 -
7 - - - - - - 100

Table 2. Confusion matrix for frontal image matching experiment.

5. Conclusions and future work

This article tackles the problem of �nding correspon-
dences between feature vectors when prior knowledge ex-
ists about the geometry of the data. In particular, if data
is constrained to a linear subspace, feature matching is the
process by which points in the feature vector are sorted,
such that it lies on the known subspace. Under noisy condi-
tions, this is a very hard combinatorial problem to solve.

The complexity of the proposed algorithm does not de-
pend on the rank of the subspaces, but rather on the differ-
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ence of rank between them. Note that the number of vari-
ables (entries of the permutation matrix P) increases with

2.
First we prove that the original integer problem has

unique solution in a convex set. Second, in the noisy case,
we compute a robust estimate with a linear programming-
based algorithm. Finally, we show experiments demonstrat-
ing its adequacy to real world situations.

Major extensions include the ability to deal with outliers
keeping low complexity. This implies using non-squared
permutation matrices introducing extra degrees of freedom
(which feature to eliminate).

Acknowledgements: Authors wish to thank to João Xavier
for fruitful ideas and discussions.

6. Appendix

This appendix proves the major contribution of this arti-
cle, introduced and explained intuitively in section 3.

Let , and be positive integers, such that , and
. Let

1 2 k

1 2 k R
N k

be a matrix where i
R

(r k+1) 1 and i

R
(N r+k 1) 1, are given vectors. Also let

be a prescribed -dimensional vector subspace of R
N , such

that the columns of belong to .
Then we have the following:

Theorem 1 For generic matrix and subspace we have
the following: if R

(N r+k 1) (N r+k 1) is a

doubly-stochastic matrix such that all vectors
i

i ,

, belong to , then is the identity matrix.

In the case we are interested in, we have and
, or and , while is large number. Here

we just sketch the main ideas of the proof for - the
general case is done analogously.

Sketch of the proof for :

Our main goal is to �nd a vector which is a linear com-
bination of the vectors 1 and 2 such that

(7)

Having this relation we use the doubly-stochastic prop-
erty of , to obtain strong restrictions on . This relies
heavily on the Perron-Frobenius theorem for nonnegative
matrices.

First of all, there exists a permutation matrix such that
T has the block matrix form:

T

1

21 2

...
...

. . .
...

l1 l2 l

where matrices 1 l, are irreducible, i.e. cannot be
further splitted in this way. Moreover, since is a non-
negative matrix, with row and column sums equal to 1, we
have that all off-diagonal blocks are equal to zero. So, from
now on, we may assume that is in the block-diagonal form:

T

1

2

...
...

. . .
...
l

(8)

with all blocks being irreducible. Moreover, we have the
following lemma:

Lemma 1 If is an irreducible doubly-stochastic ma-
trix, and is a vector such that , then all en-
tries of are equal, i.e. there exists R, such that

T .

Proof of lemma:
Every row-stochastic matrix has as an eigenvector

the vector T , with the eigenvalue 1. On the
other hand, by Ger�sgorin theorem (see below), all real
eigenvalues of row-stochastic matrix are less or equal
than 1. Since is an irreducible nonnegative matrix, by
Perron-Frobenius theorem (see below) the multiplicity of
its dominant eigenvalue (which as we have proved is 1),
is equal to 1, i.e. it has only one linearly independent
eigenvector corresponding to the eigenvalue 1. As we saw,
this one is T , as wanted.

Ger�sgorin theorem: Let ij R
n n be a

square matrix. For every , denote by i the
sum of absolute values of all non-diagonal entries of the -
th row, i.e.

i

j=i

ij

Then all (complex) eigenvalues of lie in the union of
discs with centres in ii with radius i, for all .

(Part of) Perron-Frobenius theorem: Let ij

R
n n be a nonnegative square matrix, i.e. such that ij

, for every and . Then has a real nonnegative eigen-
value corresponding to the eigenvector with all entries
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nonnegative, and such that all other eigenvalues of the
matrix , are such that .

If in addition is irreducible, then has multiplicity 1.

Now, to �nd a vector that satis�es (7) we do the fol-
lowing: Denote by i, , the space of all vectors

of the form
i

i , where i runs through R
(N r+1) 1,

which belong to . Since the space of all vectors
i

i

has the dimension and has the dimension ,
then their intersection, i, (in generic case) has dimension
1. Moreover, 1 and 2 are parallel lines, and hence they
determine a plane .

Denote by the line determined by
1

1 and

2

2 , and by the line determined by
1

1

and
2

2 . If they are parallel, then we have that

2 1 2 1, i.e. we can take 2 1.
Otherwise they intersect at some point , and since 1

and 2 are parallel, we have that for some R we have
the following:

1

1

2

2

1

1

2

2

and so in this case we have , for
1 2.

Finally, with the obtained tools, we can prove that
N r+1. First of all, put in the block-diagonal form (8),

with all blocks i being irreducible of size i. If all i are
equal to 1, we are done. Otherwise, split the vectors 1,

2 and in the blocks of the corresponding dimensions
i: i i

1
i
l

T , 1 l
T . Then we

have that for all :

i i i

and so by Lemma 1 there exists i R such that i

i
T

R
1 di . Thus we would have that the vec-

tors 1
i ,

2
i and T are linearly dependent, which

generically is not satis�ed.
Thus , as wanted.
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